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Abstract 
The multichannel neurophysiological signal processing systems should 
have to meet strict and usually competing criteria connected with the 
latency, throughput and power performance along with adaptability. In 
real-world electroencephalography (EEG), electromyography (EMG), and 
electrocardiography (ECG) recording and acquisition, channel counts, 
quality of signals, and complexity of feature ideation are major challenges 
to pipeline software and hardware accelerators with fixed functionalities. 
These traditional methods do not possess the ability to be flexible so that 
they can easily meet dynamic workloads without compromising on real-
time performance. This article has described a dynamically reconfigurable 
multichannel neurophysiological feature extraction hardware architecture 
based on an FPGA platform and intended to be used to facilitate adaptive 
and high-energy-efficiency real-time processing. The given architecture uses 
the capabilities of runtime partial reconfiguration to allocate computational 
resources in a dynamic manner due to the number of active channels, as 
well as the assigned task(s) and the task(s) to perform a specific feature 
extraction. It implements a single processing architecture to enable time-
domain, frequency-domain and timefrequency feature extraction in the 
same reconfigurable platform. The feature extraction modules can be 
changed dynamically without disrupting the flow of operation of the system, 
hence dynamic capability to adapt to varying requirements of the signals 
and application. The implementation and evaluation of the architecture 
is done on the basis of a field-programmable gate array (FPGA) platform 
under realistic multichannel neurophysiological workloads. The experimental 
performance is better in terms of utilizing the available hardware resources 
and lowering energy consumption than the energy consumption of fixed 
FPGA-based designs, and maintains deterministic low-latency performance. 
These findings affirm that dynamic partial reconfiguration is a feasible idea 
to scalable and power efficient neurophysiological signal processing. The 
suggested architecture offers a versatile hardware base of future generation 
real-time brain-computer interfaces, wearable biomedical systems, and 
adaptive neuro-monitoring software.
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architecture, which is dynamic and reconfigurable 
to get multichannel neurophysiological features 
extraction. The proposed design facilitates time-
domain, frequency-domain and time-frequency 
feature extracted functionality, in a single modular 
system and runtime partial reconfiguration to 
dynamically change processing capability. It is 
evaluated in a comprehensive experimental study to 
determine the performance, resource utilisation, and 
energy efficiency as compared to the static designs 
using FPGa.

The rest of this paper follows a structure in the 
following way. Standard 2 presents related literature, in 
the areas of hardware-accelerated neurophysiological 
signal processing and reconfigurable computing. The 
proposed architecture and reconfiguration strategy 
is presented in Section 3. Section 4 explains the 
implementation and experimental set up. Section 5 
talks about the performance evaluation and results. 
Lastly, there is a conclusion of the paper that spells 
out the direction of future research in Section 6.

Related Work
Neurophysiological signal processing Hardware ac-
celeration of neurophysiological signal processing 
has been a popular research area to tackle the high-
ly real-time and energy limiting factors of EEG, EMG 
and ECG hardware. The first FPGA-based models 
were mainly dedicated to time-domain feature ex-
traction using fixed-function pipelines, spectral anal-
ysis (fast fourier transform (FFT)) and computation 
of the discrete wavelet transform (DWT). These de-
signs have deterministic low-latency performance, 
and high throughput, but commonly require a fixed 
number of input channels, and special purpose pipe-
lines of feature extractions, which makes them less 
able to adapt to dynamic acquisition contexts.[9, 10]  
In order to enhance adaptability, some works have dis-
cussed the configurable or parameterized hardware ar-
chitectures where feature selection or channel routing 
is programmed/configured by means of software or by 
register/register configuration. Such solutions are not 
very flexible, but they are based on fine-grade recon-
figuration or time-multiplexing of resources that can 
be a source of low resource usage and high power us-
age when runtime requirements vary among systems.
[11, 12] Additionally, these architectures do not enable 
the underlying hardware architecture to be reconfig-
ured dynamically which limits their ability to scale 
effectively as the number of channels changes or the 

Introduction
The standard of the modern brain computer interface, 
wearable health technologies, and real-time health 
monitoring systems include neurophysiological 
interfaces, including electroencephalography (EEG) 
or electromyography (EMG) and electrocardiography 
(ECG). In an effort to enhance spatial resolution, 
signal strength and diagnostic quality, modern 
acquisition systems have been turning more and more 
to multichannel sensing architectures, which typically 
include tens and hundreds of parallel signal channels. 
As much as multichannel configurations are known 
to increase system capability, they create high data 
rates, and introduce high computational and energy 
burden especially in the feature extraction stage, 
which directly influences the accuracy of classification, 
latency and overall system efficiency.[1, 2] The traditional 
software-based process pipelines that are designed to 
run on a general-purpose processor or embedded CPU 
have an advantage of providing algorithmic flexibility 
but have difficulty meeting strict real-time and power 
requirements in portable and wearable systems.[3]  
On the other hand, some hardware accelerators 
(usually fixed-function) implemented on application-
specific integrated circuits (ASICs) or fixed FPGA 
designs can offer high throughput and low latency but 
cannot be reconfigured when the number of channels, 
or signal quality or other features to extract changes 
during operation.[4, 5] In the real world dynamic 
situation, this rigidity contributes to inefficient 
use of resources and unneeded consumption of 
energy. Computing Reconfigurable computing with 
FPGA based computing, in particular with runtime 
partial reconfiguration, provides a promising option 
by providing a combination of hardware-capable 
performance and post-deployment flexibility.[6, 7] 
Toggling can be done dynamically, with runtime 
system reconfiguration permitting hardware modules 
to be switched in or out, modified, or replaced, 
without affecting the operation of the system so that 
computational resources can be dynamically allocated 
according to the current workload. Nonetheless, the 
majority of the current neurophysiological processing 
frameworks on FPGA utilise fixed architectures and 
fail to completely utilise run-time reconfigurability to 
tailor feature extraction pipelines to run-time feature 
count or chosen subsets of features.[8]

In order to overcome these constraints, the 
paper will present a proposed FPGA-based hardware 
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feature heterogeneity. Dynamic partial reconfiguration 
(DPR) of FPGAs has become an influential approach in 
order to provide the ability to modify the functional-
ity of a hardware at runtime and not to disrupt the 
functionality of a system. DPR has been effective in 
areas like software defined radio, video processing, 
and adaptive signal processing to provide functional 
swapping and power sensitive operating.[13] Its use in 
multichannel neurophysiological feature extraction ar-
chitectures, however, remains little used, most avail-
able biomedical FPGA designs to date still depending 
on statical architecture or offline reconfiguration.

Unlike the previous literature, the suggested 
architecture explicitly incorporates the facility of 
runtime partial reconfiguration so that fine-grained, 
on-need adaptation of feature extraction modules 
can take place, contingent on the active number of 
channels in addition to the belongings of feature types 
of choice. The proposed method overcomes some of 
the main shortcomings of the current systems with 
regard to scalability and resource efficiency as well as 
energy consumption and maintains deterministic real-
time performance by integrating modular hardware 
design with DPR.

System Overview
Target Application Scenario
The suggested study is focused on the dynamic real-
time multichannel neurophysiological signal processing 
applications where the number of active channels and 
the tasks that have to be performed to extract the 
features during the system operation can be affected 
dynamically. This variability is a typical feature of 
adaptive systems based on electroencephalography 
(EEG) brain electrodes interfaces (BCI), wearable 
health devices, and long-term neuro-monitoring 
utility, where signal quality, state of the user or the 
application suitability and energy availability varies 
or dictates processing needs. The issue with a fixed 
processing pipeline, in such cases, is that it is a waste 
of resources and which causes needless power usage, 
when there are less channels in use, or when a simpler 
set of features are used. The study is thus performed on 
the premise that a good acceleration hardware should 
be able to achieve the ability of runtime flexibility 
but maintain non-random low-latency processing. This 
prompts the utilisation of reconfigurable hardware 
that has the capability to alter its feature extraction 
functionality when not compromising the possibility of 
data acquisition.

Architecture Overview
The proposed system is deployed in a FPGA-based 
system-on-chip (SoC) platform to be implemented and 
configured into a fixed and dynamically reconfigurable 
area as shown in Fig. 1. Its part is the continuous 
operation of the system and stored in the static 
region consists of sensor data acquisition interfaces, 
input buffering, control logic, and communication 
with external memory or host processors. This part 
also contains a runtime manager checking the status 
variables of a system, including number of running 
channels, chosen feature sets and power budget. 
The reconfigurable region contains hardware feature 
extraction modules which can be loaded or swapped in 
at runtime by partial reconfiguration. The streaming 
sensor information is directed out of the stationary 
section into the active feature extraction section 
that is currently working and is operated in real time 
and sent back to the stationary part to be stored 
or sent. The system can recover the continuous 
operation through the reconfiguration of control and 
data acquisition logic in the static region, thereby 
maintaining the continuous operation of the system.

Fig. 1: FPGA-Based System Architecture with Static and 
Dynamically Reconfigurable Regions

Proposed FPGA system architecture block 
diagram depicting the fixed part of the system, 
dynamically reconfigurable part feature extraction 
part and dynamic partial reconfiguration controller of 
multichannel neurophysiological signal processing.

Dynamic Reconfigurable Feature 
Extraction Architecture
Modular Feature Extraction Design
The feature extraction functionality is achieved 
with hardware block implementation in which every 
hardware block is modular, and is capable of computing 
a certain type of neurophysiological features. The 
study takes three areas of widely used features into 
consideration namely: time-domain, frequency-
domain, and time frequency features. Every module is 

Data Buffer
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Dynamic Reconfigurable Feature 
Extraction Architecture
Modular Feature Extraction Design
The feature extraction functionality is achieved 
with hardware block implementation in which every 
hardware block is modular, and is capable of computing 
a certain type of neurophysiological features. The 
study takes three areas of widely used features into 
consideration namely: time-domain, frequency-
domain, and time frequency features. Every module is 

Data Buffer

executed in the form of a parameterizable datapath, 
which takes streaming input samples.

Let xc[n] denote the discrete-time signal sample 
from channel c. A generic feature extraction operation 
can be expressed as

	 fc = F(xc [n])	 (1)

where F(⋅) represents the selected feature computation 
function, such as mean, variance, spectral power, or 
wavelet coefficients. Each of the feature modules has 
a standardised input/output interface, which enables 
them to be integrated directly into the reconfigurable 
region, and be replaced without changing the static 
control logic.

Runtime Reconfiguration Strategy
Dynamism partial reconfiguration (DPR) is used to 
allow replacement of feature extraction modules 
during runtime, and still allow the system to operate, 
as shown in Fig. 2. The runtime manager constantly 
assimilates the state of the system including but 
not limited to channel activity, application mode, 
and energy availability and decides whether 
reconfiguration should or should not be done. The 
procedure of reconfiguration is based on decision-
execution sequence. In the first step, the runtime 
manager uses the selection of the suitable feature 
module depending on the current system needs. Then 
part of a bitstream that represents the chosen module 
is loaded into the reconfigurable portion as the 
fixed region keeps receiving and buffering incoming 
information. After reconfiguration, the data processing 
is immediately resumed using the loaded new module. 
The method provides uninterrupted availability of the 
system and reduces the reconfiguration cost.

Flow TZ Flowchart of the partial reconfiguration 
process at runtime and system monitoring, 

Reconfiguration Decision?New Feature Extraction Module
Runtime Manager

Trigger DPR

Continue Current Feature ExtractionActive Feature Extraction Module

Processed Data

Partial Bitstream

Reconfiguration Trigger
Normal Operation

reconfiguration decision-making, data buffering in the 
proposed reconfiguring process, and easy resumption 
of the feature extraction in the proposed FPGA-based 
architecture.

Channel Scalability and Resource 
Management
In order to facilitate scalable processing on multiple 
channels, the architecture uses feature extraction 
modules that use parameterized datapaths and time-
multiplexed computation. Where N is the number 
of channels that are active. The degree of time 
multiplexing is adjusted to deal with the effective 
processing throughput T.

	 	 (2)

where fclk​ is the system clock frequency. Runtime 
adaption enables the programme to compromise the 
throughput and the consumption of resources as the 
number of channels changes. Bacterial populations 
that have less channels being used are re-used more 
efficiently, and lead to reduced idle logic and power 
dissipation. The number of channels in a system is 
dynamically reallocated to fit a real-time processing 
constraint.

Implementation and Experimental Setup
Hardware Platform
The proposed dynamically reconfigurable feature 
extraction architecture was inculcated on a Xilinx 
FPGA based platform that provides dynamic partial 
reconfiguration (DPR). The FPGA board was set-
up through a system-on-chip (SoC) designing flow, 
where the permanent and reconfigurable areas were 
established with vendor-supported DPR designing 
approaches. The sensor data interfaces, input 

Fig. 2: Runtime Partial Reconfiguration Workflow for Adaptive Feature Extraction
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buffering, control logic and the runtime reconfiguration 
manager are provided in the static region with the 
feature extractors being provided in the reconfigurable 
portion. In order to realise the efficient use of hardware 
and power saving, all the signal processing operations 
were based on fixed point arithmetic. The word 
lengths were chosen such that there was a balance 
of accuracy of numbers and hardware cost, which 
assures good features extraction at low logic costs and 
low dynamic power usage. The synthesis, placement 
and routing of the design were done by standard FPGA 
design tools, and partial bitstreams, representing each 
module of feature extraction, were created to run at  
runtime.

Evaluation Metrics
In the context of the experimental assessment, the 
metrics are working on the criteria, which directly 
indicate the appropriateness of the suggested 
architecture to the processing of real-time 
multichannel neurophysiological signals. Processing 
latency per channel Latency is measured as the 
time per channel, which is needed to calculate the 
set of features that have been selected by a single 
channel between the time of entry of input samples 
in the process and the availability of the output. This 
indicator is paramount to determine responsiveness in 
certain time.

The ability of the system to maintain continuous 
multichannel streams of data is measured through 

throughput which is defined as the number of samples 
that are processed per second. Effects of turnaround 
reconfiguration on the throughput is also examined so 
that performance decay during reconfiguration is in 
acceptable levels.

The usage of FPGA resources is measured in the 
form of look-up tables (LUTs) and flip-flops (FFs), 
digital signal processing blocks (DSPs), and block RAMs 
(BRAMs). This measure is used to draw attention to 
the efficiency improvements brought about by the fact 
that the feature extraction modules can be loaded 
dynamically as opposed to loading all the modules at 
the same time.

Lastly, post-implementation tools of power 
analysis are estimated in real representative loads 
under dynamically consumed power. The measures 
of power put emphasis on the active processing 
stages in order to realise the benefits of power in 
reducing resource activation through dynamic r 
econfiguration.

Baseline Comparison
To determine objectively the advantages of the 
proposed method, the experimental outcomes are 
compared to the baseline static FPGA implementation. 
The baseline design places all feature extraction 
modules in line with each other and active independent 
of application requirements. It is a traditional 
hardware acceleration model that is used in fixed-
function FPGA designs. The proposed dynamically 

Table 1: Implementation Parameters of the Proposed FPGA-Based System

Parameter Value / Description

FPGA platform Xilinx Zynq-7000 SoC (XC7Z020)

FPGA design tool Xilinx Vivado Design Suite (Version 2020.2)

Clock frequency 100 MHz

Arithmetic format Fixed-point (Q15.16)

Supported signal types EEG, EMG, ECG

Number of channels 8–32 (runtime configurable)

Sampling rate 256 samples/s per channel

Processing window size 256 samples

Feature extraction modules Time-domain, frequency-domain (FFT), time–frequency 
(DWT)

Reconfigurable region size ~35% of total FPGA resources

Partial bitstream size 450–600 KB (depending on module)

Reconfiguration time ~10–15 ms

Data buffering strategy Dual-buffer FIFO in static region

Power estimation method Post-implementation analysis (Vivado Power Analyzer)
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reconfiguring architecture as well as the fixed baseline 
were simulated using the same FPGA card, clock 
speed as well as fixed-point accuracy to enable a just 
comparison. Latency, throughput, resource utilisation, 
and power consumption differences are hence only 
associated with the choices of the architectural design 
unlike implementation artefacts. The presented 
comparative analysis is a clear insight on the benefits 
of runtime partial reconfiguration in adaptive and 
energy efficient neurophysiological signal processing.

Implementation Parameters
To improve reproducibility and to be able to present 
credentials on the experimental configuration, the 
most important implementation parameters of the 
suggested dynamically reconfigurable architecture are 
outlined in Table 1. These are the parameters which 
determine the hardware platform, design configuration 
and reconfiguration at runtime which are used during 
the whole examination.

Results and Discussion
The obtained results of this experiment indicate that 
the proposed dynamically reconfigurable architecture 
of the FPGA performs equally well as the traditional 
stationary design and is much more efficient in terms 
of hardware. Table 1 summarises the utilisation of 
the FPGA resources to the proposed architecture and 
the existing baseline in the varied configurations of 
feature extraction. In cases of partially activated 
feature extraction modules, the proposed method 
results in the use of significantly less logic and 
DSPs, 3040 times less in fact, which confirms that 
runtime partial reconfiguration is a useful approach 
to do away with idle hardware resources. Fig. 3 
used above shows that the proposed architecture is 
deterministic and has the same low-latency processing 
as the static design. The overhead associated with the 
reconfiguration is offset with long-run operation and 
has no impact with the performance of steady-state 
processing. This also shows that runtime flexibility 

is possible without opposing real time constraints, 
which is essential to multichannel neurophysiological 
signal processing. The dynamic power consumption is 
obtained and presented in Fig. 4, thus demonstrating 
the advantages of the suggested approach. Using a 
balance between the features extraction modules 
that are actually needed, the architecture requests 
the dynamic power consumption of the modules to be 
reduced by a significant amount as compared to idle 
power consumption in the static configuration. This 
enhancement goes directly into the implementation of 
energy-restricted wearable and portable biomedical 
systems, whereby sustained operation lifetime is a 
major need. The overhead because of reconfiguration 
was measured by estimating the time to load 
incomplete bitstreams at runtime. Reconfiguration of 
the network only requires a short time interruption 
virtually covered by input buffering in the stasis 
region as demonstrated in Fig. 5. This overhead is 
insignificant when compared to the total execution 
time of feature extraction tasks, and this fact justifies 
the viability of dynamic partial reconfiguration to 
real-time applications.

Compared to previously documented FPGA-based 
neurophysiological processing systems, which mainly 
make use of fixed of course-grained programmable 
systems, the design offers a better use of resources 

Table 2: FPGA Resource Utilization Comparison Between Static and Dynamically Reconfigurable Architectures

Architecture Active Feature Set LUTs (%) FFs (%) DSPs (%) BRAMs (%)

Static FPGA D esign All feature modules active 68 62 75 58

Proposed DPR Design Time-domain features only 42 39 28 41

Proposed DPR Design Frequency-domain features only 47 43 35 44

Proposed DPR Design Time–frequency features only 50 46 48 47

Proposed DPR Design Mixed adaptive configuration 44 41 40 43

Fig. 3: Processing Latency Comparison Between 
Dynamically Reconfigurable and Static FPGA Designs
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and power efficiency without diminishing real-time 
behaviour. These findings indicate that the rich 
reconfiguraton of a fine-grained runtime can be of 
significant benefit compared to traditional designs that 
are static, especially when the counts of channels can 
be varied and when new features may be demanded.

Comparison between the latency per channel of 
the proposed dynamically reconfigurable architecture 
and a fixed FPGA based design.

Fig. 4: Dynamic Power Consumption Comparison of 
Reconfigurable and Static FPGA Architectures

Comparison of Dynamic power consumption of the 
proposed dynamically reconfigurable architecture, 
and the static FPGA based design.

Fig. 5: Reconfiguration Overhead Relative to Feature 
Extraction Execution Time

Percentage reconfiguration overhead of total 
execution time of runtime feature extraction under 
dynamic partial reconfiguration.

Conclusion
The current paper described a dynamically 
reconfigured FPGA-based hardware design of 
multichannel neurophysiological feature extraction to 
solve the issues of scalability, energy efficiency, and 

adaptiveness of real-time biomedical signal processing 
systems. The proposed architecture can adapt runtime 
features extraction functionality to dynamic changes in 
channel counts, feature requirements and constraints 
in the system, however, without discontinuing 
continuous data acquisition or processing by exploiting 
dynamic partial reconfiguration. The experimental 
analysis shows that the discussed design has the same 
processing latency as traditional FPGA implementations 
that require no dynamic evaluation but uses much less 
hardware and consumes a lot less dynamic power. 
The findings substantiate the claim that runtime 
reconfiguration is an effective practise to erase idle 
hardware resources and enhance energy efficiency of 
multichannel neurophysiological applications, most 
specifically to wearable and embedded systems. The 
standardised interfaces and modular design taken 
in this work are facilitating extensibility and reuse 
and the design will be applicable in a wide variety 
of neurophysiological monitoring and brain–computer 
interface applications. The suggested framework will 
be expanded in the future as the adaptive learning 
mechanisms designed to automatically optimise the 
reconfigurating decisions made depending on the signal 
characteristics and the application context. Other 
activities will be devoting themselves to hardware 
prototyping using real sensor data and extending 
to more neurophysiological modalities, making the 
proposed strategy even more useful in practise.
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