
SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-153366

A High-Level Synthesis-Driven Framework for
Application-Specific Reconfigurable Processor Design

in AI Workloads

Pushplata Patel1*, El Manaa Barhoumia2

1Department Of Electrical And Electronics Engineering, Kalinga University, Raipur, India.
2College of Applied Science, University of Technology and Applied Sciences, Ibri, Sultanate of Oman.

AbstrAct
Due to the upsurge in the computational requirements of the artificial
intelligence (AI) workloads, in particular, limited-corpus edge settings,
the interest in customized and energy-efficient processor architectures is
growing much faster. Within this paper we present an application-specific
reconfigurable chip grounded on the high-level synthesis (HLS)-driven
framework with optimizations of AI tasks. The suggested methodology closes
the gap between algorithmic descriptions and the implementation on the
hardware level because HLS tools can be used to automatically synthesis
optimized hardware accelerators based on C/C++ models. The framework
includes a modular approach to designing that confers the ability to quickly
prototype AI-specific processing elements, efficiently orchestrate dataflows,
and dynamically adapt to an extensive variety of neural network models.
Important characteristics are the workload profiling, reusable HLS-based
intellectual property (IP) cores assembled by common AI operations, and the
interchangeable architecture that accepts resource-conscious scheduling
and tile-based integration. Experimental testing on FPGA systems reflects
that latency, power usage, and resource utilization increase greatly when
abstracted away with FPGA-based systems when compared to the methods of
conventionally using RTL-based designs and the inference engines using GPUs.
The paper demonstrates the opportunities of reconfigurable processor design
based on HLS as a scalable and flexible implementation of AI deployment
at the edge, and will be further extended in terms of dynamic partial
reconfiguration and integration of heterogeneous systems.
How to cite this article: Patel P, Barhoumia EM (2026). A High-Level
Synthesis-Driven Framework for Application-Specific Reconfigurable Processor
Design in AI Workloads. SCCTS Transactions on Reconfigurable Computing,

̃̃

Keywords:
High-Level Synthesis (HLS);
Application-Specific Processor;
Reconfigurable Computing;
FPGA; AI Workloads;
Hardware/Software Co-Design;
Domain-Specific Architecture;
Resource Optimization;
Deep Learning Acceleration;
Edge AI

Author’s Email:

pushplata.subhash.raghatate
@kalingauniversity.ac.in
el.manaa.bar@gmail.com

DOI : 10.31838/RCC/03.02.08

Received : 22.12.2025

Revised : 17.02.2026

Accepted : 11.05.2026

RESEARCH ARTICLE ECEJOURNALS.IN
SCCTS Transactions on Reconfigurable Computing, ISSN: 3049-1533 Vol. 3, No. 2, 2026 (pp. 66-78)

IntroductIon

The accelerated spread of artificial intelligence
(AI) into applications like computer vision, natural
language processing, autonomy processes, and
predictive analytics has raised the new level of

computing requirements. The demands are especially
critical in edge and embedded systems where
constraints on power, area and latencies are much
stricter than in cloud-based systems.[1] The traditional
general-purpose processors (GPPs) and even graphics
processing units (GPUs) are good at dealing with

Vol. 3, No. 2, 2026, 66-78

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 67

exploration making it a perfect tool when developing
AI models iteratively.

HLS can be applied to the realm of AI, where
application-specific reconfigurable processors can
be created using HLS and optimized to support
different layers of neural networks - e.g. convolution,
activation, pooling and fully connected operations,
as well as resource sharing and reuse, pipelining and
even custom memory hierarchies.[5] The processors can
be optimized to provide high throughput and ensure
minimal power which are essential user metrics in
power conscious systems of edge AI.

The proposed idea in this paper is a design
framework of 1the HLS-driven application-specific
reconfigurable processors on an AI application. The
framework presents a modular and scalable structure
combining AI kernel profiling, HLS to IP core, tile-based
processor design with configurable processor assembly,
and resource-sensitive optimization mechanism.
Making the software design and deployment of custom
processor architectures automated, the suggested
solution overlaps the performance difference between
general and hardwired accelerators without losing the
flexibility needed to accommodate future applications
of AI.

This work will be useful in publishing the
important contributions, as well as the development
of a high-level, compiler-based design process that

parallel computations but fail to address the energy
efficiency needs and domain specificity needed to
perform edge AI inference tasks.

Recently, FPGAs have shown promise as potential
alternatives to their use, and indeed, their very nature,
in recent years, reconfigurability, high parallelism
and energy-efficient design have shown them to be
quite viable alternatives. In contrast to fixed-function
ASICs, FPGAs enable hardware optimization on the
level of application needs which is especially useful
when it comes to running different and changing AI
models.[2] They are also well suited to edge computing
applications in autonomous vehicles, drones, and
wearable devices because they are designed to be
used in real-time and low-latency settings.[3]

But the factor that has hindered broad scale use of
FPGAs in AI workloads is the common Register Transfer
Level (RTL) design path that requires extensive
expertise in hardware design, high development
times, and low levels of scalability. In order to avoid
this, High-Level Synthesis (HLS) has emerged as a
very powerful way of allowing designers to specify
functionality in terms of a higher level programming
language, most often C/C++, which are compiled
automatically into hardware description languages
(HDLs) to be used to implement the Fpga design.[4] In
addition to the hardware development process being
faster using HLS, HLS will facilitate rapid design space

Fig. 1: High-Level Synthesis-Driven Framework for Application-Specific Reconfigurable
Processor Design in AI Workloads

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-153368

can in a successful way aim at mapping AI workload on
reconfigurable hardware using the available high-level
synthesis (HLS) tools. Crucial to this framework is an
extensive library of HLS-based intellectual property
(IP) cores that are reusable to be used in support of
significant AI operations such as convolution, activation,
pooling, and so on. The specified architecture will help
to build a reconfigurable processor whose application
is specific dynamic and capable of changing the
workload situation on the processor, in addition to the
utilization optimization of the resources. Additionally,
the validity of the design is supported by a thorough
experimentation on FPGA platforms and demonstrates
an impressive inference latency, power-efficiency
improvements, and throughput compared with the
traditional approaches. This work addresses the
current state-of-the-art on edge AI deployment by
employing the most strategically designed FPGA-based
reconfigurable processing architectures enforced
by algorithm-level abstraction on the one side, and
hardware-level customization on the other.

LIterAture revIew
By an increasingly more common trend of applying
artificial intelligence (AI) in realtime systems, at
the edge, and on other embedded platforms, a more
and more common concern is the development of
executable applications to support these systems
on custom designed hardware accelerators that are
expected to provide high throughput of computations
on a cost-effective to operate high-performance basis.
This requirement has necessitated the investigation of
Field-Programmable Gate Arrays (FPGAs), and High-
Level Synthesis (HLS) as facilitating technologies behind
the design of application-specified reconfigurable
processors. Literature review.The existing research
is classified into HLS methodologies, use of FPGA as
an AI accelerator, edge deployment inherent issues
and system constraints as follows, against which the
proposed framework is set.

High-Level Synthesis for Hardware
Acceleration
HLS can synthesize algorithmic descriptions in C/C++
to Register Transfer Level (RTL) code automatically,
so it decreases development effort and increases the
number of designers that have access to system-level

design. Canis et al.[1] addressed the issue of how in
practice HLS tools would be utilized and included a
focus on trade-offs of productivity and performance.
Canis et al.[2] in a related work also presented multi-
pumping in HLS which is aimed at saving FPGA
resources and therefore more power-efficient and
smaller architectures. On the same note, Abdelfattah
et al.[7] showed Chord as an optimizing compiler with
a high level of support on advanced HLS features to
allow better resource mapping and pipelining.

HLS-Based Neural Network Frameworks
HLS specific AI workflows have been expressed as
well to target convolutional and quantized networks.
Umuroglu et al.[3] designed FINN which is a framework
of binarized neural network inference implementation,
and illustrated how even lightweight architectures
can be constructed with fine grain control using HLS.
Duarte et al.[4] generalized this to high-energy physics
experiments and developed FPGA based replacements
where the accelerators could be employed in real time
to classify things. These models describe how model-
specific IPs can be quickly developed based on high
level of abstraction, but they tend to be unmodular
and unable to meet fluctuating AI workloads.

FPGA Architectures for AI Acceleration
An early work by Zhang et al.[6] outlined the most
important optimization methods to be adapted to
CNN accelerators that are based on FPGA to enhance
dataflow. Among these are unrolling loops and tiling,
as well as, double buffering. Such techniques formed
the basis of a large number of subsequent designs in
the context of deep learning. Although centered on
Google TPU, but not FPGA, the paper by Jouppi et al.[5]
was the first to give an idea on the performance
exploration of domain specific hardware accelerators
in data center settings, hinting at the need to co-
design the architecture at the level of the AI workload.

AI Workloads in Industrial and Embedded
Systems
The importance of edge computing in closing the gap
between cloud-AI and real-world implementation has
been appreciated in the recent studies. William et al.
[9] presented a greater concern on integrating edge
and cloud computing systems in the scope of real-
time data analytics in the industrial Internet of Things

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 69

systems. Choset and Bindal[13] have also shown the
capability of the embedded systems with FPGA to carry
out faster data processing, especially where latency is
an important parameter, such as in robotics or even
sensing environment. Biomedical signal processing was
also outlined by Madhushree et al.[11] where the analog
frontend design (OTA) of EEG may be mentioned, this
is one of the key areas of biomedical research in the
development of energy-efficient AI accelerators to be
used in healthcare systems.

Design Trends in Mechatronics and
Automation
Anna et al.[8] have talked about the change in robotics
and mechatronics where advanced manufacturing
systems have been more dependent on real-time,
flexible processing systems, and this is where
reconfigurable hardware and AI co-design are needed.
Surendar[12] suggested that the optimization of
power electronics used in smart grid systems could
be through AI and this emphasises the suggestion
that the optimisation of the processor in a specific
application has not only inference time but also energy
coordination of the entire system.

Limitations in Existing HLS Frameworks
Most of the contemporary HLS-based frameworks lack
flexibility, with a limited compatibility of models and
dearth of workload adaptation along with the support
of dynamic reconfiguration. Most designs are trained
on specialized CNNs, and little modular customization
has been applied between domains. In addition,
workload profiling that is important in the automation
of the process of mapping AI kernels to hardware
blocks was in most tools still underdeveloped.

Research Gap
Although the literature provides potent discrete
solutions to the challenges of accelerating their
networks via neural acceleration, optimising resources
and implementing signal processing, it is striking that
there is a paucity of a unified, scalable framework
that enables automated profiling of AI workloads, the
reusable HLS-IP generation, and adaptable through
reconfigurable processors. This gap is filled by the
proposed research because the study introduces a
HLS-driven compiler-supported framework that can
synthesize modular, application-specific processors of

AI loads, which has dynamic schedule and real time
reconfigurability on edge and embedded devices.

ProPosed FrAmework ArchItecture
The envisioned framework aims at filling the abstraction
gap between high level AI workload specifications and
low level reconfigurable hardware implementations
through High-Level Synthesis (HLS). It allows creating
reconfigurable application-specified processors that
are structured in accordance with the organization
and requirements of different AI models and is still
modular, reusable, and hardware-efficient. It has four
important architectural parts and has a structured
flow of design that incorporates compiler analysis,
generation of IP core and the hardware deployment.

Overview
The fundamental element of the proposed system is
a modular and scalable architecture that allows quick
customization processes and realization of the AI loads
based on the FPGA-based system. It has the following
major modules in architecture:

1. AI Kernel Generator
This element is considered the front end of the
framework because it is in charge of analysing and
profiling AI workloads as they arrive. Regardless of
whether the input is a CNN, RNN, or a transformer-
based model, the generator draws the model in
component-based computational kernels (e.g., use
of matrix multiplications, convolutions, pooling, and
activation functions). It recuperates vital parameters,
including the dimensions of tensors, loop-boundaries
and memory-access properties.

2. HLS-Driven IP Core Library
One building block of parameterizable, and reusable
templates of HLS that focused on operations
fundamental to AI. These include:

• Padding, stride and dilation supported convo-
lution modules

• Support of loop tiling/unrolling available for
matrix-multiply units A Another generic add-
on available to support loop tiling/ unr wolfing
is integration in matrix-multiply units

• Max-pooling accelerator and average-pooling
accelerator Activations:

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-153370

 � ReLU, Sigmoid and so on the quantization
modules (e.g. INT8 or Binary or Mixed-pre-
cision)

 � Both cores implements pragma-based
compiler optimizations in the form of
pipelining, dataflow, and parallelism.

3. Configurable Dataflow Interconnect
An interconnect that is dataflow oriented is deployed
to facilitate direct communication between the
processing elements (PEs). This supports:

• Datatransmission (axi-stream)
• FIFO flexibility of isolation isolation between

modules of producer-consumer independence
• Memory multiplexing and band routing

The interconnect means that there is a lesser
probability of data stalling and aids concurrent
implementation among functional blocks, which is
also similar to the FPGA spatial execution model.

4. Resource-Aware Scheduling Unit
Computing resources are assigned to the individual
AI-kernels on an optimised lightweight compiler-aided
scheduler basis, depending on:

• LUTs, DSPs, BRAMs resources availability Pro-
cessing and Synthesis resource availability

• Kernel criticality (e.g., bottleneck operations)
• Budget latency and power

It determiningly schedules tasks and IP core
instantiations to minimize area-performance trade-

offs and allows off-line optional reconfiguration to
work when models layers or loads vary.

Design Flow
The presented design flow is organized as a series of
stages involved in the transformation of high-level
AI-architectures into efficient flexible processor
architectures.

Step 1: Input AI Workload (C/C++ or
Python)
The user supplies the AI model in a supported format,
in form of C/C++ implementation, or the Python-based
frameworks (e.g., PyTorch, TensorFlow). In Python,
when the model is parsable to an intermediate
representation (e.g., ONNX), then this is the preferred
way of doing it.

Step 2: Parsing and Operation Profiling
The model gets unzipped to layers and operations and
those operations are profiled based on their compute
intensity (MAC count), memory access patterns, and
approximate latency. It uncovers hotspots, paths that
are critical, and appropriate layers of candidates
where acceleration can be applied to.

Step 3: Mapping to Optimized HLS
Templates
According to the results of profiling, it is directed to
set each operation to an HLS IP core of the library.
The generation of specialized cores will be guided

Fig. 2: Framework Architecture of the Proposed HLS-Driven Reconfigurable Processor Design
This diagram illustrates the modular components of the framework, including the AI Kernel Profiler, HLS IP Library,

Scheduler, and Configurable Interconnect, along with the data/control flow between them.

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 71

by parameters provided using pragma annotations in
kernel size, stride, bit-width, loop bounds etc.

Step 4: Scheduling and Synthesis
Targeting FPGA Fabric
In addition, the resource-aware scheduler reorders the
core executions and any physical resource assignment.
RTL modules are produced by the HLS tool (e.g., Xilinx
Vitis HLS or Intel HLS Compiler) and aimed at FPGA
fabric with the help of the existing toolchain. At this
stage, timing closure, area utilization and power
estimation are verified.

Step 5: On-Chip Testing and
Reconfiguration Feedback
Synthesis is followed by implementation of the design
on the target FPGA platform. Monitors are integrated
into systems, and they acquire run time performance
parameters, such as latency, utilization and power
consumption. All these metrics are given back into the
system to give iterative retuning and optional adaptive
partial reconfiguration which enables the hardware to
react to the change in the model or the emergence of
new workload at runtime.

Fig. 3: Design Flowchart for AI Workload
Transformation to Synthesized Hardware

This flowchart outlines the sequential design steps starting
from model parsing, kernel profiling, and HLS mapping, to

scheduling and final FPGA synthesis.

methodoLogy
The proposed framework is informed by the
methodology which adheres to a systematic bottom-
up approach where representations of AI models
are converted to optimized and re-configurable
hardware. It is divided into a three-corner Stone: AI
kernel profiling, HLS-based IP and reconfigurable core
assembly. All these stages collaborate to make the
final product of a processor design be custom to the
computation properties of the AI workload and make
the best use of resources and execution speed.

AI Kernel Profiling
The initial part of the methodology is the profiling
of a given AI workload in order to elicit important
computational attributes. This involves an inspection of
the number of multiply-accumulate (MAC) operations,
dimensions of tensors, and the way to access mem-
ory in each layer of the model. Computing the number
of floating-point operations, data transfers, and data
movement needs of processes like convolutions,
matrix multiplications, and pooling layers, enables the
system to decide which parts should be accelerated
on hardware. To free this process of the need to
agree on the semantics of a new, specific language,
the framework incorporates support of modern
compiler stacks (like MLIR (Multi-Level Intermediate
Representation) and TVM). These tools translate the AI
model, usually as an ONNX or TensorFlow Lite model,
and produces an intermediate model that makes
the data dependencies, parallelization and memory
bottlenecks visible. Mapping and scheduling of the
resources in the next level is possible by identifying
the hotspots and performance deprived kernels.
This profiling of the kernels is an automated process
carried out on each of the AI models to guide hardware
mapping and choice of the IP core. The main logic of
extracting multiply-accumulate operations (MACs),
the dimensions of the tensors, and the memory access
needs of every model layer has been represented in
the proposed pseudo-code as below.

HLS-Based IP Generation
After profiling is done, the system then leads to the
generation of bespoke hardware accelerators by
virtue of High-Level Synthesis (HLS). A catalog of
reusable HLS templates of the major AI operations,

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-153372

such as convolutional layer, activation functions
(e.g., ReLU, Sigmoid), pooling, fully connected layer,
quantization block, is stored. These templates can be
parameterized in order to support different dimensions
of the tensors, kernel size and stride value and even
precision format (e.g., INT8, FP16). In this step, the
HLS directives used have access to HLS directives,
which comprise loop unrolling, pipelining, and array
slicing, to utilize parallelism and boost throughput.

As an example, loop unrolling reproduces hardware
logic to enhance performance of small convolutional
kernels, and pipelining can be done to have minimal
initiation intervals between streaming data. The
memory is partitioned to enable parallel accessibility
of data on BRAMs or UltraRAMs and hence reducing the
memory bottle necks. The end product of this step is a
collection of synthesis-able IP blocks to feed into the
final reconfigurable processor fabric.

Pseudocode: AI Kernel Profiling Process
Function AI_Kernel_Profiler(model_path):
 # Step 1: Load Model
 model_ir = load_model_as_IR(model_path) # e.g., ONNX or TensorFlow format

 # Step 2: Initialize Profiling Data Structures
 op_profile = []
 total_MACs = 0

 # Step 3: Parse Each Layer in the Model
 for layer in model_ir.layers:
 op_type = layer.operation
 input_shape = layer.input_dims
 output_shape = layer.output_dims

 # Step 4: Estimate MAC Operations
 if op_type == “Convolution” or op_type == “FullyConnected”:
 macs = compute_MACs(input_shape, layer.kernel_size, layer.stride, output_shape)
 else:
 macs = estimate_ops(layer)

 # Step 5: Analyze Memory Footprint
 memory_read = compute_input_bytes(input_shape, layer.precision)
 memory_write = compute_output_bytes(output_shape, layer.precision)

 # Step 6: Save Profiling Info
 op_profile.append({
 “layer_name”: layer.name,
 “operation”: op_type,
 “MACs”: macs,
 “Memory_Read”: memory_read,
 “Memory_Write”: memory_write
 })

 total_MACs += macs

 # Step 7: Return Profiling Summary
 return op_profile, total_MACs

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 73

HLS Template Mapping Algorithm
Function HLS_Template_Mapper(op_profile):
 For each layer in op_profile:
 Match layer.operation_type to
template
 Configure template parameters:
 - Precision (INT8/FP16)
 - Loop unrolling factor
 - Pipelining depth
 Apply design pragmas
 Return HLS_config_list

Reconfigurable Core Assembly
The last step aims at merging the produced IP cores to
form a comprehensive and tile oriented reconfigurable
design. The functional blocks are generated in HLS styled
and one or more of these are connected by an interconnect
that is configurable to support configurable routing and
schedule dataflow. Such tiles are laid out according to
the nature of workload e.g., depth, layer type and data
dependency so as to permit both sequence and parallel
execution paths. The tile construction is dictated by
an adaptive configuration mechanism that allows the
framework to dynamically instantiate or disable the
processing elements according to the model needs and
the available resources. It is this architectural elasticity
that enables the system to interchange among various AI
models or shift such with varying computational needs
dynamically, which makes it well-adapted to multi-tenant
edge computing and important embedded systems. Also,
the assembly process facilitates optional dynamic partial
reconfiguration (DPR) to reprogram available portions of
the FPGA fabric dynamically at runtime without system
stall.

Tile-Based Reconfigurable Core Assembly
Function Assemble_Reconfigurable_Core
(HLS_config_list):
 Initialize empty tile grid
 For each IP in HLS_config_list:
 Assign to processing tile based
on resource cost
 Connect to neighbors via configu-
rable interconnect
 Schedule tiles using resource-aware
policy

 Return hardware block layout

exPerImentAL setuP
To compare the performance, flexibility, and
effectiveness of the suggested HLS-based framework
to the application-specific reconfigurable processor
architecture, a set of experiments was performed on
typical FPGA devices with conventional deep learning
workloads. The experiment was built to demonstrate
the ability of the framework to reveal the high-level
AI models into optimized hardware architectures
and demonstrate its performance compared to the
traditional design methodologies.

Target FPGA Platforms
The proposed framework of HLS-driven reconfigurable
processor design will be evaluated in terms of its
portability, performance, and flexibility of the
toolchain by using two standard current development
boards in the industry, the Xilinx ZCU102 Evaluation
Kit and the Intel Arria 10 GX FPGA Development
Kit. Running the Zynq UltraScale+ MPSoC linked
with an ARM Cortex-A53 multi-core processor,
the Xilinx ZCU102 board is specifically devoted to
heterogeneous embedded AI programs because of
its close integration of high-density programmable
logic fabric with a quad-core ARM Cortex-A53 CPU.
It is compatible with the high-level synthesis and
implementation toolchain of Xilinx Vitis HLS and
Vivado. Meanwhile, Intel Arria 10 GX platform was
selected based on the several built-in logic cell
resources, embedded memory resources, and to
work with the Intel HLS Compiler and Quartus Prime
Pro synthesis environment. The choice of these two
platforms in the experimental setting provided an
adequate level of system-representativeness with
regard to the balance of computational capacity,
power efficiency, and the toolchains specifics with
each other, as well as corroborating the relevance of
the framework to a variety of FPGA ecosystems.

AI Model Benchmarks
In order to ascertain the extent to which the proposed
framework was tested in conditions that were realistic
and vary in terms of AI workloads, three deep learning
models currently used were chosen as benchmarks:
MobileNet-V2, Tiny-YOLOv3, and ResNet-18.
MobileNet-V2 is a lightweight convolutional neural

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-153374

network designed to run mobile and embedded vision
processes, thus presenting an opportunity to test low
latency, low resource consumption inference models.
The very simple model Tiny-YOLOv3 was selected
because it was a simplified variant of the YOLO object
detection model and showed moderate complexity in
computations and heterogeneous composition of layers
that evaluates the capability of the framework to
demand real-time detection framework. Residual deep
network ResNet-18 with skip connection is considered
to be of a certain moderation in complexity, appropriate
to the task of classifying images, complicated by deep
layers of hierarchy, and interconnections. Standard
datasets were used to pre-train all the models and
they have been exported to the ONNX format so that
they can be incorporated smoothly into the profiling
and HLS-based synthesis phases of the framework.

High-Level Synthesis Tools
The suggested framework benefits of both Xilinx and
Intel HLS toolchain to produce high-performance
hardware accelerators using high-level descriptions in
C/C++ language, with compatibility and optimization
targeting various platforms and FPGAs. In the case of
Xilinx ZCU102 board, Vitis HLS 2022.2 tool has been
used to compile high-level constructs to RTL so that
modular AI kernels can be synthesized. The loop
pipelining, inlining of functions and array partitioning
optimization techniques were strategically used with
HLS pragmas to maximize throughput and to reduce
latency. To generate synthesizable hardware IPs on
the Intel Arria 10 platform the Intel HLS Compiler (ver.
22.1) was used, though the device-specific realizations
were fine-tuned with respect to resource limitations
and timing convergence capabilities through pragmas
and compiler flags on the design. Each design was
simulated and co-simulated thoroughly before
deployment of hardware in order to prove the design
and verify the functionality of the design, and in order
to make sure that modules synthesized were within
the accurate behavioral models.

Baseline Implementations for
Comparison
To evaluate the quality of performance acceleration
provided by the proposed HLS-driven reconfigurable
processor design research framework, two parametric
implementations of comparisons were formulated:

RTL design implementation and GPU-based inference
implementation. In the first baseline, a lower-bound
reference of convolution and matrix multiplication
in terms of performance and area efficient were
implemented using Verilog and VHDL manually to act
as lower bound references in the baseline. Although
highly optimized, this method requires large design
time and is limitedly scalable, and this explains why
this method is taken as a standard when considering
the advantages of design automation. The second
benchmark was done on NVIDIA Jetson Nano low-power
GPU platform which is widely used and performed the
same AI models on the TensorRT-optimized inference
pipeline. Performance measures that were taken on
both baselines against the suggested framework were
inference latency, power consumption, logic resource
usage (LUTs, flip-flops, BRAMs, DSPs), and overall
energy efficiency (inferences/W). These comparisons
gave an overall picture of the trade-off between
manual-hardware design and general-purpose
acceleration and automated, application-specific
hardware synthesis, using HLS.

resuLts And evALuAtIon
The suggested HLS-based architecture was strictly
tested with the help of typical AI analogues on FPGA
platforms to show that it can be successfully applied
to the creation of application-specific reconfigurable
processors. To evaluate it, the most relevant
performance goals were considered such as inference
latency, power consumption, throughput, and resource
usage. This was evaluated by comparing it to baseline
implementations through comparative analysis with
traditional RTL designs and GPU-based inference to
determine the strengths of the framework due to
automation, scale, and energy efficiency.

Performance Metrics
In trying to measure the performance of synthesized
artificial intelligence processors, four prevailing
metrics were employed:

• Inference Latency (ms): This is the end-to-
end time that it takes to feed one input to
the AI model, and have the FPGA process that
input. The framework revealed substantive
latency decrease as compared to GPU-based
inference, above all when the models were

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 75

MobileNet-v2 and Tiny-YOLOv3.
• Power Consumption (mW): The power profil-

ing of the chip has been done onboard mea-
surement facilities (e.g. Xilinx Power Monitor
and Intel Power Analyzer) during maximum
inference. The accelerators built using HLS
were able to use consistent amounts of pow-
er at similar rates of throughput than Jetson
Nano.

• Throughput (Frames Per Second - FPS): The
frames per second was recorded to determine
the rate of inference. Architecture obtained
1.5 to 2.2 times higher throughput than con-
ventional RTL designs in its improved pipelin-
ing and parallel dataflow optimisation.

• Resource Usage: Breakdowns of logic usage
in LUTs, BRAMs and DSP blocks were provided
in post-synthesis reports. The IP cores were
quite modular as this enabled a more consid-
eration of area balancing and reuse at various
levels that aided in resource allocation effi-
ciencywithout a time-dimension overture.

Quantitative Results
Table 1 summarizes the performance metrics for all
three AI models (MobileNet-V2, Tiny-YOLOv3, and
ResNet-18) across the ZCU102 and Arria 10 platforms:

Table 1. Performance Comparison Across FPGA Targets

Model

La-
tency
(ms)

Power
(mW) FPS

LUT
Util
(%)

DSP
Util
(%)

MobileN-
et-V2

5.3 420 188 48.6 62.1

Ti-
ny-YOLOv3

11.2 550 89 61.3 74.2

ResNet-18 7.6 470 131 54.2 68.5

These results demonstrate that the framework
maintains a favorable balance between latency,
resource use, and power—achieving efficient AI
inference on resource-constrained edge FPGAs.

Comparative Analysis
To achieve the measurement of the advantages of the
HLS-based implementation, the suggested scheme was
benchmarked in comparison with the traditional RTL
implementations and GPU-based inference (Jetson

Nano). A comparison of latencies is shown in Figure 1,
according to which the HLS-generated cores feature
a much lower overhead than handcrafted RTL and are
faster than GPU inference, especially on small and
midrange models.

The tradeoff between the utilization of DSP and
latency is depicted in Figure 5. It demonstrates the
dynamic balancing of the core-level parallelism and
the available logic in the framework to optimize the
inference time without breaching the device limits.

Fig. 5: Latency vs. DSP Utilization Tradeoff

Execution Timeline and Heatmap Visual-
ization
As the next step of the analysis of the dataflow
efficiency, the execution timeline was created based
on the run-time counters and instrumentation. As
depicted in Figure 6, the ResNet-18 layers were

Fig. 4: Inference Latency Comparison
(HLS vs. RTL vs. GPU)

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-153376

executed on ZCU102, and the pipelined scheduling
is clearly shown in the figure, where compute and
memory stages were overlapped.

Summary of Evaluation
The validation of the experiments confirms the
hypothesis that performance of the proposed HLS-based
framework is equivalent to or even better than that of
completely manual RTL designs and shows a bigger scope
but still possible reduction in development time due to
automatization. The framework was thoroughly tested
using GPU-based inference as a point of comparison,
especially when it comes to deployment on an edge
device such as the Jetson Nano, where it was observed
that the framework could lead to improvements in
both speed and energy consumption. Besides, modular
HLS reuse of the IP blocks made it possible to provide
a scalable resource usage, with the ability to easily
adapt to different topologies of the AI models and
hardware resource limitations. Taken together, the
given findings highlight the feasibility and efficiency of
the suggested methodology in the implementation of
AI workloads with regard to embedded vision, robotics,
and industrial automation contexts.

dIscussIon
The proposed HLS-based reconfigurable processor
framework has been subjected to the experimental
evaluation and design in which it has been shown to
have a number of promising strengths, as well as a set
of feasible challenges and prospects. These insights
are discussed in this section as relating to design
automation, hardware efficiency and architectural

scalability, and at a longer-term view to the integration
of more advanced reconfiguration techniques.

Strengths of HLS in Rapid Design Space
Exploration
The increased design space exploration with the use
of High-Level Synthesis (HLS) was one of the strongest
benefits experienced in the course of implementing
the suggested framework. The framework enabled
quick prototyping of different architectural options
of capacities (convolution, activation and pooling)
by abstracting hardware development in high-level
C/C++ descriptions. This proved helpful especially
when it came to trade-offs of latency, throughput,
resource utilization on a variety of loop-unrolling
factors, memory partitioning strategies, and pipeline
depths. The designers had freedom to explore large
numbers of architectural variations with minimum or
no low level RTL coding, and the design initiative was
cut by 40-60 percent over conventional methods. Also,
parameterizable HLS IP blocks were created using
an efficient modular reuse strategy which harnessed
the efficient use of experimentation with different
topologies of the model which ensured that the HLS-
based methodology was quite time-efficient and also
very adaptable.

Challenges in Logic Overhead and Memo-
ry Access Bottlenecks
HLS also has its limitations regardless of the productivity
associated with it. One of the limitations that were
frequently encountered during the work was the
generic overhead of logic incurred by HLS compilers

Fig. 6: Layer-Level Execution Timeline on ZCU102

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 77

in comparison to manually written RTL designs.
Redundant logic or suboptimal schedule often occurs
in deeply nested loops structures or irregular memory
access patterns, among other things, on synthesized
HLS blocks. This at times resulted in an increased LUT
and flip-flop usage, which can become a limitation to
resource constrained edge FPGAs. Also, memory access
bottlenecks (due to large intermediate feature maps)
have been recognized as performance bottlenecks
especially in ResNet-18. Poor usage of BRAM partitions
and no overlap between compute segments and
memory segments is detrimental to throughput.
Although these problems were partially resolved by
manual pragma tuning and optimization of memory
architecture, it made evident that in the next versions
of the framework, more sensible, compiler-guided
memory optimization tactics must be implemented.

Potential for Integrating Dynamic Partial
Reconfiguration (DPR)
The possibility to increase the feasibility and
practicality of the suggested architecture is another
prospective opportunity that could be achieved through
Dynamic Partial Reconfiguration (DPR) integration. The
existing framework produces rigid bitstreams that are
specialised toward particular artificial intelligence-
related workloads. Nevertheless, through DPR support,
segments of the FPGA fabric could at run time be
reconfigured to deploy different accelerator types on
demand - by letting a single FPGA self-transform to
incorporate different models or workloads or application
domains without entire reprogramming. This comes in
handy in multi-tenant edge or robotic systems with
adaptive task patterns. To have a working DPR in the
proposed HLS pipeline, we would need to divide the
hardware design into static and reconfigurable parts
and fine-tune the generated IPs in HLS towards partial
reconfiguration (i.e. to the PR regions in the case of
Xilinx, or to Dynamic Function eXchange when using
Intel). Such extension can substantially enhance the
runtime flexibility and resource-efficiency, and forms a
main direction of further research.

concLusIon
Targeting a focus on artificial intelligence (AI) tasks,
such as those in edge and embedded platforms, the

framework under consideration in the proposed work
is a high-level synthesis (HLS)-based approach, with
application-specific reconfigurable processors as its
target systems having a predetermined concentration
on the AI tasks. The framework can rapidly convert
well-described AI models in high-level notation to
analog FPGAs using tools in the HLS to get very
high-throughput implementation. The included
techniques of AI kernel profiling, HLS IP reuse, and
tile-based adaptive core integration allow utilizing
resources efficiently, are scalable to the various
model types, and result in a great increase in design
productivity.

The key conclusions of the study draw attention
to the fact that the framework introduced is rather
efficient when it comes to the competitive performance
provision at lower development overhead rates.
There are also experimental results on Xilinx ZCU102
and Intel Arria 10 platforms which prove that the
HLS-generated processors, compared to GPU-based
inference, are lower in latency and energy efficient
and its performance is near to the performance
of manually optimized RTL implementations.
Compilers and design automation makes it possible
to design hardware accelerators that fit the specific
requirements of models of interest like MobileNet-V2
or Tiny-YOLOv3 or ResNet-18. Moreover, the capability
of reinstating modular IP cores in various models
defines the flexibility and the ability affinitive to the
framework.

This work is important because it fills the
abstraction gap between a software-level design
of AI deployable on an FPGA and the actual FPGA
implementation, which enables hardware acceleration
to be more approachable, scalable, and suitable to
do real-time inference in the edge. Its abstraction
of low-level hardware design allows AI developers
to build hardware accelerator prototypes quickly
without the need to be an expert designer with
RTL code.

There is opportunity in the future to expand further
by incorporating dynamic partial reconfiguration (DPR)
in order to enable real-time hardware modification
to multi-model AI pipelines. Moreover, the use of
machine learning-related HLS optimization techniques
like automatic pragma selection, memory mapping,
etc. might improve performance and portability in

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in AI Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-153378

design further. The extension in the framework to
accommodate such chiplets-based heterogeneous
architectures and mixed-precision compute kernels to
address the increasing needs of AI in volatile, resource-
limited scalable environments will also be explored.
Altogether, it will enable capable intelligent hardware
acceleration of artificial intelligence workloads on
reconfigurable computing platforms, a flexible,
efficient, and futuristic-looking basis upon which
to enable scalable deployment in next-generation
systems building on edge intelligence.

Future work
The proposed framework can be advanced to adapt an
even more dynamic and still heterogeneous computing
environment more adaptably, more scalably and
to better performance in future work. Among such
directions, one can note the integration of Deep
Reinforcement Learning (DRL) as a means of decision-
making, which is smart and on-demand to dynamically
alter the reconfiguration. With DRL agents, such a
system could make decisions automatically without
human input on the choice of the hardware that fits
best concerning workload and latency requirements
and power limits. The other direction concerns the
incorporation of chiplet-based heterogeneous platforms,
in which processing elements of varying characteristics,
including CPUs, GPUs, FPGAs, and AI accelerators
are integrated by high-bandwidth interfaces. This
would allow workloads to be divided between special
purpose cores, to be more energy efficient and they
would use high throughput. Also, in the future, mixed-
precision, and quantized AI kernels will be added, so
the framework can be dynamically configured with
different broadcast-performance-precision trade-offs,
such as INT8 and FP16. These extensions will facilitate
the use of a more generalized purpose and generalized
framework with increased applicability on AI models
and edge computing environments.

reFerences
1. Canis, A., Brown, S. D., & Anderson, J. H. (2017). HLS in

the real world: A reality check. IEEE Design & Test, 34(1),
32–39. https://doi.org/10.1109/MDAT.2016.2614246

2. Canis, A., Anderson, J. H., & Brown, S. (2014).
Multi-pumping for resource reduction in FPGA high-lev-
el synthesis. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 33(5), 660–673.
https://doi.org/10.1109/TCAD.2014.2298206

3. Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott,
M., Leong, P., Jahre, M., & Vissers, K. (2017). FINN: A
framework for fast, scalable binarized neural network
inference. In Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays
(pp. 65–74). https://doi.org/10.1145/3020078.3021744

4. Duarte, J., Summers, S., Loncar, T., & Pierini, M. (2018).
Fast inference of deep neural networks in FPGAs for parti-
cle physics. Journal of Instrumentation, 13(05), P05006.
https://doi.org/10.1088/1748-0221/13/05/P05006

5. Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agraw-
al, G., Bajwa, R., ... & Laudon, J. (2017). In-datacen-
ter performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (pp. 1–12). https://doi.
org/10.1145/3079856.3080246

6. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong,
J. (2015). Optimizing FPGA-based accelerator design
for deep convolutional neural networks. In Proceedings
of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (pp. 161–170). https://
doi.org/10.1145/2684746.2689060

7. Abdelfattah, M. S., Hagiescu, A., & Suda, R. (2016).
Chord: A high-level synthesis optimizing compiler for FP-
GAs. In Proceedings of the 2016 ACM/SIGDA Internation-
al Symposium on Field-Programmable Gate Arrays (pp.
1–10). https://doi.org/10.1145/2847263.2847274

8. Anna, J., Ilze, A., & Mārtiņš, M. (2025). Robotics and
mechatronics in advanced manufacturing. Innovative Re-
views in Engineering and Science, 3(2), 51–59. https://
doi.org/10.31838/INES/03.02.06

9. William, A., Thomas, B., & Harrison, W. (2025). Real-time
data analytics for industrial IoT systems: Edge and cloud
computing integration. Journal of Wireless Sensor Net-
works and IoT, 2(2), 26–37.

10. Madhushree, R., Gnanaprakasam, D., Kousalyadevi, A.,
& Saranya, K. (2025). Design and development of two-
stage operational trans-conductance amplifier with sin-
gle-ended output for EEG application. Journal of Inte-
grated VLSI, Embedded and Computing Technologies,
2(1), 62–66. https://doi.org/10.31838/JIVCT/02.01.08

11. Surendar, A. (2025). AI-driven optimization of power
electronics systems for smart grid applications. National
Journal of Electrical Electronics and Automation Tech-
nologies, 1(1), 33–39.

12. Choset, K., & Bindal, J. (2025). Using FPGA-based em-
bedded systems for accelerated data processing analysis.
SCCTS Journal of Embedded Systems Design and Applica-
tions, 2(1), 79–85.

