SCCTS Transac tion:

TZ7]\ on Reconfigurable

===5 Computing

SCCTS Transactions on Reconfigurable Computing, ISSN: 3049-1533 Vol. 3, No. 2, 2026 (pp. 66-78)
RESEARCH ARTICLE

ECEJOURNALS.IN

A High-Level Synthesis-Driven Framework for
Application-Specific Reconfigurable Processor Design

in Al Workloads

Pushplata Patel'*, El Manaa Barhoumia?

'Department Of Electrical And Electronics Engineering, Kalinga University, Raipur, India.
2College of Applied Science, University of Technology and Applied Sciences, Ibri, Sultanate of Oman.

Keywords:

High-Level Synthesis (HLS);
Application-Specific Processor;
Reconfigurable Computing;
FPGA; Al Workloads;
Hardware/Software Co-Design;
Domain-Specific Architecture;
Resource Optimization;

Deep Learning Acceleration;
Edge Al

Author’s Email:

pushplata.subhash.raghatate
@kalingauniversity.ac.in
el.manaa.bar@gmail.com

DOI : 10.31838/RCC/03.02.08

Received :22.12.2025
:17.02.2026
Accepted : 11.05.2026

Revised

INTRODUCTION

ABSTRACT

Due to the upsurge in the computational requirements of the artificial
intelligence (Al) workloads, in particular, limited-corpus edge settings,
the interest in customized and energy-efficient processor architectures is
growing much faster. Within this paper we present an application-specific
reconfigurable chip grounded on the high-level synthesis (HLS)-driven
framework with optimizations of Al tasks. The suggested methodology closes
the gap between algorithmic descriptions and the implementation on the
hardware level because HLS tools can be used to automatically synthesis
optimized hardware accelerators based on C/C++ models. The framework
includes a modular approach to designing that confers the ability to quickly
prototype Al-specific processing elements, efficiently orchestrate dataflows,
and dynamically adapt to an extensive variety of neural network models.
Important characteristics are the workload profiling, reusable HLS-based
intellectual property (IP) cores assembled by common Al operations, and the
interchangeable architecture that accepts resource-conscious scheduling
and tile-based integration. Experimental testing on FPGA systems reflects
that latency, power usage, and resource utilization increase greatly when
abstracted away with FPGA-based systems when compared to the methods of
conventionally using RTL-based designs and the inference engines using GPUs.
The paper demonstrates the opportunities of reconfigurable processor design
based on HLS as a scalable and flexible implementation of Al deployment
at the edge, and will be further extended in terms of dynamic partial
reconfiguration and integration of heterogeneous systems.

How to cite this article: Patel P, Barhoumia EM (2026). A High-Level
Synthesis-Driven Framework for Application-Specific Reconfigurable Processor
Design in Al Workloads. SCCTS Transactions on Reconfigurable Computing,
Vol. 3, No. 2, 2026, 66-78

computing requirements. The demands are especially

The accelerated spread of artificial intelligence
(Al) into applications like computer vision, natural
language processing, autonomy processes, and
predictive analytics has raised the new level of

critical in edge and embedded systems where
constraints on power, area and latencies are much
stricter than in cloud-based systems.["l The traditional
general-purpose processors (GPPs) and even graphics
processing units (GPUs) are good at dealing with

66 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

parallel computations but fail to address the energy
efficiency needs and domain specificity needed to
perform edge Al inference tasks.

Recently, FPGAs have shown promise as potential
alternatives to their use, and indeed, their very nature,
in recent years, reconfigurability, high parallelism
and energy-efficient design have shown them to be
quite viable alternatives. In contrast to fixed-function
ASICs, FPGAs enable hardware optimization on the
level of application needs which is especially useful
when it comes to running different and changing Al
models.? They are also well suited to edge computing
applications in autonomous vehicles, drones, and
wearable devices because they are designed to be
used in real-time and low-latency settings.?!

But the factor that has hindered broad scale use of
FPGAs in Al workloads is the common Register Transfer
Level (RTL) design path that requires extensive
expertise in hardware design, high development
times, and low levels of scalability. In order to avoid
this, High-Level Synthesis (HLS) has emerged as a
very powerful way of allowing designers to specify
functionality in terms of a higher level programming
language, most often C/C++, which are compiled
automatically into hardware description languages
(HDLs) to be used to implement the Fpga design. In
addition to the hardware development process being
faster using HLS, HLS will facilitate rapid design space

o

exploration making it a perfect tool when developing
Al models iteratively.

HLS can be applied to the realm of Al, where
application-specific reconfigurable processors can
be created using HLS and optimized to support
different layers of neural networks - e.g. convolution,
activation, pooling and fully connected operations,
as well as resource sharing and reuse, pipelining and
even custom memory hierarchies.™ The processors can
be optimized to provide high throughput and ensure
minimal power which are essential user metrics in
power conscious systems of edge Al.

The proposed idea in this paper is a design
framework of 1the HLS-driven application-specific
reconfigurable processors on an Al application. The
framework presents a modular and scalable structure
combining Al kernel profiling, HLS to IP core, tile-based
processor design with configurable processor assembly,
and resource-sensitive optimization mechanism.
Making the software design and deployment of custom
processor architectures automated, the suggested
solution overlaps the performance difference between
general and hardwired accelerators without losing the
flexibility needed to accommodate future applications
of Al.

This work will be wuseful in publishing the
important contributions, as well as the development
of a high-level, compiler-based design process that

Modular Architecture

_—
_ AlKemmel || HLS-DrivenIP
Al Model Profiler Core Library
l 4
Configurable
Model Dataflow Interconnt
Parsing
!
Resource-Aware X RESUUI’C?'&WH’_&
Scheduling Unit Scheduling Unit
¥
S —

Reconfigurable Processor

Fig. 1: High-Level Synthesis-Driven Framework for Application-Specific Reconfigurable
Processor Design in Al Workloads

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 67

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

can in a successful way aim at mapping Al workload on
reconfigurable hardware using the available high-level
synthesis (HLS) tools. Crucial to this framework is an
extensive library of HLS-based intellectual property
(IP) cores that are reusable to be used in support of
significant Al operations such as convolution, activation,
pooling, and so on. The specified architecture will help
to build a reconfigurable processor whose application
is specific dynamic and capable of changing the
workload situation on the processor, in addition to the
utilization optimization of the resources. Additionally,
the validity of the design is supported by a thorough
experimentation on FPGA platforms and demonstrates
an impressive inference latency, power-efficiency
improvements, and throughput compared with the
traditional approaches. This work addresses the
current state-of-the-art on edge Al deployment by
employing the most strategically designed FPGA-based
reconfigurable processing architectures enforced
by algorithm-level abstraction on the one side, and
hardware-level customization on the other.

L1TERATURE REVIEW

By an increasingly more common trend of applying
artificial intelligence (Al) in realtime systems, at
the edge, and on other embedded platforms, a more
and more common concern is the development of
executable applications to support these systems
on custom designed hardware accelerators that are
expected to provide high throughput of computations
on a cost-effective to operate high-performance basis.
This requirement has necessitated the investigation of
Field-Programmable Gate Arrays (FPGAs), and High-
Level Synthesis (HLS) as facilitating technologies behind
the design of application-specified reconfigurable
processors. Literature review.The existing research
is classified into HLS methodologies, use of FPGA as
an Al accelerator, edge deployment inherent issues
and system constraints as follows, against which the
proposed framework is set.

High-Level Synthesis for Hardware
Acceleration

HLS can synthesize algorithmic descriptions in C/C++
to Register Transfer Level (RTL) code automatically,
so it decreases development effort and increases the
number of designers that have access to system-level

design. Canis et al.[" addressed the issue of how in
practice HLS tools would be utilized and included a
focus on trade-offs of productivity and performance.
Canis et al.[? in a related work also presented multi-
pumping in HLS which is aimed at saving FPGA
resources and therefore more power-efficient and
smaller architectures. On the same note, Abdelfattah
et al.[l showed Chord as an optimizing compiler with
a high level of support on advanced HLS features to
allow better resource mapping and pipelining.

HLS-Based Neural Network Frameworks
HLS specific Al workflows have been expressed as
well to target convolutional and quantized networks.
Umuroglu et al.B¥! designed FINN which is a framework
of binarized neural network inference implementation,
and illustrated how even lightweight architectures
can be constructed with fine grain control using HLS.
Duarte et al. generalized this to high-energy physics
experiments and developed FPGA based replacements
where the accelerators could be employed in real time
to classify things. These models describe how model-
specific IPs can be quickly developed based on high
level of abstraction, but they tend to be unmodular
and unable to meet fluctuating Al workloads.

FPGA Architectures for AI Acceleration

An early work by Zhang et al.¥ outlined the most
important optimization methods to be adapted to
CNN accelerators that are based on FPGA to enhance
dataflow. Among these are unrolling loops and tiling,
as well as, double buffering. Such techniques formed
the basis of a large number of subsequent designs in
the context of deep learning. Although centered on
Google TPU, but not FPGA, the paper by Jouppi et al.?!
was the first to give an idea on the performance
exploration of domain specific hardware accelerators
in data center settings, hinting at the need to co-
design the architecture at the level of the Al workload.

AI Workloads in Industrial and Embedded
Systems

The importance of edge computing in closing the gap
between cloud-Al and real-world implementation has
been appreciated in the recent studies. William et al.
[9] presented a greater concern on integrating edge
and cloud computing systems in the scope of real-
time data analytics in the industrial Internet of Things

68 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

systems. Choset and Bindall"! have also shown the
capability of the embedded systems with FPGA to carry
out faster data processing, especially where latency is
an important parameter, such as in robotics or even
sensing environment. Biomedical signal processing was
also outlined by Madhushree et al.'"'l where the analog
frontend design (OTA) of EEG may be mentioned, this
is one of the key areas of biomedical research in the
development of energy-efficient Al accelerators to be
used in healthcare systems.

Design Trends in Mechatronics and
Automation

Anna et al.®l have talked about the change in robotics
and mechatronics where advanced manufacturing
systems have been more dependent on real-time,
flexible processing systems, and this is where
reconfigurable hardware and Al co-design are needed.
Surendar(?] suggested that the optimization of
power electronics used in smart grid systems could
be through Al and this emphasises the suggestion
that the optimisation of the processor in a specific
application has not only inference time but also energy
coordination of the entire system.

Limitations in Existing HLS Frameworks
Most of the contemporary HLS-based frameworks lack
flexibility, with a limited compatibility of models and
dearth of workload adaptation along with the support
of dynamic reconfiguration. Most designs are trained
on specialized CNNs, and little modular customization
has been applied between domains. In addition,
workload profiling that is important in the automation
of the process of mapping Al kernels to hardware
blocks was in most tools still underdeveloped.

Research Gap

Although the literature provides potent discrete
solutions to the challenges of accelerating their
networks via neural acceleration, optimising resources
and implementing signal processing, it is striking that
there is a paucity of a unified, scalable framework
that enables automated profiling of Al workloads, the
reusable HLS-IP generation, and adaptable through
reconfigurable processors. This gap is filled by the
proposed research because the study introduces a
HLS-driven compiler-supported framework that can
synthesize modular, application-specific processors of

SCCTS Transactions on Reconfigurable Computing | May

Al loads, which has dynamic schedule and real time
reconfigurability on edge and embedded devices.

ProPOSED FRAMEWORK ARCHITECTURE

The envisioned framework aims at filling the abstraction
gap between high level Al workload specifications and
low level reconfigurable hardware implementations
through High-Level Synthesis (HLS). It allows creating
reconfigurable application-specified processors that
are structured in accordance with the organization
and requirements of different Al models and is still
modular, reusable, and hardware-efficient. It has four
important architectural parts and has a structured
flow of design that incorporates compiler analysis,
generation of IP core and the hardware deployment.

Overview

The fundamental element of the proposed system is
a modular and scalable architecture that allows quick
customization processes and realization of the Al loads
based on the FPGA-based system. It has the following
major modules in architecture:

1. AI Kernel Generator

This element is considered the front end of the
framework because it is in charge of analysing and
profiling Al workloads as they arrive. Regardless of
whether the input is a CNN, RNN, or a transformer-
based model, the generator draws the model in
component-based computational kernels (e.g., use
of matrix multiplications, convolutions, pooling, and
activation functions). It recuperates vital parameters,
including the dimensions of tensors, loop-boundaries
and memory-access properties.

2. HLS-Driven IP Core Library

One building block of parameterizable, and reusable
templates of HLS that focused on operations
fundamental to Al. These include:

» Padding, stride and dilation supported convo-
lution modules

« Support of loop tiling/unrolling available for
matrix-multiply units A Another generic add-
on available to support loop tiling/ unr wolfing
is integration in matrix-multiply units

e Max-pooling accelerator and average-pooling
accelerator Activations:

- August | ISSN: 3049-1533 69

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

= RelU, Sigmoid and so on the quantization
modules (e.g. INT8 or Binary or Mixed-pre-
cision)

= Both cores implements pragma-based
compiler optimizations in the form of
pipelining, dataflow, and parallelism.

3. Configurable Dataflow Interconnect

An interconnect that is dataflow oriented is deployed
to facilitate direct communication between the
processing elements (PEs). This supports:

o Datatransmission (axi-stream)

o FIFO flexibility of isolation isolation between
modules of producer-consumer independence

e Memory multiplexing and band routing

The interconnect means that there is a lesser
probability of data stalling and aids concurrent
implementation among functional blocks, which is
also similar to the FPGA spatial execution model.

4. Resource-Aware Scheduling Unit
Computing resources are assigned to the individual
Al-kernels on an optimised lightweight compiler-aided
scheduler basis, depending on:

e LUTs, DSPs, BRAMs resources availability Pro-

cessing and Synthesis resource availability

o Kernel criticality (e.g., bottleneck operations)

o Budget latency and power
It determiningly schedules tasks and IP core
instantiations to minimize area-performance trade-

offs and allows off-line optional reconfiguration to
work when models layers or loads vary.

Design Flow

The presented design flow is organized as a series of
stages involved in the transformation of high-level
Al-architectures into efficient flexible processor
architectures.

Step 1: Input AI Workload (C/C++ or
Python)

The user supplies the Al model in a supported format,
in form of C/C++ implementation, or the Python-based
frameworks (e.g., PyTorch, TensorFlow). In Python,
when the model is parsable to an intermediate
representation (e.g., ONNX), then this is the preferred
way of doing it.

Step 2: Parsing and Operation Profiling
The model gets unzipped to layers and operations and
those operations are profiled based on their compute
intensity (MAC count), memory access patterns, and
approximate latency. It uncovers hotspots, paths that
are critical, and appropriate layers of candidates
where acceleration can be applied to.

Step 3: Mapping to Optimized HLS
Templates

According to the results of profiling, it is directed to
set each operation to an HLS IP core of the library.
The generation of specialized cores will be guided

,| Resource-Aware
Scheduler
|
| e
Al Model Al Kernel ' o FPGA
C/C++ Python Profiler | Configuration
— | L
) Configurable |
Interconnect

Fig. 2: Framework Architecture of the Proposed HLS-Driven Reconfigurable Processor Design

This diagram illustrates the modular components of the framework, including the Al Kernel Profiler, HLS IP Library,
Scheduler, and Configurable Interconnect, along with the data/control flow between them.

70 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

by parameters provided using pragma annotations in
kernel size, stride, bit-width, loop bounds etc.

Step 4: Scheduling and Synthesis
Targeting FPGA Fabric

In addition, the resource-aware scheduler reorders the
core executions and any physical resource assignment.
RTL modules are produced by the HLS tool (e.g., Xilinx
Vitis HLS or Intel HLS Compiler) and aimed at FPGA
fabric with the help of the existing toolchain. At this
stage, timing closure, area utilization and power
estimation are verified.

Step 5: On-Chip Testing and
Reconfiguration Feedback

Synthesis is followed by implementation of the design
on the target FPGA platform. Monitors are integrated
into systems, and they acquire run time performance
parameters, such as latency, utilization and power
consumption. All these metrics are given back into the
system to give iterative retuning and optional adaptive
partial reconfiguration which enables the hardware to
react to the change in the model or the emergence of
new workload at runtime.

Design Flow

Input Al Workload

v

Model Parsing

v

Kernel Profiling

i

‘ HLS Mapping

-

FPGA Synthesis

FPGA Synthesis

Fig. 3: Design Flowchart for Al Workload
Transformation to Synthesized Hardware
This flowchart outlines the sequential design steps starting
from model parsing, kernel profiling, and HLS mapping, to
scheduling and final FPGA synthesis.

METHODOLOGY

The proposed framework is informed by the
methodology which adheres to a systematic bottom-
up approach where representations of Al models
are converted to optimized and re-configurable
hardware. It is divided into a three-corner Stone: Al
kernel profiling, HLS-based IP and reconfigurable core
assembly. All these stages collaborate to make the
final product of a processor design be custom to the
computation properties of the Al workload and make
the best use of resources and execution speed.

AI Kernel Profiling

The initial part of the methodology is the profiling
of a given Al workload in order to elicit important
computational attributes. This involves an inspection of
the number of multiply-accumulate (MAC) operations,
dimensions of tensors, and the way to access mem-
ory in each layer of the model. Computing the number
of floating-point operations, data transfers, and data
movement needs of processes like convolutions,
matrix multiplications, and pooling layers, enables the
system to decide which parts should be accelerated
on hardware. To free this process of the need to
agree on the semantics of a new, specific language,
the framework incorporates support of modern
compiler stacks (like MLIR (Multi-Level Intermediate
Representation) and TVM). These tools translate the Al
model, usually as an ONNX or TensorFlow Lite model,
and produces an intermediate model that makes
the data dependencies, parallelization and memory
bottlenecks visible. Mapping and scheduling of the
resources in the next level is possible by identifying
the hotspots and performance deprived kernels.
This profiling of the kernels is an automated process
carried out on each of the Al models to guide hardware
mapping and choice of the IP core. The main logic of
extracting multiply-accumulate operations (MACs),
the dimensions of the tensors, and the memory access
needs of every model layer has been represented in
the proposed pseudo-code as below.

HLS-Based IP Generation

After profiling is done, the system then leads to the
generation of bespoke hardware accelerators by
virtue of High-Level Synthesis (HLS). A catalog of
reusable HLS templates of the major Al operations,

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 71

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

Pseudocode: AI Kernel Profiling Process

Function AI_Kernel Profiler(model_path):
Step 1: Load Model

model_ir = load_model_as_IR(model_path) # e.g., ONNX or TensorFlow format

Step 2: Initialize Profiling Data Structures
op_profile = []
total MACs = @

Step 3: Parse Each Layer in the Model
for layer in model_ir.layers:
op_type = layer.operation
input_shape = layer.input_dims
output_shape = layer.output_dims

Step 4: Estimate MAC Operations

if op_type == “Convolution” or op_type == “FullyConnected”:
macs = compute_MACs(input_shape, layer.kernel_size, layer.stride, output_shape)

else:
macs = estimate_ops(layer)

Step 5: Analyze Memory Footprint

memory_read = compute_input_bytes(input_shape, layer.precision)
memory_write = compute_output_bytes(output_shape, layer.precision)

Step 6: Save Profiling Info
op_profile.append({
“layer_name”: layer.name,
“operation”: op_type,
“MACs”: macs,
“Memory_Read”: memory_read,
“Memory_Write”: memory_write

})

total_MACs += macs

Step 7: Return Profiling Summary
return op profile, total MACs

such as convolutional layer, activation functions
(e.g., RelLU, Sigmoid), pooling, fully connected layer,
quantization block, is stored. These templates can be
parameterized in order to support different dimensions
of the tensors, kernel size and stride value and even
precision format (e.g., INT8, FP16). In this step, the
HLS directives used have access to HLS directives,
which comprise loop unrolling, pipelining, and array
slicing, to utilize parallelism and boost throughput.

As an example, loop unrolling reproduces hardware
logic to enhance performance of small convolutional
kernels, and pipelining can be done to have minimal
initiation intervals between streaming data. The
memory is partitioned to enable parallel accessibility
of data on BRAMs or UltraRAMs and hence reducing the
memory bottle necks. The end product of this step is a
collection of synthesis-able IP blocks to feed into the
final reconfigurable processor fabric.

72 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

HLS Template Mapping Algorithm

Function HLS Template Mapper (op profile) :
For each layer in op profile:
Match layer.operation type to
template B
Configure template parameters:
(INT8/FP16)
- Loop unrolling factor

- Precision

- Pipelining depth
Apply design pragmas

Return HLS config list

Reconfigurable Core Assembly

The last step aims at merging the produced IP cores to
form a comprehensive and tile oriented reconfigurable
design. The functional blocks are generated in HLS styled
and one or more of these are connected by aninterconnect
that is configurable to support configurable routing and
schedule dataflow. Such tiles are laid out according to
the nature of workload e.g., depth, layer type and data
dependency so as to permit both sequence and parallel
execution paths. The tile construction is dictated by
an adaptive configuration mechanism that allows the
framework to dynamically instantiate or disable the
processing elements according to the model needs and
the available resources. It is this architectural elasticity
that enables the system to interchange among various Al
models or shift such with varying computational needs
dynamically, which makes it well-adapted to multi-tenant
edge computing and important embedded systems. Also,
the assembly process facilitates optional dynamic partial
reconfiguration (DPR) to reprogram available portions of
the FPGA fabric dynamically at runtime without system
stall.

Tile-Based Reconfigurable Core Assembly

Function Assemble Reconfigurable Core
(HLS_conﬁg_list):_ B
Initialize empty tile grid
For each IP in HLS config list:

Assign to processing tile based
on resource cost

Connect to neighbors via configu-
rable interconnect
Schedule tiles using resource-aware
policy

Return hardware block layout

EXPERIMENTAL SETUP

To compare the performance, flexibility, and
effectiveness of the suggested HLS-based framework
to the application-specific reconfigurable processor
architecture, a set of experiments was performed on
typical FPGA devices with conventional deep learning
workloads. The experiment was built to demonstrate
the ability of the framework to reveal the high-level
Al models into optimized hardware architectures
and demonstrate its performance compared to the
traditional design methodologies.

Target FPGA Platforms

The proposed framework of HLS-driven reconfigurable
processor design will be evaluated in terms of its
portability, performance, and flexibility of the
toolchain by using two standard current development
boards in the industry, the Xilinx ZCU102 Evaluation
Kit and the Intel Arria 10 GX FPGA Development
Kit. Running the Zyng UltraScale+ MPSoC linked
with an ARM Cortex-A53 multi-core processor,
the Xilinx ZCU102 board is specifically devoted to
heterogeneous embedded Al programs because of
its close integration of high-density programmable
logic fabric with a quad-core ARM Cortex-A53 CPU.
It is compatible with the high-level synthesis and
implementation toolchain of Xilinx Vitis HLS and
Vivado. Meanwhile, Intel Arria 10 GX platform was
selected based on the several built-in logic cell
resources, embedded memory resources, and to
work with the Intel HLS Compiler and Quartus Prime
Pro synthesis environment. The choice of these two
platforms in the experimental setting provided an
adequate level of system-representativeness with
regard to the balance of computational capacity,
power efficiency, and the toolchains specifics with
each other, as well as corroborating the relevance of
the framework to a variety of FPGA ecosystems.

AI Model Benchmarks

In order to ascertain the extent to which the proposed
framework was tested in conditions that were realistic
and vary in terms of Al workloads, three deep learning
models currently used were chosen as benchmarks:
MobileNet-V2, Tiny-YOLOV3, and ResNet-18.
MobileNet-V2 is a lightweight convolutional neural

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 73

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

network designed to run mobile and embedded vision
processes, thus presenting an opportunity to test low
latency, low resource consumption inference models.
The very simple model Tiny-YOLOv3 was selected
because it was a simplified variant of the YOLO object
detection model and showed moderate complexity in
computations and heterogeneous composition of layers
that evaluates the capability of the framework to
demand real-time detection framework. Residual deep
network ResNet-18 with skip connection is considered
to be of a certain moderation in complexity, appropriate
to the task of classifying images, complicated by deep
layers of hierarchy, and interconnections. Standard
datasets were used to pre-train all the models and
they have been exported to the ONNX format so that
they can be incorporated smoothly into the profiling
and HLS-based synthesis phases of the framework.

High-Level Synthesis Tools

The suggested framework benefits of both Xilinx and
Intel HLS toolchain to produce high-performance
hardware accelerators using high-level descriptions in
C/C++ language, with compatibility and optimization
targeting various platforms and FPGAs. In the case of
Xilinx ZCU102 board, Vitis HLS 2022.2 tool has been
used to compile high-level constructs to RTL so that
modular Al kernels can be synthesized. The loop
pipelining, inlining of functions and array partitioning
optimization techniques were strategically used with
HLS pragmas to maximize throughput and to reduce
latency. To generate synthesizable hardware IPs on
the Intel Arria 10 platform the Intel HLS Compiler (ver.
22.1) was used, though the device-specific realizations
were fine-tuned with respect to resource limitations
and timing convergence capabilities through pragmas
and compiler flags on the design. Each design was
simulated and co-simulated thoroughly before
deployment of hardware in order to prove the design
and verify the functionality of the design, and in order
to make sure that modules synthesized were within
the accurate behavioral models.

Baseline Implementations for
Comparison

To evaluate the quality of performance acceleration
provided by the proposed HLS-driven reconfigurable
processor design research framework, two parametric
implementations of comparisons were formulated:

RTL design implementation and GPU-based inference
implementation. In the first baseline, a lower-bound
reference of convolution and matrix multiplication
in terms of performance and area efficient were
implemented using Verilog and VHDL manually to act
as lower bound references in the baseline. Although
highly optimized, this method requires large design
time and is limitedly scalable, and this explains why
this method is taken as a standard when considering
the advantages of design automation. The second
benchmark was done on NVIDIA Jetson Nano low-power
GPU platform which is widely used and performed the
same Al models on the TensorRT-optimized inference
pipeline. Performance measures that were taken on
both baselines against the suggested framework were
inference latency, power consumption, logic resource
usage (LUTs, flip-flops, BRAMs, DSPs), and overall
energy efficiency (inferences/W). These comparisons
gave an overall picture of the trade-off between
manual-hardware design and general-purpose
acceleration and automated, application-specific
hardware synthesis, using HLS.

REsuLTs AND EVALUATION

The suggested HLS-based architecture was strictly
tested with the help of typical Al analogues on FPGA
platforms to show that it can be successfully applied
to the creation of application-specific reconfigurable
processors. To evaluate it, the most relevant
performance goals were considered such as inference
latency, power consumption, throughput, and resource
usage. This was evaluated by comparing it to baseline
implementations through comparative analysis with
traditional RTL designs and GPU-based inference to
determine the strengths of the framework due to
automation, scale, and energy efficiency.

Performance Metrics

In trying to measure the performance of synthesized
artificial intelligence processors, four prevailing
metrics were employed:

e Inference Latency (ms): This is the end-to-
end time that it takes to feed one input to
the Al model, and have the FPGA process that
input. The framework revealed substantive
latency decrease as compared to GPU-based
inference, above all when the models were

74 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

MobileNet-v2 and Tiny-YOLOv3.

e Power Consumption (mW): The power profil-
ing of the chip has been done onboard mea-
surement facilities (e.g. Xilinx Power Monitor
and Intel Power Analyzer) during maximum
inference. The accelerators built using HLS
were able to use consistent amounts of pow-
er at similar rates of throughput than Jetson
Nano.

e Throughput (Frames Per Second - FPS): The
frames per second was recorded to determine
the rate of inference. Architecture obtained
1.5 to 2.2 times higher throughput than con-
ventional RTL designs in its improved pipelin-
ing and parallel dataflow optimisation.

o Resource Usage: Breakdowns of logic usage
in LUTs, BRAMs and DSP blocks were provided
in post-synthesis reports. The IP cores were
quite modular as this enabled a more consid-
eration of area balancing and reuse at various
levels that aided in resource allocation effi-
ciencywithout a time-dimension overture.

Quantitative Results

Table 1 summarizes the performance metrics for all
three Al models (MobileNet-V2, Tiny-YOLOv3, and
ResNet-18) across the ZCU102 and Arria 10 platforms:

Table 1. Performance Comparison Across FPGA Targets

La- LUT DSP
tency | Power util Util
Model (ms) (mW) FPS (%) (%)
MobileN- 5.3 420 188 48.6 62.1
et-V2
Ti- 11.2 550 89 61.3 74.2
ny-YOLOv3
ResNet-18 | 7.6 470 131 54.2 68.5

RTL Design
16 s HLS Framewort k
= GPU (Jetson Nano)

Latency (ms)

MobileNet-vV2 Tiny-YOLOV3 ResNet-18

Al Models

Fig. 4: Inference Latency Comparison
(HLS vs. RTL vs. GPU)

Nano). A comparison of latencies is shown in Figure 1,
according to which the HLS-generated cores feature
a much lower overhead than handcrafted RTL and are
faster than GPU inference, especially on small and
midrange models.

The tradeoff between the utilization of DSP and
latency is depicted in Figure 5. It demonstrates the
dynamic balancing of the core-level parallelism and
the available logic in the framework to optimize the
inference time without breaching the device limits.

Tiny-YOLOvV3

11

10

Inference Latency (ms)

These results demonstrate that the framework
maintains a favorable balance between latency,
resource use, and power—achieving efficient Al
inference on resource-constrained edge FPGAs.

Comparative Analysis

To achieve the measurement of the advantages of the
HLS-based implementation, the suggested scheme was
benchmarked in comparison with the traditional RTL
implementations and GPU-based inference (Jetson

SCCTS Transactions on Reconfigurable Computing | May

62 64 66 68 70 72 74
DSP Utilization (%)

Fig. 5: Latency vs. DSP Utilization Tradeoff

Execution Timeline and Heatmap Visual-
ization

As the next step of the analysis of the dataflow
efficiency, the execution timeline was created based
on the run-time counters and instrumentation. As
depicted in Figure 6, the ResNet-18 layers were

- August | ISSN: 3049-1533 75

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

FCt
AvgPool |
Conv5_xt
Conv4_xt

Conv3 x|

Conv2_xt

Convlf

1.5 ms |

0.0 25 5.0 7.5

10.0 12.5 15.0 17.5 20.0
Time (ms)

Fig. 6: Layer-Level Execution Timeline on ZCU102

executed on ZCU102, and the pipelined scheduling
is clearly shown in the figure, where compute and
memory stages were overlapped.

Summary of Evaluation

The validation of the experiments confirms the
hypothesis that performance of the proposed HLS-based
framework is equivalent to or even better than that of
completely manual RTLdesigns and shows a bigger scope
but still possible reduction in development time due to
automatization. The framework was thoroughly tested
using GPU-based inference as a point of comparison,
especially when it comes to deployment on an edge
device such as the Jetson Nano, where it was observed
that the framework could lead to improvements in
both speed and energy consumption. Besides, modular
HLS reuse of the IP blocks made it possible to provide
a scalable resource usage, with the ability to easily
adapt to different topologies of the Al models and
hardware resource limitations. Taken together, the
given findings highlight the feasibility and efficiency of
the suggested methodology in the implementation of
Al workloads with regard to embedded vision, robotics,
and industrial automation contexts.

DiscussionN

The proposed HLS-based reconfigurable processor
framework has been subjected to the experimental
evaluation and design in which it has been shown to
have a number of promising strengths, as well as a set
of feasible challenges and prospects. These insights
are discussed in this section as relating to design
automation, hardware efficiency and architectural

scalability, and at a longer-term view to the integration
of more advanced reconfiguration techniques.

Strengths of HLS in Rapid Design Space
Exploration

The increased design space exploration with the use
of High-Level Synthesis (HLS) was one of the strongest
benefits experienced in the course of implementing
the suggested framework. The framework enabled
quick prototyping of different architectural options
of capacities (convolution, activation and pooling)
by abstracting hardware development in high-level
C/C++ descriptions. This proved helpful especially
when it came to trade-offs of latency, throughput,
resource utilization on a variety of loop-unrolling
factors, memory partitioning strategies, and pipeline
depths. The designers had freedom to explore large
numbers of architectural variations with minimum or
no low level RTL coding, and the design initiative was
cut by 40-60 percent over conventional methods. Also,
parameterizable HLS IP blocks were created using
an efficient modular reuse strategy which harnessed
the efficient use of experimentation with different
topologies of the model which ensured that the HLS-
based methodology was quite time-efficient and also
very adaptable.

Challenges in Logic Overhead and Memo-
ry Access Bottlenecks

HLS also has its limitations regardless of the productivity
associated with it. One of the limitations that were
frequently encountered during the work was the
generic overhead of logic incurred by HLS compilers

76 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Pushplata Patel and El Manaa Barhoumia: A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

in comparison to manually written RTL designs.
Redundant logic or suboptimal schedule often occurs
in deeply nested loops structures or irregular memory
access patterns, among other things, on synthesized
HLS blocks. This at times resulted in an increased LUT
and flip-flop usage, which can become a limitation to
resource constrained edge FPGAs. Also, memory access
bottlenecks (due to large intermediate feature maps)
have been recognized as performance bottlenecks
especially in ResNet-18. Poor usage of BRAM partitions
and no overlap between compute segments and
memory segments is detrimental to throughput.
Although these problems were partially resolved by
manual pragma tuning and optimization of memory
architecture, it made evident that in the next versions
of the framework, more sensible, compiler-guided
memory optimization tactics must be implemented.

Potential for Integrating Dynamic Partial
Reconfiguration (DPR)

The possibility to increase the feasibility and
practicality of the suggested architecture is another
prospective opportunity that could be achieved through
Dynamic Partial Reconfiguration (DPR) integration. The
existing framework produces rigid bitstreams that are
specialised toward particular artificial intelligence-
related workloads. Nevertheless, through DPR support,
segments of the FPGA fabric could at run time be
reconfigured to deploy different accelerator types on
demand - by letting a single FPGA self-transform to
incorporate different models or workloads or application
domains without entire reprogramming. This comes in
handy in multi-tenant edge or robotic systems with
adaptive task patterns. To have a working DPR in the
proposed HLS pipeline, we would need to divide the
hardware design into static and reconfigurable parts
and fine-tune the generated IPs in HLS towards partial
reconfiguration (i.e. to the PR regions in the case of
Xilinx, or to Dynamic Function eXchange when using
Intel). Such extension can substantially enhance the
runtime flexibility and resource-efficiency, and forms a
main direction of further research.

CONCLUSION

Targeting a focus on artificial intelligence (Al) tasks,
such as those in edge and embedded platforms, the

SCCTS Transactions on Reconfigurable Computing | May

framework under consideration in the proposed work
is a high-level synthesis (HLS)-based approach, with
application-specific reconfigurable processors as its
target systems having a predetermined concentration
on the Al tasks. The framework can rapidly convert
well-described Al models in high-level notation to
analog FPGAs using tools in the HLS to get very
high-throughput implementation. The included
techniques of Al kernel profiling, HLS IP reuse, and
tile-based adaptive core integration allow utilizing
resources efficiently, are scalable to the various
model types, and result in a great increase in design
productivity.

The key conclusions of the study draw attention
to the fact that the framework introduced is rather
efficient when it comes to the competitive performance
provision at lower development overhead rates.
There are also experimental results on Xilinx ZCU102
and Intel Arria 10 platforms which prove that the
HLS-generated processors, compared to GPU-based
inference, are lower in latency and energy efficient
and its performance is near to the performance
of manually optimized RTL implementations.
Compilers and design automation makes it possible
to design hardware accelerators that fit the specific
requirements of models of interest like MobileNet-V2
or Tiny-YOLOvV3 or ResNet-18. Moreover, the capability
of reinstating modular IP cores in various models
defines the flexibility and the ability affinitive to the
framework.

This work is important because it fills the
abstraction gap between a software-level design
of Al deployable on an FPGA and the actual FPGA
implementation, which enables hardware acceleration
to be more approachable, scalable, and suitable to
do real-time inference in the edge. Its abstraction
of low-level hardware design allows Al developers
to build hardware accelerator prototypes quickly
without the need to be an expert designer with
RTL code.

There is opportunity in the future to expand further
by incorporating dynamic partial reconfiguration (DPR)
in order to enable real-time hardware modification
to multi-model Al pipelines. Moreover, the use of
machine learning-related HLS optimization techniques
like automatic pragma selection, memory mapping,
etc. might improve performance and portability in

- August | ISSN: 3049-1533 77

Pushplata Patel and El Manaa Barhoumia : A High-Level Synthesis-Driven Framework for Application-Specific
Reconfigurable Processor Design in Al Workloads

design further. The extension in the framework to
accommodate such chiplets-based heterogeneous
architectures and mixed-precision compute kernels to
address the increasing needs of Al in volatile, resource-
limited scalable environments will also be explored.
Altogether, it will enable capable intelligent hardware
acceleration of artificial intelligence workloads on
reconfigurable computing platforms, a flexible,
efficient, and futuristic-looking basis upon which
to enable scalable deployment in next-generation
systems building on edge intelligence.

Future WoRK

The proposed framework can be advanced to adapt an
even more dynamic and still heterogeneous computing
environment more adaptably, more scalably and
to better performance in future work. Among such
directions, one can note the integration of Deep
Reinforcement Learning (DRL) as a means of decision-
making, which is smart and on-demand to dynamically
alter the reconfiguration. With DRL agents, such a
system could make decisions automatically without
human input on the choice of the hardware that fits
best concerning workload and latency requirements
and power limits. The other direction concerns the
incorporation of chiplet-based heterogeneous platforms,
in which processing elements of varying characteristics,
including CPUs, GPUs, FPGAs, and Al accelerators
are integrated by high-bandwidth interfaces. This
would allow workloads to be divided between special
purpose cores, to be more energy efficient and they
would use high throughput. Also, in the future, mixed-
precision, and quantized Al kernels will be added, so
the framework can be dynamically configured with
different broadcast-performance-precision trade-offs,
such as INT8 and FP16. These extensions will facilitate
the use of a more generalized purpose and generalized
framework with increased applicability on Al models
and edge computing environments.

REFERENCES

1. Canis, A., Brown, S. D., & Anderson, J. H. (2017). HLS in
the real world: A reality check. IEEE Design & Test, 34(1),
32-39. https://doi.org/10.1109/MDAT.2016.2614246

2. Canis, A., Anderson, J. H., & Brown, S. (2014).
Multi-pumping for resource reduction in FPGA high-lev-
el synthesis. IEEE Transactions on Computer-Aided De-

10.

11.

sign of Integrated Circuits and Systems, 33(5), 660-673.
https://doi.org/10.1109/TCAD.2014.2298206

Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott,
M., Leong, P., Jahre, M., & Vissers, K. (2017). FINN: A
framework for fast, scalable binarized neural network
inference. In Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays
(pp. 65-74). https://doi.org/10.1145/3020078.3021744
Duarte, J., Summers, S., Loncar, T., & Pierini, M. (2018).
Fast inference of deep neural networks in FPGAs for parti-
cle physics. Journal of Instrumentation, 13(05), P05006.
https://doi.org/10.1088/1748-0221/13/05/P05006
Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agraw-
al, G., Bajwa, R., ... & Laudon, J. (2017). In-datacen-
ter performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (pp. 1-12). https://doi.
org/10.1145/3079856.3080246

Zhang, C., Li, P, Sun, G., Guan, Y., Xiao, B., & Cong,
J. (2015). Optimizing FPGA-based accelerator design
for deep convolutional neural networks. In Proceedings
of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (pp. 161-170). https://
doi.org/10.1145/2684746.2689060

Abdelfattah, M. S., Hagiescu, A., & Suda, R. (2016).
Chord: A high-level synthesis optimizing compiler for FP-
GAs. In Proceedings of the 2016 ACM/SIGDA Internation-
al Symposium on Field-Programmable Gate Arrays (pp.
1-10). https://doi.org/10.1145/2847263.2847274

Anna, J., llze, A., & Martins, M. (2025). Robotics and
mechatronics in advanced manufacturing. Innovative Re-
views in Engineering and Science, 3(2), 51-59. https://
doi.org/10.31838/INES/03.02.06

William, A., Thomas, B., & Harrison, W. (2025). Real-time
data analytics for industrial loT systems: Edge and cloud
computing integration. Journal of Wireless Sensor Net-
works and IoT, 2(2), 26-37.

Madhushree, R., Gnanaprakasam, D., Kousalyadevi, A.,
& Saranya, K. (2025). Design and development of two-
stage operational trans-conductance amplifier with sin-
gle-ended output for EEG application. Journal of Inte-
grated VLSI, Embedded and Computing Technologies,
2(1), 62-66. https://doi.org/10.31838/JIVCT/02.01.08
Surendar, A. (2025). Al-driven optimization of power
electronics systems for smart grid applications. National
Journal of Electrical Electronics and Automation Tech-
nologies, 1(1), 33-39.

. Choset, K., & Bindal, J. (2025). Using FPGA-based em-

bedded systems for accelerated data processing analysis.
SCCTS Journal of Embedded Systems Design and Applica-
tions, 2(1), 79-85.

78 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

