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AbstrAct 
Due to the upsurge in the computational requirements of the artificial 
intelligence (AI) workloads, in particular, limited-corpus edge settings, 
the interest in customized and energy-efficient processor architectures is 
growing much faster. Within this paper we present an application-specific 
reconfigurable chip grounded on the high-level synthesis (HLS)-driven 
framework with optimizations of AI tasks. The suggested methodology closes 
the gap between algorithmic descriptions and the implementation on the 
hardware level because HLS tools can be used to automatically synthesis 
optimized hardware accelerators based on C/C++ models. The framework 
includes a modular approach to designing that confers the ability to quickly 
prototype AI-specific processing elements, efficiently orchestrate dataflows, 
and dynamically adapt to an extensive variety of neural network models. 
Important characteristics are the workload profiling, reusable HLS-based 
intellectual property (IP) cores assembled by common AI operations, and the 
interchangeable architecture that accepts resource-conscious scheduling 
and tile-based integration. Experimental testing on FPGA systems reflects 
that latency, power usage, and resource utilization increase greatly when 
abstracted away with FPGA-based systems when compared to the methods of 
conventionally using RTL-based designs and the inference engines using GPUs. 
The paper demonstrates the opportunities of reconfigurable processor design 
based on HLS as a scalable and flexible implementation of AI deployment 
at the edge, and will be further extended in terms of dynamic partial 
reconfiguration and integration of heterogeneous systems.
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IntroductIon

The accelerated spread of artificial intelligence 
(AI) into applications like computer vision, natural 
language processing, autonomy processes, and 
predictive analytics has raised the new level of 

computing requirements. The demands are especially 
critical in edge and embedded systems where 
constraints on power, area and latencies are much 
stricter than in cloud-based systems.[1] The traditional 
general-purpose processors (GPPs) and even graphics 
processing units (GPUs) are good at dealing with 
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exploration making it a perfect tool when developing 
AI models iteratively.

HLS can be applied to the realm of AI, where 
application-specific reconfigurable processors can 
be created using HLS and optimized to support 
different layers of neural networks - e.g. convolution, 
activation, pooling and fully connected operations, 
as well as resource sharing and reuse, pipelining and 
even custom memory hierarchies.[5] The processors can 
be optimized to provide high throughput and ensure 
minimal power which are essential user metrics in 
power conscious systems of edge AI.

The proposed idea in this paper is a design 
framework of 1the HLS-driven application-specific 
reconfigurable processors on an AI application. The 
framework presents a modular and scalable structure 
combining AI kernel profiling, HLS to IP core, tile-based 
processor design with configurable processor assembly, 
and resource-sensitive optimization mechanism. 
Making the software design and deployment of custom 
processor architectures automated, the suggested 
solution overlaps the performance difference between 
general and hardwired accelerators without losing the 
flexibility needed to accommodate future applications 
of AI.

This work will be useful in publishing the 
important contributions, as well as the development 
of a high-level, compiler-based design process that 

parallel computations but fail to address the energy 
efficiency needs and domain specificity needed to 
perform edge AI inference tasks.

Recently, FPGAs have shown promise as potential 
alternatives to their use, and indeed, their very nature, 
in recent years, reconfigurability, high parallelism 
and energy-efficient design have shown them to be 
quite viable alternatives. In contrast to fixed-function 
ASICs, FPGAs enable hardware optimization on the 
level of application needs which is especially useful 
when it comes to running different and changing AI 
models.[2] They are also well suited to edge computing 
applications in autonomous vehicles, drones, and 
wearable devices because they are designed to be 
used in real-time and low-latency settings.[3]

But the factor that has hindered broad scale use of 
FPGAs in AI workloads is the common Register Transfer 
Level (RTL) design path that requires extensive 
expertise in hardware design, high development 
times, and low levels of scalability. In order to avoid 
this, High-Level Synthesis (HLS) has emerged as a 
very powerful way of allowing designers to specify 
functionality in terms of a higher level programming 
language, most often C/C++, which are compiled 
automatically into hardware description languages 
(HDLs) to be used to implement the Fpga design.[4] In 
addition to the hardware development process being 
faster using HLS, HLS will facilitate rapid design space 

Fig. 1: High-Level Synthesis-Driven Framework for Application-Specific Reconfigurable  
Processor Design in AI Workloads
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can in a successful way aim at mapping AI workload on 
reconfigurable hardware using the available high-level 
synthesis (HLS) tools. Crucial to this framework is an 
extensive library of HLS-based intellectual property 
(IP) cores that are reusable to be used in support of 
significant AI operations such as convolution, activation, 
pooling, and so on. The specified architecture will help 
to build a reconfigurable processor whose application 
is specific dynamic and capable of changing the 
workload situation on the processor, in addition to the 
utilization optimization of the resources. Additionally, 
the validity of the design is supported by a thorough 
experimentation on FPGA platforms and demonstrates 
an impressive inference latency, power-efficiency 
improvements, and throughput compared with the 
traditional approaches. This work addresses the 
current state-of-the-art on edge AI deployment by 
employing the most strategically designed FPGA-based 
reconfigurable processing architectures enforced 
by algorithm-level abstraction on the one side, and 
hardware-level customization on the other.

LIterAture revIew
By an increasingly more common trend of applying 
artificial intelligence (AI) in realtime systems, at 
the edge, and on other embedded platforms, a more 
and more common concern is the development of 
executable applications to support these systems 
on custom designed hardware accelerators that are 
expected to provide high throughput of computations 
on a cost-effective to operate high-performance basis. 
This requirement has necessitated the investigation of 
Field-Programmable Gate Arrays (FPGAs), and High-
Level Synthesis (HLS) as facilitating technologies behind 
the design of application-specified reconfigurable 
processors. Literature review.The existing research 
is classified into HLS methodologies, use of FPGA as 
an AI accelerator, edge deployment inherent issues 
and system constraints as follows, against which the 
proposed framework is set.

High-Level Synthesis for Hardware 
Acceleration
HLS can synthesize algorithmic descriptions in C/C++ 
to Register Transfer Level (RTL) code automatically, 
so it decreases development effort and increases the 
number of designers that have access to system-level 

design. Canis et al.[1] addressed the issue of how in 
practice HLS tools would be utilized and included a 
focus on trade-offs of productivity and performance. 
Canis et al.[2] in a related work also presented multi-
pumping in HLS which is aimed at saving FPGA 
resources and therefore more power-efficient and 
smaller architectures. On the same note, Abdelfattah 
et al.[7] showed Chord as an optimizing compiler with 
a high level of support on advanced HLS features to 
allow better resource mapping and pipelining.

HLS-Based Neural Network Frameworks
HLS specific AI workflows have been expressed as 
well to target convolutional and quantized networks. 
Umuroglu et al.[3] designed FINN which is a framework 
of binarized neural network inference implementation, 
and illustrated how even lightweight architectures 
can be constructed with fine grain control using HLS. 
Duarte et al.[4] generalized this to high-energy physics 
experiments and developed FPGA based replacements 
where the accelerators could be employed in real time 
to classify things. These models describe how model-
specific IPs can be quickly developed based on high 
level of abstraction, but they tend to be unmodular 
and unable to meet fluctuating AI workloads. 

FPGA Architectures for AI Acceleration
An early work by Zhang et al.[6] outlined the most 
important optimization methods to be adapted to 
CNN accelerators that are based on FPGA to enhance 
dataflow. Among these are unrolling loops and tiling, 
as well as, double buffering. Such techniques formed 
the basis of a large number of subsequent designs in 
the context of deep learning. Although centered on 
Google TPU, but not FPGA, the paper by Jouppi et al.[5]  
was the first to give an idea on the performance 
exploration of domain specific hardware accelerators 
in data center settings, hinting at the need to co-
design the architecture at the level of the AI workload.

AI Workloads in Industrial and Embedded 
Systems
The importance of edge computing in closing the gap 
between cloud-AI and real-world implementation has 
been appreciated in the recent studies. William et al. 
[9] presented a greater concern on integrating edge 
and cloud computing systems in the scope of real-
time data analytics in the industrial Internet of Things 
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systems. Choset and Bindal[13] have also shown the 
capability of the embedded systems with FPGA to carry 
out faster data processing, especially where latency is 
an important parameter, such as in robotics or even 
sensing environment. Biomedical signal processing was 
also outlined by Madhushree et al.[11] where the analog 
frontend design (OTA) of EEG may be mentioned, this 
is one of the key areas of biomedical research in the 
development of energy-efficient AI accelerators to be 
used in healthcare systems. 

Design Trends in Mechatronics and 
Automation
Anna et al.[8] have talked about the change in robotics 
and mechatronics where advanced manufacturing 
systems have been more dependent on real-time, 
flexible processing systems, and this is where 
reconfigurable hardware and AI co-design are needed. 
Surendar[12] suggested that the optimization of 
power electronics used in smart grid systems could 
be through AI and this emphasises the suggestion 
that the optimisation of the processor in a specific 
application has not only inference time but also energy 
coordination of the entire system. 

Limitations in Existing HLS Frameworks
Most of the contemporary HLS-based frameworks lack 
flexibility, with a limited compatibility of models and 
dearth of workload adaptation along with the support 
of dynamic reconfiguration. Most designs are trained 
on specialized CNNs, and little modular customization 
has been applied between domains. In addition, 
workload profiling that is important in the automation 
of the process of mapping AI kernels to hardware 
blocks was in most tools still underdeveloped.

Research Gap
Although the literature provides potent discrete 
solutions to the challenges of accelerating their 
networks via neural acceleration, optimising resources 
and implementing signal processing, it is striking that 
there is a paucity of a unified, scalable framework 
that enables automated profiling of AI workloads, the 
reusable HLS-IP generation, and adaptable through 
reconfigurable processors. This gap is filled by the 
proposed research because the study introduces a 
HLS-driven compiler-supported framework that can 
synthesize modular, application-specific processors of 

AI loads, which has dynamic schedule and real time 
reconfigurability on edge and embedded devices.

ProPosed FrAmework ArchItecture
The envisioned framework aims at filling the abstraction 
gap between high level AI workload specifications and 
low level reconfigurable hardware implementations 
through High-Level Synthesis (HLS). It allows creating 
reconfigurable application-specified processors that 
are structured in accordance with the organization 
and requirements of different AI models and is still 
modular, reusable, and hardware-efficient. It has four 
important architectural parts and has a structured 
flow of design that incorporates compiler analysis, 
generation of IP core and the hardware deployment.

Overview
The fundamental element of the proposed system is 
a modular and scalable architecture that allows quick 
customization processes and realization of the AI loads 
based on the FPGA-based system. It has the following 
major modules in architecture:

1. AI Kernel Generator
This element is considered the front end of the 
framework because it is in charge of analysing and 
profiling AI workloads as they arrive. Regardless of 
whether the input is a CNN, RNN, or a transformer-
based model, the generator draws the model in 
component-based computational kernels (e.g., use 
of matrix multiplications, convolutions, pooling, and 
activation functions). It recuperates vital parameters, 
including the dimensions of tensors, loop-boundaries 
and memory-access properties.

2. HLS-Driven IP Core Library
One building block of parameterizable, and reusable 
templates of HLS that focused on operations 
fundamental to AI. These include: 

• Padding, stride and dilation supported convo-
lution modules 

• Support of loop tiling/unrolling available for 
matrix-multiply units A Another generic add-
on available to support loop tiling/ unr wolfing 
is integration in matrix-multiply units 

• Max-pooling accelerator and average-pooling 
accelerator Activations: 
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 � ReLU, Sigmoid and so on the quantization 
modules (e.g. INT8 or Binary or Mixed-pre-
cision )

 � Both cores implements pragma-based 
compiler optimizations in the form of 
pipelining, dataflow, and parallelism.

3. Configurable Dataflow Interconnect
An interconnect that is dataflow oriented is deployed 
to facilitate direct communication between the 
processing elements (PEs). This supports: 

• Datatransmission (axi-stream) 
• FIFO flexibility of isolation isolation between 

modules of producer-consumer independence 
• Memory multiplexing and band routing 

The interconnect means that there is a lesser 
probability of data stalling and aids concurrent 
implementation among functional blocks, which is 
also similar to the FPGA spatial execution model.

4. Resource-Aware Scheduling Unit
Computing resources are assigned to the individual 
AI-kernels on an optimised lightweight compiler-aided 
scheduler basis, depending on:

• LUTs, DSPs, BRAMs resources availability Pro-
cessing and Synthesis resource availability

• Kernel criticality (e.g., bottleneck operations)
• Budget latency and power 

It determiningly schedules tasks and IP core 
instantiations to minimize area-performance trade-

offs and allows off-line optional reconfiguration to 
work when models layers or loads vary.

Design Flow
The presented design flow is organized as a series of 
stages involved in the transformation of high-level 
AI-architectures into efficient flexible processor 
architectures.

Step 1: Input AI Workload (C/C++ or 
Python)
The user supplies the AI model in a supported format, 
in form of C/C++ implementation, or the Python-based 
frameworks (e.g., PyTorch, TensorFlow). In Python, 
when the model is parsable to an intermediate 
representation (e.g., ONNX), then this is the preferred 
way of doing it.

Step 2: Parsing and Operation Profiling
The model gets unzipped to layers and operations and 
those operations are profiled based on their compute 
intensity (MAC count), memory access patterns, and 
approximate latency. It uncovers hotspots, paths that 
are critical, and appropriate layers of candidates 
where acceleration can be applied to.

Step 3: Mapping to Optimized HLS 
Templates
According to the results of profiling, it is directed to 
set each operation to an HLS IP core of the library. 
The generation of specialized cores will be guided 

Fig. 2: Framework Architecture of the Proposed HLS-Driven Reconfigurable Processor Design
This diagram illustrates the modular components of the framework, including the AI Kernel Profiler, HLS IP Library, 

Scheduler, and Configurable Interconnect, along with the data/control flow between them.
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by parameters provided using pragma annotations in 
kernel size, stride, bit-width, loop bounds etc.

Step 4: Scheduling and Synthesis 
Targeting FPGA Fabric
In addition, the resource-aware scheduler reorders the 
core executions and any physical resource assignment. 
RTL modules are produced by the HLS tool (e.g., Xilinx 
Vitis HLS or Intel HLS Compiler) and aimed at FPGA 
fabric with the help of the existing toolchain. At this 
stage, timing closure, area utilization and power 
estimation are verified.

Step 5: On-Chip Testing and 
Reconfiguration Feedback
Synthesis is followed by implementation of the design 
on the target FPGA platform. Monitors are integrated 
into systems, and they acquire run time performance 
parameters, such as latency, utilization and power 
consumption. All these metrics are given back into the 
system to give iterative retuning and optional adaptive 
partial reconfiguration which enables the hardware to 
react to the change in the model or the emergence of 
new workload at runtime. 

Fig. 3: Design Flowchart for AI Workload 
Transformation to Synthesized Hardware

This flowchart outlines the sequential design steps starting 
from model parsing, kernel profiling, and HLS mapping, to 

scheduling and final FPGA synthesis.

methodoLogy
The proposed framework is informed by the 
methodology which adheres to a systematic bottom-
up approach where representations of AI models 
are converted to optimized and re-configurable 
hardware. It is divided into a three-corner Stone: AI 
kernel profiling, HLS-based IP and reconfigurable core 
assembly. All these stages collaborate to make the 
final product of a processor design be custom to the 
computation properties of the AI workload and make 
the best use of resources and execution speed.

AI Kernel Profiling
The initial part of the methodology is the profiling 
of a given AI workload in order to elicit important 
computational attributes. This involves an inspection of 
the number of multiply-accumulate (MAC) operations, 
dimensions of tensors, and the way to access mem- 
ory in each layer of the model. Computing the number 
of floating-point operations, data transfers, and data 
movement needs of processes like convolutions, 
matrix multiplications, and pooling layers, enables the 
system to decide which parts should be accelerated 
on hardware. To free this process of the need to 
agree on the semantics of a new, specific language, 
the framework incorporates support of modern 
compiler stacks (like MLIR (Multi-Level Intermediate 
Representation) and TVM). These tools translate the AI 
model, usually as an ONNX or TensorFlow Lite model, 
and produces an intermediate model that makes 
the data dependencies, parallelization and memory 
bottlenecks visible. Mapping and scheduling of the 
resources in the next level is possible by identifying 
the hotspots and performance deprived kernels. 
This profiling of the kernels is an automated process 
carried out on each of the AI models to guide hardware 
mapping and choice of the IP core. The main logic of 
extracting multiply-accumulate operations (MACs), 
the dimensions of the tensors, and the memory access 
needs of every model layer has been represented in 
the proposed pseudo-code as below.

HLS-Based IP Generation
After profiling is done, the system then leads to the 
generation of bespoke hardware accelerators by 
virtue of High-Level Synthesis (HLS). A catalog of 
reusable HLS templates of the major AI operations, 
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such as convolutional layer, activation functions 
(e.g., ReLU, Sigmoid), pooling, fully connected layer, 
quantization block, is stored. These templates can be 
parameterized in order to support different dimensions 
of the tensors, kernel size and stride value and even 
precision format (e.g., INT8, FP16). In this step, the 
HLS directives used have access to HLS directives, 
which comprise loop unrolling, pipelining, and array 
slicing, to utilize parallelism and boost throughput. 

As an example, loop unrolling reproduces hardware 
logic to enhance performance of small convolutional 
kernels, and pipelining can be done to have minimal 
initiation intervals between streaming data. The 
memory is partitioned to enable parallel accessibility 
of data on BRAMs or UltraRAMs and hence reducing the 
memory bottle necks. The end product of this step is a 
collection of synthesis-able IP blocks to feed into the 
final reconfigurable processor fabric.

Pseudocode: AI Kernel Profiling Process
Function AI_Kernel_Profiler(model_path):
    # Step 1: Load Model
    model_ir = load_model_as_IR(model_path) # e.g., ONNX or TensorFlow format

    # Step 2: Initialize Profiling Data Structures
    op_profile = []
    total_MACs = 0

    # Step 3: Parse Each Layer in the Model
    for layer in model_ir.layers:
        op_type = layer.operation
        input_shape = layer.input_dims
        output_shape = layer.output_dims

        # Step 4: Estimate MAC Operations
        if op_type == “Convolution” or op_type == “FullyConnected”:
            macs = compute_MACs(input_shape, layer.kernel_size, layer.stride, output_shape)
        else:
            macs = estimate_ops(layer)

        # Step 5: Analyze Memory Footprint
        memory_read = compute_input_bytes(input_shape, layer.precision)
        memory_write = compute_output_bytes(output_shape, layer.precision)

        # Step 6: Save Profiling Info
        op_profile.append({
            “layer_name”: layer.name,
            “operation”: op_type,
            “MACs”: macs,
            “Memory_Read”: memory_read,
            “Memory_Write”: memory_write
        })

        total_MACs += macs
    
 # Step 7: Return Profiling Summary
    return op_profile, total_MACs
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HLS Template Mapping Algorithm
Function HLS_Template_Mapper(op_profile):
    For each layer in op_profile:
        Match layer.operation_type to 
template
        Configure template parameters:
            - Precision (INT8/FP16)
            - Loop unrolling factor
            - Pipelining depth
        Apply design pragmas
    Return HLS_config_list

Reconfigurable Core Assembly
The last step aims at merging the produced IP cores to 
form a comprehensive and tile oriented reconfigurable 
design. The functional blocks are generated in HLS styled 
and one or more of these are connected by an interconnect 
that is configurable to support configurable routing and 
schedule dataflow. Such tiles are laid out according to 
the nature of workload e.g., depth, layer type and data 
dependency so as to permit both sequence and parallel 
execution paths. The tile construction is dictated by 
an adaptive configuration mechanism that allows the 
framework to dynamically instantiate or disable the 
processing elements according to the model needs and 
the available resources. It is this architectural elasticity 
that enables the system to interchange among various AI 
models or shift such with varying computational needs 
dynamically, which makes it well-adapted to multi-tenant 
edge computing and important embedded systems. Also, 
the assembly process facilitates optional dynamic partial 
reconfiguration (DPR) to reprogram available portions of 
the FPGA fabric dynamically at runtime without system 
stall.

Tile-Based Reconfigurable Core Assembly
Function Assemble_Reconfigurable_Core 
(HLS_config_list):
    Initialize empty tile grid
    For each IP in HLS_config_list:
       Assign to processing tile based 
on resource cost
       Connect to neighbors via configu-
rable interconnect
    Schedule tiles using resource-aware 
policy

    Return hardware block layout

exPerImentAL setuP
To compare the performance, flexibility, and 
effectiveness of the suggested HLS-based framework 
to the application-specific reconfigurable processor 
architecture, a set of experiments was performed on 
typical FPGA devices with conventional deep learning 
workloads. The experiment was built to demonstrate 
the ability of the framework to reveal the high-level 
AI models into optimized hardware architectures 
and demonstrate its performance compared to the 
traditional design methodologies.

Target FPGA Platforms
The proposed framework of HLS-driven reconfigurable 
processor design will be evaluated in terms of its 
portability, performance, and flexibility of the 
toolchain by using two standard current development 
boards in the industry, the Xilinx ZCU102 Evaluation 
Kit and the Intel Arria 10 GX FPGA Development 
Kit. Running the Zynq UltraScale+ MPSoC linked 
with an ARM Cortex-A53 multi-core processor, 
the Xilinx ZCU102 board is specifically devoted to 
heterogeneous embedded AI programs because of 
its close integration of high-density programmable 
logic fabric with a quad-core ARM Cortex-A53 CPU. 
It is compatible with the high-level synthesis and 
implementation toolchain of Xilinx Vitis HLS and 
Vivado. Meanwhile, Intel Arria 10 GX platform was 
selected based on the several built-in logic cell 
resources, embedded memory resources, and to 
work with the Intel HLS Compiler and Quartus Prime 
Pro synthesis environment. The choice of these two 
platforms in the experimental setting provided an 
adequate level of system-representativeness with 
regard to the balance of computational capacity, 
power efficiency, and the toolchains specifics with 
each other, as well as corroborating the relevance of 
the framework to a variety of FPGA ecosystems.

AI Model Benchmarks
In order to ascertain the extent to which the proposed 
framework was tested in conditions that were realistic 
and vary in terms of AI workloads, three deep learning 
models currently used were chosen as benchmarks: 
MobileNet-V2, Tiny-YOLOv3, and ResNet-18. 
MobileNet-V2 is a lightweight convolutional neural 
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network designed to run mobile and embedded vision 
processes, thus presenting an opportunity to test low 
latency, low resource consumption inference models. 
The very simple model Tiny-YOLOv3 was selected 
because it was a simplified variant of the YOLO object 
detection model and showed moderate complexity in 
computations and heterogeneous composition of layers 
that evaluates the capability of the framework to 
demand real-time detection framework. Residual deep 
network ResNet-18 with skip connection is considered 
to be of a certain moderation in complexity, appropriate 
to the task of classifying images, complicated by deep 
layers of hierarchy, and interconnections. Standard 
datasets were used to pre-train all the models and 
they have been exported to the ONNX format so that 
they can be incorporated smoothly into the profiling 
and HLS-based synthesis phases of the framework.

High-Level Synthesis Tools
The suggested framework benefits of both Xilinx and 
Intel HLS toolchain to produce high-performance 
hardware accelerators using high-level descriptions in 
C/C++ language, with compatibility and optimization 
targeting various platforms and FPGAs. In the case of 
Xilinx ZCU102 board, Vitis HLS 2022.2 tool has been 
used to compile high-level constructs to RTL so that 
modular AI kernels can be synthesized. The loop 
pipelining, inlining of functions and array partitioning 
optimization techniques were strategically used with 
HLS pragmas to maximize throughput and to reduce 
latency. To generate synthesizable hardware IPs on 
the Intel Arria 10 platform the Intel HLS Compiler (ver. 
22.1) was used, though the device-specific realizations 
were fine-tuned with respect to resource limitations 
and timing convergence capabilities through pragmas 
and compiler flags on the design. Each design was 
simulated and co-simulated thoroughly before 
deployment of hardware in order to prove the design 
and verify the functionality of the design, and in order 
to make sure that modules synthesized were within 
the accurate behavioral models.

Baseline Implementations for 
Comparison
To evaluate the quality of performance acceleration 
provided by the proposed HLS-driven reconfigurable 
processor design research framework, two parametric 
implementations of comparisons were formulated: 

RTL design implementation and GPU-based inference 
implementation. In the first baseline, a lower-bound 
reference of convolution and matrix multiplication 
in terms of performance and area efficient were 
implemented using Verilog and VHDL manually to act 
as lower bound references in the baseline. Although 
highly optimized, this method requires large design 
time and is limitedly scalable, and this explains why 
this method is taken as a standard when considering 
the advantages of design automation. The second 
benchmark was done on NVIDIA Jetson Nano low-power 
GPU platform which is widely used and performed the 
same AI models on the TensorRT-optimized inference 
pipeline. Performance measures that were taken on 
both baselines against the suggested framework were 
inference latency, power consumption, logic resource 
usage (LUTs, flip-flops, BRAMs, DSPs), and overall 
energy efficiency (inferences/W). These comparisons 
gave an overall picture of the trade-off between 
manual-hardware design and general-purpose 
acceleration and automated, application-specific 
hardware synthesis, using HLS.

resuLts And evALuAtIon
The suggested HLS-based architecture was strictly 
tested with the help of typical AI analogues on FPGA 
platforms to show that it can be successfully applied 
to the creation of application-specific reconfigurable 
processors. To evaluate it, the most relevant 
performance goals were considered such as inference 
latency, power consumption, throughput, and resource 
usage. This was evaluated by comparing it to baseline 
implementations through comparative analysis with 
traditional RTL designs and GPU-based inference to 
determine the strengths of the framework due to 
automation, scale, and energy efficiency.

Performance Metrics
In trying to measure the performance of synthesized 
artificial intelligence processors, four prevailing 
metrics were employed:

• Inference Latency (ms): This is the end-to-
end time that it takes to feed one input to 
the AI model, and have the FPGA process that 
input. The framework revealed substantive 
latency decrease as compared to GPU-based 
inference, above all when the models were 
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MobileNet-v2 and Tiny-YOLOv3.
• Power Consumption (mW): The power profil-

ing of the chip has been done onboard mea-
surement facilities (e.g. Xilinx Power Monitor 
and Intel Power Analyzer) during maximum 
inference. The accelerators built using HLS 
were able to use consistent amounts of pow-
er at similar rates of throughput than Jetson 
Nano.

• Throughput (Frames Per Second - FPS): The 
frames per second was recorded to determine 
the rate of inference. Architecture obtained 
1.5 to 2.2 times higher throughput than con-
ventional RTL designs in its improved pipelin-
ing and parallel dataflow optimisation.

• Resource Usage: Breakdowns of logic usage 
in LUTs, BRAMs and DSP blocks were provided 
in post-synthesis reports. The IP cores were 
quite modular as this enabled a more consid-
eration of area balancing and reuse at various 
levels that aided in resource allocation effi-
ciencywithout a time-dimension overture.

Quantitative Results
Table 1 summarizes the performance metrics for all 
three AI models (MobileNet-V2, Tiny-YOLOv3, and 
ResNet-18) across the ZCU102 and Arria 10 platforms:

Table 1. Performance Comparison Across FPGA Targets

Model

La-
tency 
(ms)

Power 
(mW) FPS

LUT 
Util 
(%)

DSP 
Util 
(%)

MobileN-
et-V2

5.3 420 188 48.6 62.1

Ti-
ny-YOLOv3

11.2 550 89 61.3 74.2

ResNet-18 7.6 470 131 54.2 68.5

These results demonstrate that the framework 
maintains a favorable balance between latency, 
resource use, and power—achieving efficient AI 
inference on resource-constrained edge FPGAs.

Comparative Analysis
To achieve the measurement of the advantages of the 
HLS-based implementation, the suggested scheme was 
benchmarked in comparison with the traditional RTL 
implementations and GPU-based inference (Jetson 

Nano). A comparison of latencies is shown in Figure 1, 
according to which the HLS-generated cores feature 
a much lower overhead than handcrafted RTL and are 
faster than GPU inference, especially on small and 
midrange models.

The tradeoff between the utilization of DSP and 
latency is depicted in Figure 5. It demonstrates the 
dynamic balancing of the core-level parallelism and 
the available logic in the framework to optimize the 
inference time without breaching the device limits.

Fig. 5: Latency vs. DSP Utilization Tradeoff

Execution Timeline and Heatmap Visual-
ization
As the next step of the analysis of the dataflow 
efficiency, the execution timeline was created based 
on the run-time counters and instrumentation. As 
depicted in Figure 6, the ResNet-18 layers were 

Fig. 4: Inference Latency Comparison  
(HLS vs. RTL vs. GPU)
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executed on ZCU102, and the pipelined scheduling 
is clearly shown in the figure, where compute and 
memory stages were overlapped.

Summary of Evaluation
The validation of the experiments confirms the 
hypothesis that performance of the proposed HLS-based 
framework is equivalent to or even better than that of 
completely manual RTL designs and shows a bigger scope 
but still possible reduction in development time due to 
automatization. The framework was thoroughly tested 
using GPU-based inference as a point of comparison, 
especially when it comes to deployment on an edge 
device such as the Jetson Nano, where it was observed 
that the framework could lead to improvements in 
both speed and energy consumption. Besides, modular 
HLS reuse of the IP blocks made it possible to provide 
a scalable resource usage, with the ability to easily 
adapt to different topologies of the AI models and 
hardware resource limitations. Taken together, the 
given findings highlight the feasibility and efficiency of 
the suggested methodology in the implementation of 
AI workloads with regard to embedded vision, robotics, 
and industrial automation contexts.

dIscussIon
The proposed HLS-based reconfigurable processor 
framework has been subjected to the experimental 
evaluation and design in which it has been shown to 
have a number of promising strengths, as well as a set 
of feasible challenges and prospects. These insights 
are discussed in this section as relating to design 
automation, hardware efficiency and architectural 

scalability, and at a longer-term view to the integration 
of more advanced reconfiguration techniques. 

Strengths of HLS in Rapid Design Space 
Exploration
The increased design space exploration with the use 
of High-Level Synthesis (HLS) was one of the strongest 
benefits experienced in the course of implementing 
the suggested framework. The framework enabled 
quick prototyping of different architectural options 
of capacities (convolution, activation and pooling) 
by abstracting hardware development in high-level 
C/C++ descriptions. This proved helpful especially 
when it came to trade-offs of latency, throughput, 
resource utilization on a variety of loop-unrolling 
factors, memory partitioning strategies, and pipeline 
depths. The designers had freedom to explore large 
numbers of architectural variations with minimum or 
no low level RTL coding, and the design initiative was 
cut by 40-60 percent over conventional methods. Also, 
parameterizable HLS IP blocks were created using 
an efficient modular reuse strategy which harnessed 
the efficient use of experimentation with different 
topologies of the model which ensured that the HLS-
based methodology was quite time-efficient and also 
very adaptable.

Challenges in Logic Overhead and Memo-
ry Access Bottlenecks
HLS also has its limitations regardless of the productivity 
associated with it. One of the limitations that were 
frequently encountered during the work was the 
generic overhead of logic incurred by HLS compilers 

Fig. 6: Layer-Level Execution Timeline on ZCU102
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in comparison to manually written RTL designs. 
Redundant logic or suboptimal schedule often occurs 
in deeply nested loops structures or irregular memory 
access patterns, among other things, on synthesized 
HLS blocks. This at times resulted in an increased LUT 
and flip-flop usage, which can become a limitation to 
resource constrained edge FPGAs. Also, memory access 
bottlenecks (due to large intermediate feature maps) 
have been recognized as performance bottlenecks 
especially in ResNet-18. Poor usage of BRAM partitions 
and no overlap between compute segments and 
memory segments is detrimental to throughput. 
Although these problems were partially resolved by 
manual pragma tuning and optimization of memory 
architecture, it made evident that in the next versions 
of the framework, more sensible, compiler-guided 
memory optimization tactics must be implemented.

Potential for Integrating Dynamic Partial 
Reconfiguration (DPR)
The possibility to increase the feasibility and 
practicality of the suggested architecture is another 
prospective opportunity that could be achieved through 
Dynamic Partial Reconfiguration (DPR) integration. The 
existing framework produces rigid bitstreams that are 
specialised toward particular artificial intelligence-
related workloads. Nevertheless, through DPR support, 
segments of the FPGA fabric could at run time be 
reconfigured to deploy different accelerator types on 
demand - by letting a single FPGA self-transform to 
incorporate different models or workloads or application 
domains without entire reprogramming. This comes in 
handy in multi-tenant edge or robotic systems with 
adaptive task patterns. To have a working DPR in the 
proposed HLS pipeline, we would need to divide the 
hardware design into static and reconfigurable parts 
and fine-tune the generated IPs in HLS towards partial 
reconfiguration (i.e. to the PR regions in the case of 
Xilinx, or to Dynamic Function eXchange when using 
Intel). Such extension can substantially enhance the 
runtime flexibility and resource-efficiency, and forms a 
main direction of further research.

concLusIon
Targeting a focus on artificial intelligence (AI) tasks, 
such as those in edge and embedded platforms, the 

framework under consideration in the proposed work 
is a high-level synthesis (HLS)-based approach, with 
application-specific reconfigurable processors as its 
target systems having a predetermined concentration 
on the AI tasks. The framework can rapidly convert 
well-described AI models in high-level notation to 
analog FPGAs using tools in the HLS to get very 
high-throughput implementation. The included 
techniques of AI kernel profiling, HLS IP reuse, and 
tile-based adaptive core integration allow utilizing 
resources efficiently, are scalable to the various 
model types, and result in a great increase in design  
productivity.

The key conclusions of the study draw attention 
to the fact that the framework introduced is rather 
efficient when it comes to the competitive performance 
provision at lower development overhead rates. 
There are also experimental results on Xilinx ZCU102 
and Intel Arria 10 platforms which prove that the 
HLS-generated processors, compared to GPU-based 
inference, are lower in latency and energy efficient 
and its performance is near to the performance 
of manually optimized RTL implementations. 
Compilers and design automation makes it possible 
to design hardware accelerators that fit the specific 
requirements of models of interest like MobileNet-V2 
or Tiny-YOLOv3 or ResNet-18. Moreover, the capability 
of reinstating modular IP cores in various models 
defines the flexibility and the ability affinitive to the 
framework.

This work is important because it fills the 
abstraction gap between a software-level design 
of AI deployable on an FPGA and the actual FPGA 
implementation, which enables hardware acceleration 
to be more approachable, scalable, and suitable to 
do real-time inference in the edge. Its abstraction 
of low-level hardware design allows AI developers 
to build hardware accelerator prototypes quickly 
without the need to be an expert designer with  
RTL code.

There is opportunity in the future to expand further 
by incorporating dynamic partial reconfiguration (DPR) 
in order to enable real-time hardware modification 
to multi-model AI pipelines. Moreover, the use of 
machine learning-related HLS optimization techniques 
like automatic pragma selection, memory mapping, 
etc. might improve performance and portability in 
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design further. The extension in the framework to 
accommodate such chiplets-based heterogeneous 
architectures and mixed-precision compute kernels to 
address the increasing needs of AI in volatile, resource-
limited scalable environments will also be explored. 
Altogether, it will enable capable intelligent hardware 
acceleration of artificial intelligence workloads on 
reconfigurable computing platforms, a flexible, 
efficient, and futuristic-looking basis upon which 
to enable scalable deployment in next-generation 
systems building on edge intelligence.

Future work
The proposed framework can be advanced to adapt an 
even more dynamic and still heterogeneous computing 
environment more adaptably, more scalably and 
to better performance in future work. Among such 
directions, one can note the integration of Deep 
Reinforcement Learning (DRL) as a means of decision-
making, which is smart and on-demand to dynamically 
alter the reconfiguration. With DRL agents, such a 
system could make decisions automatically without 
human input on the choice of the hardware that fits 
best concerning workload and latency requirements 
and power limits. The other direction concerns the 
incorporation of chiplet-based heterogeneous platforms, 
in which processing elements of varying characteristics, 
including CPUs, GPUs, FPGAs, and AI accelerators 
are integrated by high-bandwidth interfaces. This 
would allow workloads to be divided between special 
purpose cores, to be more energy efficient and they 
would use high throughput. Also, in the future, mixed-
precision, and quantized AI kernels will be added, so 
the framework can be dynamically configured with 
different broadcast-performance-precision trade-offs, 
such as INT8 and FP16. These extensions will facilitate 
the use of a more generalized purpose and generalized 
framework with increased applicability on AI models 
and edge computing environments.
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