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ABSTRACT

The electrocardiogram (ECG) classification is one of the key elements of
the continuous cardiac monitoring systems, as through this measurement,
cardiovascular disorders and arrhythmia could be diagnosed at an early stage.
As the market demand of embedded portable, real-time, energy-efficient
Healthcare-related applications and services such as health monitoring grows,
traditional software based ECG processing methods usually using software
with general-purpose processor or microcontroller platforms have severe
constraints in real-time applicability, energy efficiency, and scalability. This
paper proposes a reconfigurable computing system specifically to accomplish
real-time ECG classification over Field-Programmable Gate Arrays (FPGAs) in
Field-Programmable Gate Arrays (FPGA) presents an interesting alternative
to a system based on traditional computing due to the capabilities of
parallelism, dynamic adaptability, and low power draws. The designed system
is organized on the basis of a lightweight 1D Convolutional Neural Network
(CNN) structure of solution focused on the ECG signal processing. Using the
high speed pipelined architecture and dynamic partial reconfiguration (DPR) of
current generation FPGAs, the system dynamically reconfigures its hardware
operating using the requirements at a specific time ensuring an efficient use
of the resources and saving of energy. The architectural design is verified
through the MIT-BIH Arrhythmia Database with a classification accuracy of
98.7% nevertheless ensuring that latency of inference can still be less than
1 millisecond thus proving the time-sensitive nature of this architecture. To
overcome the throughput bottleneck caused by fixed-point hardware, CNN
model is quantized to run on fixed-point logic platform and implemented
into reconfigurable logic tiles. Experimental implementations demonstrate
that FPGA-based system outperforms conventional embedded systems in
time and energy efficiency, reducing power costs and inference time to a
considerable extent. Moreover, the addition of DPR makes the architecture
interchangeable between the high-accuracy or low-power setting, given the
operational situation, making the architecture very suitable to wearable and
edge healthcare devices. The case study used herein is just an illustration of
the opportunities offered in reconfigurable computing to biomedical signal
processing and pioneer work towards the future of FPGA-based intelligent
health monitoring systems into multi-modal biosignals and edge-Al-based
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diagnosis. The findings highlight the importance of co-design between
hardware and software that will allow effective, scalable, and accurate edge

medical Al.
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INTRODUCTION

The World Health Organization (WHO) found
cardiovascular diseases (CVDs) as the causes of death
which claim around 17.9 million lives each year and
became the primary cause of mortality on the planet.
The electrocardiogram (ECG) is the best known, non-
invasive method of investigating cardiac health that
has been under development when compared with
other types of diagnostic modalities. ECG records the
electrical functioning concerning the heart, which
helps in identifying the arrhythmias, myocardial
infarctions, and any other life-threatening conditions.
As the world swings to the preventive and real-time
healthcare, portable, wearable, and edge-deployable
electrocardiom functionalities of the ECG monitoring
systems that can enable continuous and automated
classification of cardiac rhythms undergo a larger
demand.

Conventional ECG signal processing used offline
processing of ECG signals with general purpose
processors or microcontroller based systems, where
data is processed sequentially and suffers high latency
and low energy efficiency. Such constraints become a
bottleneck to usage in energy-restricted settings such
as wearable and embedded systems that should last
long in monitoring health status. Besides, traditional
systems cannot always comply with the rigour of
real-time usage and on-the-fly flexible behaviour, in
particular, in the presence of different physiological
and environmental conditions.

Reconfigurable computing is especially promising,
especially as done through Field-Programmable Gate
Arrays (FPGAs), to address those challenges. FPGAs
allowtheparallelexecutionof tasks, real-timehardware
reconfiguration due to dynamic partial reconfiguration
(DPR), and the energy-efficient implementation of
complicated processes. In contrast with fixed-function
processors, FPGAs enable programmable hardware
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Fig. 1: Block Diagram of FPGA-Based Real-Time ECG
Classification Framework

acceleration of signal processing and machine learning
applications, giving orders of magnitude improvement
in throughput and latency. Moreover, recent FPGAs
incorporate heterogeneous computing, including
DSP slices in combination with BRAM and embedded
ARM processors, to include close hardware-software
integration of end-to-end biomedical signal processing
systems.

We use a case study of the use of reconfigurable
computing in real-time ECG classification in this
paper. The suggested system is a hardware-optimized
Convolutional Neural Network (CNN) based on one
dimension applied with the FPGA of ECG signal
classification of high accuracy and ultra-low latency
levels. The pipelined path of data flow is used to
send the signals constantly and a DPR is used to
re-arrange computational blocks depending on
functional properties, e.g. to switch between high-
performance and low-power operating mode. We use
MIT-BIH Arrhythmia Database to train and validate our
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model and contrast its performance with traditional
embedded systems in accuracy, latency, resource
consumption as well as energy consumption.

The study advances the recently emerging
domain of edge-based biomedical signal processing
in that FPGAs, with the aid of efficient algorithmic
mapping and reconfiguration approaches, are able
to achieve the twin goals of high accuracy and low
power dissipation. The results point at the possibility
of using reconfigurable computing in intelligent, real-
time healthcare monitoring systems, particularly
under resource-constrained and wearable contexts.
The methods and architectural ideas proposed here
can be applied to all other biosignals, including
electroencephalograms  (EEG), electromyograms
(EMG), and photoplethysmograms (PPG), and therefore
provide a basis to scale the bio-Al applications, which
are low latency and highly adaptive.

ReLATED WoORK

Within the last 20 years, a lot of progress was made
in building hardware-accelerated biomedical signal
processing technologies, especially real-time ECG
analysis. Earlyimplementations mostly concentratedon
custom digital signal processor (DSP) implementations
to implement specific feature extraction tasks. As an
example, Liu et al.[Y published a solution entitled
ECG feature extraction with the help of wavelets
and FPGA that used the technique to speed up signal
decomposition and denoisation. In the same vein,
Al-Sarawi and Abbott+ implemented a mechanism of
QRS complex detection on finite state machine (FSM)
architecture design to be used in low-latency response
and real-time performance in cardiac monitoring on
FPGA environments.

As machine learning has increasingly entered the
medical domain in diagnosing medicine, scholars have
also incorporated the learning models to automatically
classify the ECG signals. Aconvolutional neural network
(CNN) ECG classification system proposed by Acharya et
al.B! produced a good level of diagnostic performance.
Nevertheless, they had been restricted to software
applications (CPU/GPU) only, thus hindering their use
in edge or embedded systems because of wastefulness
of resources and energy. Additionally, software-based
classifiers do not include the deterministic timing and
real-time assure used in life-critical applications.

Dynamic parts use: Dynamic reconfigurable
computing has become a potentially important
adaption direction in biomedical signal processing.
Wang and Yu [4] illustrated the usefulness of DPR in
rewriting the filter coefficients as well as processing
pipelines on fly without terminating the primary ECG
monitoring process. Their work was however limited
to adaptive filtering and not to the deep learning-
based classification.

Unlike the earlier works, the research described
in this paper brings all three important issues (deep
learning, hardware acceleration, and reconfigurable
computing) together by using them in a unified
framework of the real-time ECG classification.
The combination of the lightweight 1D-CNN model
FPGA implementation with DPR provides a dynamic
adaptable manner to perform ECG analytics with high
accuracy, low latency, and low energy consumption on
edge devices. This will allow to bridge the tradeoff
that exists between signal processing fidelity and the
deployed embedded platform feasibility that may be
one of the prior challenges in the present biomedical
hardware systems.

SYSTEM ARCHITECTURE

Overview

It is proposed that the architecture of such a system
would end up performing real-time electrocardiogram
(ECG) classification with the benefits being obtained
by using the parallel and reconfigurable nature of the
Xilinx Zyng-7000 FPGA platform. The pipeline stages
of processing consist of four fundamental functional
blocks: signal acquisition, the preprocessing block,
the feature extraction and classification block, and
the dynamic partial reconfiguration (DPR) control
block. The ECG signals are first carried in an analog-
to-digital converter (ADC) interface where the analog
cardiac waveforms that are detected in the wearable
sensors are converted into digital data and streamed
to the FPGA fabric. The digitized signals are next pre-
processed comprising of band pass filtering into baseline
drift and high-frequency noise, and normalization to
accommodate the signals to a location in an ideal
range to be operated on by the time subsequent
stages. This guarantees the clean, consistent input of
the neural network stage. At the third step task, a one-
dimensional convolutional neural network (1D-CNN)
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is utilized either in hardware or software to extract
features and classify them. CNN model is specially
optimized, specifically focusing on the features of
the ECG signals and also mapped onto the FPGA using
high-level synthesis and fixed-point quantization that
reduces resource utilization and power consumption.
The architecture is pipelined so that it can perform
streaming execution and therefore achieve the low-
latency inference without the need to have extensive
memory buffers. The last brings in a DPR controller
that grants hardware modules being reconfigured on-
the-fly without the system going to a halt. This can
be used to make adaptive switches between various
processing modes e.g. high-accuracy classification
when detecting abnormal rhythms, and low-power
operation when in normal sinus rhythm. The system
provides optimal tradeoffs in performance, energy
efficiency and the functionality flexibility with the
dynamic adjustment of the hardware logic, depending
on the input context and application requirements. In
general, this modular and reconfigurable architecture
will be helpful in real-time signal processing of the
biomedical domain, specifically in wearable and
edge health-monitoring solutions since, in these
applications, both performance and flexibility are the
most significant factors.
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Fig. 2: FPGA-Based Real-Time ECG Classification
System Architecture

1D-CNN Model

The main part of ECG classification framework is a
simple one-dimensional convolutional neural network
(1D-CNN) designed and optimized to run on hardware
(FPGA). The model is fed with a fixed-length window
of the signal of ECGs indicating 256 samples, depicting
a brief window around one of the peaks of the cardiac
signal R-peak. The input of this windowed model
shifts the attention of the model to a local temporal
feature so important in classifying between the

various classes of arrhythmia. The first layer of the
model is a Conv1D layer and consists of 32 filters with
a kernel of size 5 which slides in the temporal axis of
the signal to identify the local feature of the signal
e.g. QRS complex, P wave, T wave. ReLU activation is
used to provide non-linearity and maximize the model
capacity of detecting a complex pattern in the ECG
waveform. This is followed by a MaxPooling1D layer
with pool size of 2 which down samples feature maps
thus saves computational burden as well as offers the
translational invariance to the model. The result of
pooling is flattened, and it is sent to a dense layer
with 64 units; it is fully connected and is utilized to
integrate and interpret the learned spatial features
earlier. ReLU is once more used to keep the non-
linearity. Lastly, a softmax output layer composed
of 5 neurons is added, where 1 neuron corresponds
to each of the identified classes of the arrhythmias
that were found in MIT-BIH Arrhythmia Database,
including normal sinus rhythm, atrial premature
contraction, ventricular ectopic beat, and so on.
The utilization of Softmax allows the probabilistic
classification, according to which the predicted output
is a class that has the highest confidence score. Such
architecture can be called balanced in terms of model
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Fig. 3: Architecture of the Lightweight 1D-CNN
for ECG Classification
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complexity and hardware efficiency, which makes it
very appropriate to be used in real-time, on resource-
limited reconfigurable hardware such as FPGAs.

Reconfigurable Logic Blocks

In the proposed system, core computational steps like
convolution, activation, pooling, and fully connected
layers are implemented/mapped on specialized
reconfigurable logic blocks in the FPGA fabric that
allow very efficient and flexible execution of the
ECG classification pipeline. These parameterized
high-level synthesis (HLS) designed hardware blocks
are optimized on fixed-point arithmetic to minimize
logic usages and the power consumption. These
logic blocks are dynamically changeable during
run-time when utilizing the partial reconfiguration
(DPR) feature that is available on the FPGA meaning
overall system operation is not disrupted even as
the logic block itself is altered. As an example,
based on the context of the detected signal (i.e., a
transition between a low-risk normal rhythm and a
potentially dangerous arrhythmic event, the system
may re-configure the convolutional module and use
a deeper variant of CNN to achieve better accuracy
but more energy-intensive system, or use a simpler
one to become more energy-efficient. Since this is a
run-time flexible system, it is optimised to optimise
classification and hardware resource limitations and
thus can be used on a wearable device or a device
with a long battery life. Moreover, the reconfigurable
blocks are developed as the modular IP cores using
interfaces with a standard layer, thus they can be
easily integrated into the dataflow architecture of the
system. These blocks are then saved as pre compiled
configuration bitstreams which the DPR controller can
load into the FPGA as and when needed. This is not
only an architectural design enabling hardware-level
switching of algorithms, but also enables an ability
to update the neural network model (or upgrade it)
in the future without necessarily redeploying the
entire system. On the whole, reconfigurability of
logic fabric offers a degree of hardware flexibility
and computational efficiency that is hard to recreate
using standard fixed-functions microcontrollers or
general purpose processors and further cements the
utility of an FPGA platform when performing edge
biomedical signal processing.
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CNN Block
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Controller
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Fig. 4: Dynamic Partial Reconfiguration of Logic Blocks
for Adaptive CNN Execution

METHODOLOGY
Dataset and Preprocessing

Database: MIT-BIH Arrhythmia Database
Among the most popular and authoritative data sets to
study ECG classification and detection of arrhythmias,
there is the MIT-BIH Arrhythmia Database published
by PhysioNet. It consists of 48 half-hour recordings
that received 47 respondents who were inpatients
and outpatients. All ECGs were acquired at a sample
rate of 360 Hz with 11-bit resolution in the range of
10 mV with high-fidelity waveform data that can be
useful both in signal processing applications as well
as in machine learning. The database contains the
descriptions of the beats and the beat nature by the
expert cardiologists and this includes the specifications
of whether to be at that time, or what kind of beat it
is (normal beat: N, premature ventricular contraction
beat: V, atrial premature beat: A and others). Such
labels allow controlled training and testing of models
of classification. In the present research, we have
used a sample of five main categories of heartbeat
according to AAMI (Association of Advancement of
Medical Instrumentation) standardization to relallow
consistency to clinical relevance and benchmarking.
The dataset was sub-divided into training and testing
sets through patient-wise separation to prevent data
leakage to have realism in the assessment of model
generalization to previously unseen subjects.

Techniques of Preprocessing
A complex preprocessing pipeline was used in order
to guarantee the quality and consistency of the ECG
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signals to be processed and fed into the classification
model. The first was to use a fixed frequency of 360
Hz in order to resample all ECG signals in order to be
uniform within the entire sample and to accentuate
the native sampling rate. Then, the ECGs recorded
continuously were cut into overlapping windows
of 256 samples which is about 0.7 seconds of signal
length and this was adequate data to record complete
cardiac cycle comprising of PQRST wave mould.
To remove baseline wander that usually arises as
a result of respiration or movement of the patient,
a high-pass infinite impulse response (lIR) filter was
used to remove the effect of baseline wander with a
cutoff frequency set at 0.5 Hz. Further, low-pass IIR
filter with a cut off of 40 Hz was applied to suppress
high-frequency noise and power line interference. To
normalise the scale of the amplitude and enhance the
convergence of the CNN model signals were filtered
and adjusted to zero mean and unit variance. The
benefits of this preprocessor pipeline are that it
improves signal quality, gives temporally consistent
ECGs and that it preprocesses the windows of the ECGs
to support simple hardware-based feature extraction
and classification.

Raw ECG Signal

Resampiing
(360 Hz)

}

Segmentation
(256-sample windows)

l

High-Pass IIR Filter
(0.5 Hz)

}

Low-Pass IR Filter
(40 Hz)

}

Normased ECG
(Zero mean, Unit variance)

Fig. 5: ECG Preprocessing Pipeline and Dataset Flow

Hardware Implementation

Optimization and FPGA Design

And the synthesized ECG classification architecture
was based on the Zynqg-7000 SoC integrated system
platform, including an ARM Cortex-A9 processor with
programmable logic set, used Xilinx Vivado 2022.2 to be
developed. Todescribe a 1D-CNN in hardware efficiently
and quickly, the deep learning model was constructed
to work with High-Level Synthesis (HLS) that can
create an efficient and rapid hardware implementation
of the C/C++ code. This made iterating designs and
developing a mixture of convolutional and dense layer
components simpler and in a modular manner. In order
to achieve efficient resource utilization and latency
schedules of inferences, the CNN model weights
were quantized with 32-bit floating representation
to 8-bit fixed-point with a memory footprint of about
86 PBits (g0,g1) and DSP slices reduced to a few, yet
exceeding 98% classification accuracy was observed.
To facilitate parallel data access and high-throughput
addressing small loops were unrolled and dual-
port BRAMs were used to pipeline the convolutional
layers. The intermediate data buffers and line buffers
also employed the concept of spatial locality; they
ensured fewer network access to the memory given
redundant access. Also, there were developed custom
RTL blocks as an activation and Softmax computation,
where the timer closure was performed together
with the HLS parts to minimize timing overhead.
The design was capable of real time classification in
an environment with latency in the sub millisecond
range, demonstrating that it can be applicable to
stream-based biomedical signal streams.

Strategy of Dynamic Partial Reconfigu-
ration

The architecture includes the Dynamic Partial
Reconfiguration (DPR) to incorporate adaptability
and energy efficient across different operating
environments. Certain areas in the FPGA were
designated as Reconfigurable Partitions (RPs) that
could be updated at runtime, and did not freeze rest of
the system. Such partitions contained computationally
equivalent yet resource-dissimilar instances of a CNN
module e.g. a low-power instance of a kernel that
identified normal rhythm and a high-accuracy instance
of a kernel that identified suspected arrhythmic
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sections. The static part of the FPGA also contains
the logic reconfiguration decision, which is (statically)
implemented based on signal-quality metrics or
confidence-level thresholds on the classification.
When the DPR controller detects an abnormal pattern,
it starts to load a more complex CNN bitstream to the
RP to provide greater robustness of the classification.
On the other hand, when the power capacity is limited
due to energy restricted modes or the occurrence
of regular activity of the ECG, the simpler model is
returned. Each CNN configuration has its precompiled
partial bitstreams stored in on board flash memory and
transferred onto the configuration memory through
the PCAP interface. The modular DPR method supports
real-time responsiveness of the system combined
with energy-awareness essential in the wearable
and portable applications in biomedicine. A fact that
proves the feasibility of establishing reconfigurable
intelligence on edge health monitoring platforms that
are resource limited is the deployment of the DPR.

DPR Controller
PCAP g %
30
g
@
ECG
Signal Zyng-7000 ScC
1D-ONN ' Recontigurabie :
Convolution 1 Partition (RP) i
H |
L ot ' CNN-A ! ECG
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e L _owrover |
Storage L i

Fig. 6: FPGA-Based Hardware Architecture with Dynamic
Partial Reconfiguration for ECG Classification

Evaluation Metrics
When examining the performance and effectiveness
of the suggested FPGA-based ECG classification
platform, a wide range of evaluation measures is
used to comprehensively evaluate the project, which
include both the accuracy of the algorithm and low-
level efficiency. All these metrics can be seen as an
indication of clinical reliability, real-time performance
response, as well as appropriateness in design to be
used in embedded and wearable products.

The main measures to use when determining the
diagnostic performance of the 1D-CNN classifier are
Accuracy, Sensitivity, and Specificity.

e Accuracy describes the general correctness
of the classification and determines as a quo-
tient, where the correctly predicted heart-
beat classes are divided by the total number
of the input samples.

o Sensitivity (also is called recall or true posi-
tive rate) measures how well the system can
recognize pathological conditions (e.g., ar-
rhythmic beats) and it is essential to reduce
false negatives in the clinical environment.

o Specificity checks how sensitive the system is
to normal rhythms and false negative issues
by giving results that are trust worthy in being
diagnoses. All these measures are computed
per class and averaged so as to arrive at the
overall reliability of a model when dealing
with different categories of heartbeats.

A point of critical importance to real-time operation
is the latency, which is the amount of time it takes
the system to do an inference on one segment of the
ECG (generally a 256-sample window). The latency of
this implementation takes the measurements of how
long until the window that is fed into the FPGA to the
results of the prediction of the time of the output of
the classes. Sub-millisecond latency makes any high
frequency ECG monitoring application compatible and
enables early clinical intervention.

Resource Utilization measures the proportion of
Look-Up Tables (LUTs), Flip-Flops (FFs), Block RAMs
(BRAMs) and Digital Signal Processing (DSP) slice
used on the FPGA. These are indicators of hardwares
footprint and scalability of the design. Efficient use
of resources is a requirement that must be met so as
to accommodate another functionality, especially in
embedded System-on-Chip (SoC) platforms and this
may either be in the form of wireless transmission or
even multi-signal monitoring.

Energy Consumption per Inference is determined
with the on board power measurement tools and
indicates the amount of energy (in microjoules)
needed to perform a single ECG window. In wearable
technology and battery-powered technology, this is
a vital measure since extended uptime is important
depending on the amount of energy consumed per
inference. This proposed architecture uses fixed-point
arithmetic, pipelining, and dynamic reconfiguration to
realize substantial reductions in energy consumption
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much more than the traditional processor based
variations.

The combination of these””” indicators gives a
detailed picture of clinical feasibility, live execution
opportunities, and fixed permissibility of the system,
which further serves to support the benefits of
reconfigurable computing in edge-based enactments
of biomedical signal processing.

DSPs (45%)

LUTs (23%)

BRAMSs (31%)

FFs (27%)

Fig. 7: FPGA Resource Utilization Breakdown

REsuLTs AND Di1scussION

By testing the presented FPGA-based real-time ECG
classification system in terms of its operational
performance, two standard embedded systems,
such as the ARM Cortex-A9 firm and the STM32
microcontroller (MCU) were used to benchmark the
work. FPGA implementation obtained classification
accuracy of 98.7% as indicated in Table 1, which is
a bit better compared to ARM-based system (98.2%)
and much better than the STM32 MCU (96.3%). Such
high accuracy of classification is described by the
implementation of the 1D-CNN model that is optimized
in the hardware, which makes it possible to keep high
fidelity of signal features due to efficient streaming
and computation with low-latency. Moreover, the
deterministic performance of the FPGA conforms to
very little variability of timing and performance in
contrast to software-based systems that are prone
to OS overheads and interrupt latency. The enhanced
accuracy also highlights the fact that the preprocessing
pipeline and quantized CNN architecture, maintains
most of the important ECG waveforms features,
despite the fixed-point conversion.

Latency analysis also points out the advantage
of real-time implementation of the FPGA. Proposed
system shows an inference latency of 0.93 ms that
is well beyond 5x the upstream ARM Cortex-A9 (5.4
ms) and 10x the downstream STM32 MCU (9.8 ms).
This sub-millisecond latency is critical towards real-
time ECG monitoring and detection of arrhythmia
with promptness across edge and wearable systems.
The low latency is realized by pipelined data paths
and parallel execution of CNN layers which enables to
process the new windows of ECG continuously without
jittering during buffering. This responsiveness is a
necessity in case of life critical applications such as
continuous telemetry heart examples and emergency
alert systems. Moreover, the integration of a dynamic
partial reconfiguration (DPR) enables the system to
dynamically customise its classification pipeline - at
runtime - swapping a low-power and a more accuracy
CNN kernel with the current situation, e.g. based on a
sudden heart rate variability or suspected arrhythmia.

2500 Accuracy (%)
—=— Latency (ms)
—— Power (mW)
—+— Energy per Inf

2000

Metric Value
-
&
=
3

=
1)
S
S

500

FPGA ARM Cortex-A9
Platform

STM32 MCU
Fig. 8: Performance Comparison across Platforms

On the hardware performance, FPGA implemen-
tation performs significantly better both in terms of
power efficiency and energy per inference. The FPGA
system only draws power of 112 mW; an almost 3.8
times reduction compared to the ARM Cortex-A9 (430
mW) and over 2 times less than STM32 MCU (250 mW),
this system executes significantly faster. Its energy per
inference is as low as 104.2 106, almost 22 times less
energy per inference than ARM, and almost 23.5 less
energy than MCU, confirming that reconfigurable logic
is energy-efficient when used in biomedical Al work-
loads. Besides, the physical resource consumption on
the FPGA fabric is reasonable-a quarter of all LUTs, 30%
of BRAM and 45% of DSP slices-there is future poten-
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tial to expand it fully (e.g., multi-channel processing
ECG, or incorporating other biosignal) when more re-
sources are needed. On the whole, these findings show
that the suggested reconfigurable computing frame-
work not merely satisfies but outsmarts the demands
of real-time, energy-conservation of edge-proximate
health monitoring, and makes it a profoundly versa-
tile and deliverable option designed to affect next-gen
wearable biomedical devices.

Table 1: Performance Metrics Comparison

FPGA ARM Cor-

Metric System tex-A9 STM32 MCU
Accuracy (%) 98.7 98.2 96.3
Latency (ms) 0.93 5.4 9.8
Power (mW) 112 430 250
EnergyAper Infer- | 104.2 2322 2450
ence (ApJ)

CoNCLUSION

This study thus proves that reconfigurable computing
is effective in accelerating real-time biomedical signal
processing by its design and implementation of FPGA
based ECG classification system employing a lightweight
1D-CNN accelerator. The indicated strategy of mapping
the most important processing stepsin signal processing
to logic blocks that can be reconfigured and dynamic
partial reconfiguration (DPR) can provide the system
with an attractive tradeoff between high accuracy of
classification (98.7%), ultra-low latency (0.93 ms), and
exceedingly low power consumption (104.2 mJ per
inference) which are the most relevant performance
metrics in wearable and embedded health-monitoring
apparatus. Modular and pipeline architecture of the
architecture is not only responsive in real-time but
also makes the system adaptable depending on the
situation, that is, it can dynamically go into low-
power and high performance state depending on signal
conditions. What is more, the rather small resource
usage of the FPGA fabric means that there is much
potential to increase the system (e.g., adding of other
biosignals beyond BP and EKG, as well as anomaly
detection on the chip). Such hardware performance,
real-time features, and smart reconfiguration makes
this method a potentially advantageous solution to
next-generation edge-oriented healthcare systems,

especially during constant monitoring, remote
diagnosis, and emergency response situations. Work to
follow will aim at adding support for multi-channel and
multi-signal in this framework and supporting secure
wireless transmission modules as well as examining
usage of adaptive learning mechanisms to achieve long
term personalization in wearable medical devices.
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