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Abstract 
The electrocardiogram (ECG) classification is one of the key elements of 
the continuous cardiac monitoring systems, as through this measurement, 
cardiovascular disorders and arrhythmia could be diagnosed at an early stage. 
As the market demand of embedded portable, real-time, energy-efficient 
Healthcare-related applications and services such as health monitoring grows, 
traditional software based ECG processing methods usually using software 
with general-purpose processor or microcontroller platforms have severe 
constraints in real-time applicability, energy efficiency, and scalability. This 
paper proposes a reconfigurable computing system specifically to accomplish 
real-time ECG classification over Field-Programmable Gate Arrays (FPGAs) in 
Field-Programmable Gate Arrays (FPGA) presents an interesting alternative 
to a system based on traditional computing due to the capabilities of 
parallelism, dynamic adaptability, and low power draws. The designed system 
is organized on the basis of a lightweight 1D Convolutional Neural Network 
(CNN) structure of solution focused on the ECG signal processing. Using the 
high speed pipelined architecture and dynamic partial reconfiguration (DPR) of 
current generation FPGAs, the system dynamically reconfigures its hardware 
operating using the requirements at a specific time ensuring an efficient use 
of the resources and saving of energy. The architectural design is verified 
through the MIT-BIH Arrhythmia Database with a classification accuracy of 
98.7% nevertheless ensuring that latency of inference can still be less than 
1 millisecond thus proving the time-sensitive nature of this architecture. To 
overcome the throughput bottleneck caused by fixed-point hardware, CNN 
model is quantized to run on fixed-point logic platform and implemented 
into reconfigurable logic tiles. Experimental implementations demonstrate 
that FPGA-based system outperforms conventional embedded systems in 
time and energy efficiency, reducing power costs and inference time to a 
considerable extent. Moreover, the addition of DPR makes the architecture 
interchangeable between the high-accuracy or low-power setting, given the 
operational situation, making the architecture very suitable to wearable and 
edge healthcare devices. The case study used herein is just an illustration of 
the opportunities offered in reconfigurable computing to biomedical signal 
processing and pioneer work towards the future of FPGA-based intelligent 
health monitoring systems into multi-modal biosignals and edge-AI-based 
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acceleration of signal processing and machine learning 
applications, giving orders of magnitude improvement 
in throughput and latency. Moreover, recent FPGAs 
incorporate heterogeneous computing, including 
DSP slices in combination with BRAM and embedded 
ARM processors, to include close hardware-software 
integration of end-to-end biomedical signal processing 
systems.

We use a case study of the use of reconfigurable 
computing in real-time ECG classification in this 
paper. The suggested system is a hardware-optimized 
Convolutional Neural Network (CNN) based on one 
dimension applied with the FPGA of ECG signal 
classification of high accuracy and ultra-low latency 
levels. The pipelined path of data flow is used to 
send the signals constantly and a DPR is used to 
re-arrange computational blocks depending on 
functional properties, e.g. to switch between high-
performance and low-power operating mode. We use 
MIT-BIH Arrhythmia Database to train and validate our 

Introduction
The World Health Organization (WHO) found 
cardiovascular diseases (CVDs) as the causes of death 
which claim around 17.9 million lives each year and 
became the primary cause of mortality on the planet. 
The electrocardiogram (ECG) is the best known, non-
invasive method of investigating cardiac health that 
has been under development when compared with 
other types of diagnostic modalities. ECG records the 
electrical functioning concerning the heart, which 
helps in identifying the arrhythmias, myocardial 
infarctions, and any other life-threatening conditions. 
As the world swings to the preventive and real-time 
healthcare, portable, wearable, and edge-deployable 
electrocardiom functionalities of the ECG monitoring 
systems that can enable continuous and automated 
classification of cardiac rhythms undergo a larger 
demand.

Conventional ECG signal processing used offline 
processing of ECG signals with general purpose 
processors or microcontroller based systems, where 
data is processed sequentially and suffers high latency 
and low energy efficiency. Such constraints become a 
bottleneck to usage in energy-restricted settings such 
as wearable and embedded systems that should last 
long in monitoring health status. Besides, traditional 
systems cannot always comply with the rigour of 
real-time usage and on-the-fly flexible behaviour, in 
particular, in the presence of different physiological 
and environmental conditions.

Reconfigurable computing is especially promising, 
especially as done through Field-Programmable Gate 
Arrays (FPGAs), to address those challenges. FPGAs 
allow the parallel execution of tasks, real-time hardware 
reconfiguration due to dynamic partial reconfiguration 
(DPR), and the energy-efficient implementation of 
complicated processes. In contrast with fixed-function 
processors, FPGAs enable programmable hardware 

diagnosis. The findings highlight the importance of co-design between 
hardware and software that will allow effective, scalable, and accurate edge 
medical AI.
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Fig. 1: Block Diagram of FPGA-Based Real-Time ECG 
Classification Framework
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model and contrast its performance with traditional 
embedded systems in accuracy, latency, resource 
consumption as well as energy consumption.

The study advances the recently emerging 
domain of edge-based biomedical signal processing 
in that FPGAs, with the aid of efficient algorithmic 
mapping and reconfiguration approaches, are able 
to achieve the twin goals of high accuracy and low 
power dissipation. The results point at the possibility 
of using reconfigurable computing in intelligent, real-
time healthcare monitoring systems, particularly 
under resource-constrained and wearable contexts. 
The methods and architectural ideas proposed here 
can be applied to all other biosignals, including 
electroencephalograms (EEG), electromyograms 
(EMG), and photoplethysmograms (PPG), and therefore 
provide a basis to scale the bio-AI applications, which 
are low latency and highly adaptive.

Related Work
Within the last 20 years, a lot of progress was made 
in building hardware-accelerated biomedical signal 
processing technologies, especially real-time ECG 
analysis. Early implementations mostly concentrated on 
custom digital signal processor (DSP) implementations 
to implement specific feature extraction tasks. As an 
example, Liu et al.[1] published a solution entitled 
ECG feature extraction with the help of wavelets 
and FPGA that used the technique to speed up signal 
decomposition and denoisation. In the same vein, 
Al-Sarawi and Abbott+ implemented a mechanism of 
QRS complex detection on finite state machine (FSM) 
architecture design to be used in low-latency response 
and real-time performance in cardiac monitoring on 
FPGA environments.

As machine learning has increasingly entered the 
medical domain in diagnosing medicine, scholars have 
also incorporated the learning models to automatically 
classify the ECG signals. A convolutional neural network 
(CNN) ECG classification system proposed by Acharya et 
al.[3] produced a good level of diagnostic performance. 
Nevertheless, they had been restricted to software 
applications (CPU/GPU) only, thus hindering their use 
in edge or embedded systems because of wastefulness 
of resources and energy. Additionally, software-based 
classifiers do not include the deterministic timing and 
real-time assure used in life-critical applications.

Dynamic parts use: Dynamic reconfigurable 
computing has become a potentially important 
adaption direction in biomedical signal processing. 
Wang and Yu [4] illustrated the usefulness of DPR in 
rewriting the filter coefficients as well as processing 
pipelines on fly without terminating the primary ECG 
monitoring process. Their work was however limited 
to adaptive filtering and not to the deep learning-
based classification.

Unlike the earlier works, the research described 
in this paper brings all three important issues (deep 
learning, hardware acceleration, and reconfigurable 
computing) together by using them in a unified 
framework of the real-time ECG classification. 
The combination of the lightweight 1D-CNN model 
FPGA implementation with DPR provides a dynamic 
adaptable manner to perform ECG analytics with high 
accuracy, low latency, and low energy consumption on 
edge devices. This will allow to bridge the tradeoff 
that exists between signal processing fidelity and the 
deployed embedded platform feasibility that may be 
one of the prior challenges in the present biomedical 
hardware systems.

System Architecture

Overview
It is proposed that the architecture of such a system 
would end up performing real-time electrocardiogram 
(ECG) classification with the benefits being obtained 
by using the parallel and reconfigurable nature of the 
Xilinx Zynq-7000 FPGA platform. The pipeline stages 
of processing consist of four fundamental functional 
blocks: signal acquisition, the preprocessing block, 
the feature extraction and classification block, and 
the dynamic partial reconfiguration (DPR) control 
block. The ECG signals are first carried in an analog-
to-digital converter (ADC) interface where the analog 
cardiac waveforms that are detected in the wearable 
sensors are converted into digital data and streamed 
to the FPGA fabric. The digitized signals are next pre-
processed comprising of band pass filtering into baseline 
drift and high-frequency noise, and normalization to 
accommodate the signals to a location in an ideal 
range to be operated on by the time subsequent 
stages. This guarantees the clean, consistent input of 
the neural network stage. At the third step task, a one-
dimensional convolutional neural network (1D-CNN) 
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is utilized either in hardware or software to extract 
features and classify them. CNN model is specially 
optimized, specifically focusing on the features of 
the ECG signals and also mapped onto the FPGA using 
high-level synthesis and fixed-point quantization that 
reduces resource utilization and power consumption. 
The architecture is pipelined so that it can perform 
streaming execution and therefore achieve the low-
latency inference without the need to have extensive 
memory buffers. The last brings in a DPR controller 
that grants hardware modules being reconfigured on-
the-fly without the system going to a halt. This can 
be used to make adaptive switches between various 
processing modes e.g. high-accuracy classification 
when detecting abnormal rhythms, and low-power 
operation when in normal sinus rhythm. The system 
provides optimal tradeoffs in performance, energy 
efficiency and the functionality flexibility with the 
dynamic adjustment of the hardware logic, depending 
on the input context and application requirements. In 
general, this modular and reconfigurable architecture 
will be helpful in real-time signal processing of the 
biomedical domain, specifically in wearable and 
edge health-monitoring solutions since, in these 
applications, both performance and flexibility are the 
most significant factors.

Fig. 2: FPGA-Based Real-Time ECG Classification  
System Architecture

1D-CNN Model
The main part of ECG classification framework is a 
simple one-dimensional convolutional neural network 
(1D-CNN) designed and optimized to run on hardware 
(FPGA). The model is fed with a fixed-length window 
of the signal of ECGs indicating 256 samples, depicting 
a brief window around one of the peaks of the cardiac 
signal R-peak. The input of this windowed model 
shifts the attention of the model to a local temporal 
feature so important in classifying between the 

various classes of arrhythmia. The first layer of the 
model is a Conv1D layer and consists of 32 filters with 
a kernel of size 5 which slides in the temporal axis of 
the signal to identify the local feature of the signal 
e.g. QRS complex, P wave, T wave. ReLU activation is 
used to provide non-linearity and maximize the model 
capacity of detecting a complex pattern in the ECG 
waveform. This is followed by a MaxPooling1D layer 
with pool size of 2 which down samples feature maps 
thus saves computational burden as well as offers the 
translational invariance to the model. The result of 
pooling is flattened, and it is sent to a dense layer 
with 64 units; it is fully connected and is utilized to 
integrate and interpret the learned spatial features 
earlier. ReLU is once more used to keep the non-
linearity. Lastly, a softmax output layer composed 
of 5 neurons is added, where 1 neuron corresponds 
to each of the identified classes of the arrhythmias 
that were found in MIT-BIH Arrhythmia Database, 
including normal sinus rhythm, atrial premature 
contraction, ventricular ectopic beat, and so on. 
The utilization of Softmax allows the probabilistic 
classification, according to which the predicted output 
is a class that has the highest confidence score. Such 
architecture can be called balanced in terms of model 

Fig. 3: Architecture of the Lightweight 1D-CNN  
for ECG Classification
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complexity and hardware efficiency, which makes it 
very appropriate to be used in real-time, on resource-
limited reconfigurable hardware such as FPGAs.

Reconfigurable Logic Blocks
In the proposed system, core computational steps like 
convolution, activation, pooling, and fully connected 
layers are implemented/mapped on specialized 
reconfigurable logic blocks in the FPGA fabric that 
allow very efficient and flexible execution of the 
ECG classification pipeline. These parameterized 
high-level synthesis (HLS) designed hardware blocks 
are optimized on fixed-point arithmetic to minimize 
logic usages and the power consumption. These 
logic blocks are dynamically changeable during 
run-time when utilizing the partial reconfiguration 
(DPR) feature that is available on the FPGA meaning 
overall system operation is not disrupted even as 
the logic block itself is altered. As an example, 
based on the context of the detected signal (i.e., a 
transition between a low-risk normal rhythm and a 
potentially dangerous arrhythmic event, the system 
may re-configure the convolutional module and use 
a deeper variant of CNN to achieve better accuracy 
but more energy-intensive system, or use a simpler 
one to become more energy-efficient. Since this is a 
run-time flexible system, it is optimised to optimise 
classification and hardware resource limitations and 
thus can be used on a wearable device or a device 
with a long battery life. Moreover, the reconfigurable 
blocks are developed as the modular IP cores using 
interfaces with a standard layer, thus they can be 
easily integrated into the dataflow architecture of the 
system. These blocks are then saved as pre compiled 
configuration bitstreams which the DPR controller can 
load into the FPGA as and when needed. This is not 
only an architectural design enabling hardware-level 
switching of algorithms, but also enables an ability 
to update the neural network model (or upgrade it) 
in the future without necessarily redeploying the 
entire system. On the whole, reconfigurability of 
logic fabric offers a degree of hardware flexibility 
and computational efficiency that is hard to recreate 
using standard fixed-functions microcontrollers or 
general purpose processors and further cements the 
utility of an FPGA platform when performing edge 
biomedical signal processing.

Fig. 4: Dynamic Partial Reconfiguration of Logic Blocks 
for Adaptive CNN Execution

Methodology

Dataset and Preprocessing
Database: MIT-BIH Arrhythmia Database
Among the most popular and authoritative data sets to 
study ECG classification and detection of arrhythmias, 
there is the MIT-BIH Arrhythmia Database published 
by PhysioNet. It consists of 48 half-hour recordings 
that received 47 respondents who were inpatients 
and outpatients. All ECGs were acquired at a sample 
rate of 360 Hz with 11-bit resolution in the range of 
10 mV with high-fidelity waveform data that can be 
useful both in signal processing applications as well 
as in machine learning. The database contains the 
descriptions of the beats and the beat nature by the 
expert cardiologists and this includes the specifications 
of whether to be at that time, or what kind of beat it 
is (normal beat: N, premature ventricular contraction 
beat: V, atrial premature beat: A and others). Such 
labels allow controlled training and testing of models 
of classification. In the present research, we have 
used a sample of five main categories of heartbeat 
according to AAMI (Association of Advancement of 
Medical Instrumentation) standardization to relallow 
consistency to clinical relevance and benchmarking. 
The dataset was sub-divided into training and testing 
sets through patient-wise separation to prevent data 
leakage to have realism in the assessment of model 
generalization to previously unseen subjects.

Techniques of Preprocessing
A complex preprocessing pipeline was used in order 
to guarantee the quality and consistency of the ECG 
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signals to be processed and fed into the classification 
model. The first was to use a fixed frequency of 360 
Hz in order to resample all ECG signals in order to be 
uniform within the entire sample and to accentuate 
the native sampling rate. Then, the ECGs recorded 
continuously were cut into overlapping windows 
of 256 samples which is about 0.7 seconds of signal 
length and this was adequate data to record complete 
cardiac cycle comprising of PQRST wave mould. 
To remove baseline wander that usually arises as 
a result of respiration or movement of the patient, 
a high-pass infinite impulse response (IIR) filter was 
used to remove the effect of baseline wander with a 
cutoff frequency set at 0.5 Hz. Further, low-pass IIR 
filter with a cut off of 40 Hz was applied to suppress 
high-frequency noise and power line interference. To 
normalise the scale of the amplitude and enhance the 
convergence of the CNN model signals were filtered 
and adjusted to zero mean and unit variance. The 
benefits of this preprocessor pipeline are that it 
improves signal quality, gives temporally consistent 
ECGs and that it preprocesses the windows of the ECGs 
to support simple hardware-based feature extraction 
and classification.

Fig. 5: ECG Preprocessing Pipeline and Dataset Flow

Hardware Implementation
Optimization and FPGA Design
And the synthesized ECG classification architecture 
was based on the Zynq-7000 SoC integrated system 
platform, including an ARM Cortex-A9 processor with 
programmable logic set, used Xilinx Vivado 2022.2 to be 
developed. To describe a 1D-CNN in hardware efficiently 
and quickly, the deep learning model was constructed 
to work with High-Level Synthesis (HLS) that can 
create an efficient and rapid hardware implementation 
of the C/C++ code. This made iterating designs and 
developing a mixture of convolutional and dense layer 
components simpler and in a modular manner. In order 
to achieve efficient resource utilization and latency 
schedules of inferences, the CNN model weights 
were quantized with 32-bit floating representation 
to 8-bit fixed-point with a memory footprint of about 
86 PBits (g0,g1) and DSP slices reduced to a few, yet 
exceeding 98% classification accuracy was observed. 
To facilitate parallel data access and high-throughput 
addressing small loops were unrolled and dual-
port BRAMs were used to pipeline the convolutional 
layers. The intermediate data buffers and line buffers 
also employed the concept of spatial locality; they 
ensured fewer network access to the memory given 
redundant access. Also, there were developed custom 
RTL blocks as an activation and Softmax computation, 
where the timer closure was performed together 
with the HLS parts to minimize timing overhead. 
The design was capable of real time classification in 
an environment with latency in the sub millisecond 
range, demonstrating that it can be applicable to 
stream-based biomedical signal streams.

Strategy of Dynamic Partial Reconfigu-
ration
The architecture includes the Dynamic Partial 
Reconfiguration (DPR) to incorporate adaptability 
and energy efficient across different operating 
environments. Certain areas in the FPGA were 
designated as Reconfigurable Partitions (RPs) that 
could be updated at runtime, and did not freeze rest of 
the system. Such partitions contained computationally 
equivalent yet resource-dissimilar instances of a CNN 
module e.g. a low-power instance of a kernel that 
identified normal rhythm and a high-accuracy instance 
of a kernel that identified suspected arrhythmic 
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sections. The static part of the FPGA also contains 
the logic reconfiguration decision, which is (statically) 
implemented based on signal-quality metrics or 
confidence-level thresholds on the classification. 
When the DPR controller detects an abnormal pattern, 
it starts to load a more complex CNN bitstream to the 
RP to provide greater robustness of the classification. 
On the other hand, when the power capacity is limited 
due to energy restricted modes or the occurrence 
of regular activity of the ECG, the simpler model is 
returned. Each CNN configuration has its precompiled 
partial bitstreams stored in on board flash memory and 
transferred onto the configuration memory through 
the PCAP interface. The modular DPR method supports 
real-time responsiveness of the system combined 
with energy-awareness essential in the wearable 
and portable applications in biomedicine. A fact that 
proves the feasibility of establishing reconfigurable 
intelligence on edge health monitoring platforms that 
are resource limited is the deployment of the DPR.

Fig. 6: FPGA-Based Hardware Architecture with Dynamic 
Partial Reconfiguration for ECG Classification

Evaluation Metrics
When examining the performance and effectiveness 
of the suggested FPGA-based ECG classification 
platform, a wide range of evaluation measures is 
used to comprehensively evaluate the project, which 
include both the accuracy of the algorithm and low-
level efficiency. All these metrics can be seen as an 
indication of clinical reliability, real-time performance 
response, as well as appropriateness in design to be 
used in embedded and wearable products.

The main measures to use when determining the 
diagnostic performance of the 1D-CNN classifier are 
Accuracy, Sensitivity, and Specificity.

•	 Accuracy describes the general correctness 
of the classification and determines as a quo-
tient, where the correctly predicted heart-
beat classes are divided by the total number 
of the input samples.

•	 Sensitivity (also is called recall or true posi-
tive rate) measures how well the system can 
recognize pathological conditions (e.g., ar-
rhythmic beats) and it is essential to reduce 
false negatives in the clinical environment.

•	 Specificity checks how sensitive the system is 
to normal rhythms and false negative issues 
by giving results that are trust worthy in being 
diagnoses. All these measures are computed 
per class and averaged so as to arrive at the 
overall reliability of a model when dealing 
with different categories of heartbeats.

A point of critical importance to real-time operation 
is the latency, which is the amount of time it takes 
the system to do an inference on one segment of the 
ECG (generally a 256-sample window). The latency of 
this implementation takes the measurements of how 
long until the window that is fed into the FPGA to the 
results of the prediction of the time of the output of 
the classes. Sub-millisecond latency makes any high 
frequency ECG monitoring application compatible and 
enables early clinical intervention.

Resource Utilization measures the proportion of 
Look-Up Tables (LUTs), Flip-Flops (FFs), Block RAMs 
(BRAMs) and Digital Signal Processing (DSP) slice 
used on the FPGA. These are indicators of hardwares 
footprint and scalability of the design. Efficient use 
of resources is a requirement that must be met so as 
to accommodate another functionality, especially in 
embedded System-on-Chip (SoC) platforms and this 
may either be in the form of wireless transmission or 
even multi-signal monitoring.

Energy Consumption per Inference is determined 
with the on board power measurement tools and 
indicates the amount of energy (in microjoules) 
needed to perform a single ECG window. In wearable 
technology and battery-powered technology, this is 
a vital measure since extended uptime is important 
depending on the amount of energy consumed per 
inference. This proposed architecture uses fixed-point 
arithmetic, pipelining, and dynamic reconfiguration to 
realize substantial reductions in energy consumption 
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much more than the traditional processor based 
variations.

The combination of these””” indicators gives a 
detailed picture of clinical feasibility, live execution 
opportunities, and fixed permissibility of the system, 
which further serves to support the benefits of 
reconfigurable computing in edge-based enactments 
of biomedical signal processing.

Fig. 7: FPGA Resource Utilization Breakdown

Results and Discussion
By testing the presented FPGA-based real-time ECG 
classification system in terms of its operational 
performance, two standard embedded systems, 
such as the ARM Cortex-A9 firm and the STM32 
microcontroller (MCU) were used to benchmark the 
work. FPGA implementation obtained classification 
accuracy of 98.7% as indicated in Table 1, which is 
a bit better compared to ARM-based system (98.2%) 
and much better than the STM32 MCU (96.3%). Such 
high accuracy of classification is described by the 
implementation of the 1D-CNN model that is optimized 
in the hardware, which makes it possible to keep high 
fidelity of signal features due to efficient streaming 
and computation with low-latency. Moreover, the 
deterministic performance of the FPGA conforms to 
very little variability of timing and performance in 
contrast to software-based systems that are prone 
to OS overheads and interrupt latency. The enhanced 
accuracy also highlights the fact that the preprocessing 
pipeline and quantized CNN architecture, maintains 
most of the important ECG waveforms features, 
despite the fixed-point conversion.

Latency analysis also points out the advantage 
of real-time implementation of the FPGA. Proposed 
system shows an inference latency of 0.93 ms that 
is well beyond 5x the upstream ARM Cortex-A9 (5.4 
ms) and 10x the downstream STM32 MCU (9.8 ms). 
This sub-millisecond latency is critical towards real-
time ECG monitoring and detection of arrhythmia 
with promptness across edge and wearable systems. 
The low latency is realized by pipelined data paths 
and parallel execution of CNN layers which enables to 
process the new windows of ECG continuously without 
jittering during buffering. This responsiveness is a 
necessity in case of life critical applications such as 
continuous telemetry heart examples and emergency 
alert systems. Moreover, the integration of a dynamic 
partial reconfiguration (DPR) enables the system to 
dynamically customise its classification pipeline - at 
runtime - swapping a low-power and a more accuracy 
CNN kernel with the current situation, e.g. based on a 
sudden heart rate variability or suspected arrhythmia.

Fig. 8: Performance Comparison across Platforms

On the hardware performance, FPGA implemen-
tation performs significantly better both in terms of 
power efficiency and energy per inference. The FPGA 
system only draws power of 112 mW; an almost 3.8 
times reduction compared to the ARM Cortex-A9 (430 
mW) and over 2 times less than STM32 MCU (250 mW), 
this system executes significantly faster. Its energy per 
inference is as low as 104.2 106, almost 22 times less 
energy per inference than ARM, and almost 23.5 less 
energy than MCU, confirming that reconfigurable logic 
is energy-efficient when used in biomedical AI work-
loads. Besides, the physical resource consumption on 
the FPGA fabric is reasonable-a quarter of all LUTs, 30% 
of BRAM and 45% of DSP slices-there is future poten-
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tial to expand it fully (e.g., multi-channel processing 
ECG, or incorporating other biosignal) when more re-
sources are needed. On the whole, these findings show 
that the suggested reconfigurable computing frame-
work not merely satisfies but outsmarts the demands 
of real-time, energy-conservation of edge-proximate 
health monitoring, and makes it a profoundly versa-
tile and deliverable option designed to affect next-gen 
wearable biomedical devices.

Table 1: Performance Metrics Comparison

Metric
FPGA 

System
ARM Cor-
tex-A9 STM32 MCU

Accuracy (%) 98.7 98.2 96.3

Latency (ms) 0.93 5.4 9.8

Power (mW) 112 430 250

Energy per Infer-
ence (ÂµJ)

104.2 2322 2450

Conclusion

This study thus proves that reconfigurable computing 
is effective in accelerating real-time biomedical signal 
processing by its design and implementation of FPGA 
based ECG classification system employing a lightweight 
1D-CNN accelerator. The indicated strategy of mapping 
the most important processing steps in signal processing 
to logic blocks that can be reconfigured and dynamic 
partial reconfiguration (DPR) can provide the system 
with an attractive tradeoff between high accuracy of 
classification (98.7%), ultra-low latency (0.93 ms), and 
exceedingly low power consumption (104.2 mJ per 
inference) which are the most relevant performance 
metrics in wearable and embedded health-monitoring 
apparatus. Modular and pipeline architecture of the 
architecture is not only responsive in real-time but 
also makes the system adaptable depending on the 
situation, that is, it can dynamically go into low-
power and high performance state depending on signal 
conditions. What is more, the rather small resource 
usage of the FPGA fabric means that there is much 
potential to increase the system (e.g., adding of other 
biosignals beyond BP and EKG, as well as anomaly 
detection on the chip). Such hardware performance, 
real-time features, and smart reconfiguration makes 
this method a potentially advantageous solution to 
next-generation edge-oriented healthcare systems, 

especially during constant monitoring, remote 
diagnosis, and emergency response situations. Work to 
follow will aim at adding support for multi-channel and 
multi-signal in this framework and supporting secure 
wireless transmission modules as well as examining 
usage of adaptive learning mechanisms to achieve long 
term personalization in wearable medical devices.
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