SCCTS Transaction:

- - n:
|\ onReconfigurable

=== Computing

SCCTS Transactions on Reconfigurable Computing, ISSN: 3049-1533 Vol. 3, No. 2, 2026 (pp. 49-55)
RESEARCH ARTICLE

ECEJOURNALS.IN

High-Level Synthesis-Driven Hardware/Software
Co-Design for Reconfigurable Embedded Al Accelerators

Shaik Sadulla'™, K P Uvarajan®

!Department of Electronics and Communication Engineering, KKR & KSR Institute of Technology and Sciences,

Vinjanampadu, Guntur, Andhra Pradesh, India.

’Department of Electronics and Communication Engineering, KSR College of Engineering, Tiruchengode.

Keywords:

High-Level Synthesis (HLS),
Hardware/Software Co-Design,
Reconfigurable Computing,
FPGA,

Embedded Al,

Edge Intelligence,

Al Accelerators,

Energy Efficiency

Author’s Email:
sadulla09@gmail.com
Uvarajan@ksrce.ac.in

DOI: 10.31838/RCC/03.02.06

Received : 07.01.2026
Revised :12.03.2026
Accepted : 08.05.2026

INTRODUCTION

With the growing combination of artificial intelligence
(Al) with edge computing and embedded platforms,
pressure has mounted to develop hardware developed
to offer both high computational throughput and low

ABSTRACT

High performance and low energy consumption computing devices are
necessitated by the increasing global demand of embedded incorporated
artificial intelligence (Al) for edge and low power devices. A reconfigurable
computing architecture has desirable properties with much interest in using
field-programmable gate arrays (FPGA), which support flexible architecture
to allow faster processing of Al workloads. Nevertheless, the complexity and
time limits are the problems of a traditional RTL-based development that
stands in the way of rapid deployment. The paper suggests a streamlined
high-level synthesis (HLS) driven hardware / software co-design approach
to the design of reconfigurable Al accelerators in the context of embedded
platforms. We use HLS tools to synthesize hardware automatically using high-
level descriptions and also using performance-guided partitioning functionality
to distribute the computations to use both hardware and software. In this
paper, we realize and assess Al models, e.g. convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) on FPGA-based system-on-
chip platforms. It is experimentally shown that the proposed architecture
can provide a 5.2-fold speedup with 3.8-fold energy savings on a par with
typical CPU-only systems with very little sacrifice in the model accuracy.
The suggested framework delivers the potential to offer scalable, effective,
and fast producing of Al applications in resource-scarce settings, helping to
both prototype and roll out real-time edge cognizance. The work can express
the future of HLS-guided co-design as a way to reduce the complexity of
development and yet provide substantial performance and energy gains
within embedded Al systems.

How to cite this article: Sadulla S, Uvarajan K P (2026). High-Level Synthesis-
Driven Hardware/Software Co-Design for Reconfigurable Embedded Al
Accelerators. SCCTS Transactions on Reconfigurable Computing, Vol. 3,
No. 2, 2026, 49-55

energy consumption. Examples of applications include
real-time object detectors, speech recognition, and
predictive maintenance, which utilize Al models:
specifically convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) models,
which are computationally and memory demanding.

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 49

Shaik Sadulla and K P Uvarajan : High-Level Synthesis-Driven Hardware/Software Co-Design for
Reconfigurable Embedded Al Accelerators

The performance and energy efficiency demands of
these resource-constrained environments is usually
not met by the traditional general-purpose processors.
The reconfigurable computing platform in the form of
field-programmable gate arrays (FPGAs) has proven
to offer a viable solution to the above-mentioned
issues, since it has the benefit of being architecturally
flexible, paralleled and customizable in nature. They
permit the insertion of domain-specific accelerators,
specific to individual Al loads and deliver significant
performance benefits in terms of throughput and
power efficiency. Nevertheless, the architecture and
compilation of such accelerators in register-transfer
level (RTL) form describe complex time-consuming

development procedures that slow down fast
prototyping and execution.
High-Level Synthesis (HLS) provides an even

higher level of abstraction in that the hardware
designers are free to specify functionality with high-
level programming languages (C/C++ or SystemC).
The design cycle is then speeded up and productivity
increased as HLS tools automatically generate
synthesizable RTL. Combined with a hardware/
software (HW/SW) co-design approach HLS enables an
efficient partitioning of Al workloads where compute-
intensive functions are ported to reconfigurable logic
and tasks that require software control are left as
software. Although the state of the art has improved
over the past, current literature tends to miss a
generic framework on handling HLS-driven co-design
that tackles the issues of performance optimization,
hardware/software division, and hardware utilization
in embedded Al applications in a systematic way. In
addition, there is little research on running full-
fledged Al flow, including inference of CNNs and RNN,
on embedded FPGAs with HLS tools and automated co-
design flows.

In the present paper, we have tried to bridge this
gap, as described in the co-design approach explored
in this paper. These are our contributions:

e A custom accelerator generation design flow
with an HLS kernels representation of Al;

e The HW/SW partitioning plan is performance
driven;

e Benchmark Al model experimental assessment
on FPGA system-on-chip (SoC) running plat-
forms.

We show that the development time of our
methodology is significantly less than the conventional
one but attains the performance up to 5.2x speedup and
energy savings of 3.8x compared to the conventional
CPU based execution. This paper gives us a feasible
roadmap to having efficient and flexible Al that fits in
the edge.

Recent appropriate effort has started on HLS to
allow Al acceleration on reconfigurable platforms,
usuallyinisolation, lacking a full co-design environment
.1 Qur work superiorizes and advances the above
efforts to cover end to end HW/SW integration of
embedded applications.

BAckGROUND AND RELATED WORK

Embedded AI Workloads

Popular edge devices employing embedded Al
workloads are convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and transformers
to support real-time image classification, natural
language processing and sensor data aggregation. Such
models are based on a lot of matrix multiplications and
convolution, and sequential processing of data, which
requires high throughput and memory bandwidth. But
the limitations on the energy budget, the computer
cache size as well as the thermal constraints of the
embedded systems present serious challenges in
efficiently executing programs on these systems.[" 2

Reconfigurable Computing Platforms
Reconfigurable computing, especially through field-
programmable gate arrays (FPGAs) can be viewed as an
efficient method toward addressing the computational
needs of Al in an embedded context (in terms of
performance and energy). In modern FPGAs, there
are heterogeneous components like DSP slices, block
RAMs, AXI interconnects and embedded soft/hard
processor cores (e.g., ARM Cortex-A53 on Xilinx Zynqg
UltraScale+ MPSoC). These allow developers to use
custom high-performance hardware accelerators to
take over compute-intensive Al workloads, reserving
control flow to software, yielding an ideal trade-off
between performance and versatility.?

High-Level Synthesis Tools
High-Level Synthesis (HLS) tools allow the automatic
conversion of high-level C/C++ or SystemC to register-

50 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Shaik Sadulla and K P Uvarajan : High-Level Synthesis-Driven Hardware/Software Co-Design for
Reconfigurable Embedded Al Accelerators

transfer level (RTL) hardware level description, FPGA-
based accelerators are developed much more easily
with the help of HLS tools. Libraries like Xilinx Vitis
HLS™ and Intel HLS Compiler,® or academic tools
such as LegUp!® enable the system designer to rapidly
prototype in hardware components in minutes for
design space exploration by loop pipelining, loop
unrolling, and bit-width relaxation and optimization.
They have attracted growing interest in applying
Al inference acceleration with FPGAs, where the
parallelism of repetitive and structured operations has
mass appeal.

HW/SW Co-Design in Al

Hardware/software (HW/SW) co-design can be an
important tool to partition a embedded Al workload
between software processors and programmable logic.
The latest papers explored how tomap the intermediate
layers of deep learning/operations to FPGA-based
accelerators, leaving control/preprocessing on
embedded CPUs.! Nonetheless, the current methods
are primarily based on manual partitioning or even
relying on fixed accelerator templates and do not have
a well-defined process that employs HLS automation
to make the deployment efficient and scalable.
Moreover, the combination of various Al models, such
as RNNs or attention-based transformers is optimally
able only to a certain extent, since data dependencies
are irregular and data can only be synchronized in
isolated dimensions.

Research Gaps and Motivation
Although the HLS tools have the potential capabilities
of hardware acceleration, there is no unified and
standard process of co-design with a complete
integration of HLS and related embedded Al pipeline.
In particular, difficulties are outlined in:

e Automating HW/SW partitioning by means of
performance and resource limits;

o Issues of data transfer, across heterogeneous
components;

« Enabling different Al architectures with differ-
ent computation profile.

This paper overcomes these difficulties by suggesting
a unified, HLS-based HW/SW co-design infrastructure
on embedded reconfigurables which are demonstrated
by Al workload deployments on actual infrastructure.

Proprosep HLS-DRriveN Co-DEsIGN
METHODOLOGY

In order to meet the increasing complexity and the
performance requirement of embedded Al workloads,
we are building a high-level synthesis (HLS)-based
hardware/software (HW/SW) co-design technique
of reconfigurable systems. This approach continues
to advance the previous work to fill the algorithm-
hardware gap in terms of allowing automatic
generation of hardware and systematically performing
workload partitioning between processing cores and
programmable logic. The suggested flow guarantees
the high speed of prototyping, scalability of design,
and optimal utilization of hardware to deploy it on
low-capacity embedded systems.

Design Flow Overview

The suggested method in co-design involves five main
steps, and it is demonstrated in Fig. 1. HLS-Based
Framework Hardware/Software Co-Design- Based
Reconfigurable Embedded Al Accelerator. The following
stages can be identified: (a) Model Definition, during
which Al models are defined in higher-level frameworks;
(b) Code Translation, where a small but important
computational kernels are translated to a compatible
HLS language; (c) Hardware Generation done through
commercial HLS tools; (d) Partitioning of the workloads
in hardware and software due to performance profiling;
and (e) System Integration, the final deployment of the
product on the FPGA SoC platforms.

Model Definition:

Such high-level machine learning frameworks as
TensorFlow Lite, PyTorch, or ONNX are first used to
define and train Al models. These frameworks allow
the quick estimation of CNNs, RNN or attention-based
models with pre-trained weights. At this stage also
quantization and pruning can be used to optimize
models deployment in an edge.

Code Translation:

The Al model is compiled with the extraction of
computation intensive kernels (e.g. convolution,
matrix multiplication, activation functions) and
reimplemented in HLS-compatible C/C++ or SystemC.
The translation tries to preserve the dataflow nature
in translating the code towards hardware translation.

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 51

Shaik Sadulla and K P Uvarajan : High-Level Synthesis-Driven Hardware/Software Co-Design for
Reconfigurable Embedded Al Accelerators

Hardware Generation

The translated kernels are translated using HLS tools
(e.g. Xilinx Vitis HLS, Intel HLS Compiler or LegUp)
to synthesize them to register-transfer level (RTL)
modules. Cycle-accurate performance estimation,
area utilization indicators and latency/power models
leading to later design decisions can also be obtained
with such tools.

Partitioning:

The partitioning strategy used is profiling-based
HW/SW partitioning in order to decide which
operations are taken to the programmable logic and
which operations stayed in the processor world. To
determine acceleration candidates, metrics like the
time that a kernel takes to execute, bandwidth needs
of a kernel and data dependency graphs are used.
The purpose of the partitioning process is to achieve
optimum performance and minimal overhead of
communications.

System Integration:

The generated hardware components are disparate
to FPGA system-on-chip (SoC) systems via platforms-
level instruments, as Xilinx Vitis, Intel OpenCL SDK, or
SDSoC. This phase will include building runtime, device
driver, DMA interface and software APIs around which
communication can be established with host processor
and custom accelerators. End result bit streams get
implemented into SoCs like Xilinx Zyng UltraScale+
MPSoC or Intel Arria 10.

Optimization Techniques

In order to optimize resources and performance,
a number of HLS-specific design optimizations are
deployed during hardware generation as depicted
in Fig. 2. HLS-Specific Optimization Techniques for
Optimizing Efficient Al Accelerator. These are loop
pipelining and unrolling, partitioning into arrays,
reuse of data with the use of double buffering and bit-
width optimization.

Loop Pipelining and Unrolling:

Loop pipelining is a technique which allows some of
the succeeding operation iterations to overlap so that
full throughput is achieved within deeply nested loops.
Operation unrolling replicates operations on many

Model Definition
Al models are defined and trained
using high-level machine learriing
frameworks such as Tensollow Lite,
PyTorch, or ONNX, Quantiza-
tion and pruning may also

v

Code Translation
Computation-intensive kernels
(e.g.rewritten in HLS-compi-
tible C/C++ or SystemC

!

Hardware Generation
Using HLS tools such Xilinx Vitis
HLS, Intel HLS Compiler, or
LegUp

Partitioning
A profiling-based HW/SW
partitioning strategy

!

System Integration
Using palatform-level t tools such
Xilinx Vitls, Intel OpenCL SDK
or SDSoC

Fig. 1: HLS-Driven Hardware/Software Co-Design
Methodology for Reconfigurable Embedded Al
Accelerators

hardware units to leverage parallelism, especially of
Massively Parallel Al operations such as a dot product
or convolution case.

Array Partitioning:

Input/output arrays and weight buffers are distributed
over many memory banks on-chip to reduce memory
access bottlenecks. This enhances concurrency of
access, and lowers shared memory contention latency.

Data Reuse Buffers and Double Buffering:

To take advantage of spatial and temporal locality, on-
chip data reuse buffers are presented (line buffers or
window buffers). The overlapping of the stages of data
loading and computing increases uninterrupted data
processing because the techniques of double buffering
are used.

Bit-wWidth Optimization:

To reduce logic usage and enhance power efficiency,
yet still retain model accuracy, fixed-point arithmetic
and implementation-specific bit-width reduction

52 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Shaik Sadulla and K P Uvarajan : High-Level Synthesis-Driven Hardware/Software Co-Design for
Reconfigurable Embedded Al Accelerators

(e.g. INT8 or INT16) are used. Dynamic range analysis
of the Al kernel outputs direct precision scaling.

/ Loop Pipelining and \ / Array Partitioning \

Unrolling

Loop pipelining enables the
overlapping of successiveiterations
to achieve full throughput in

To overcome memory access
bottlenecks, input/output arrays ad
weight buffers are partitioned across
multiple on-chip memory banks.
deeply nested loops. Unrolling This improves access concurrency
replicates operations across and reduces latency associated
\multiple hardware units to exploit/ Qith shared memory contention /

/ Data Reuse Buffers \ / Bit-Width Optimization \
and Double Buffering Fixed-point arithmetic and
On-chip data reuse buffers (line customized bit-width reduction (e.g.
buffers or window buffers) are INT8 or INT16) are applied to reduce
introduced to exploit spatial and logic utilization and improve
temporal locality in convolution power efficiency without
operations. Double buffering compromising model accuracy.
Qachniques ensure continuous \

Fig: 2: HLS-Specific Optimization Techniques for Efficient
Al Accelerator Design

Summary:

The HLS-based co-design approach would not only
abstract away the complexity of the hardware
development but would also automate and optimize
the design of embedded Als accelerators as well. The
strategy allows the smooth integration of hardware/
software, custom performance, and scaling of the
deployment on the reconfigurable edge platform.

EXPERIMENTAL SETUP AND RESULTS

Setup

In order to test how effective the proposed hardware/
software co-design methodology based on HLS would
be, we have designed and experimented with several
embedded Al models on a reconfigurable computing
platform. The experimental condition is as under:

o Target Platform Xilinx Zynq UltraScale+ MPSoC
(ZCU104), which combines a quad-core ARM Cor-
tex-A53 processing system with programmable
logic (PL) in a way that allows flexible, hard-
ware/software partitioning and acceleration.
o Al Benchmarks: We choose three typical neu-
ral networks architecture:
= LeNet-5: A traditional convolutional neu-
ral network and handwritten digit recog-
nition task.

= MobileNetV2: A Mobile and embed-
ded-friendly, depthwise separable convo-
lutional model.

= LSTM: Neural network good to apply to a
sequence problem with real-time input
data.

» Metric of Evaluation:

= Latency (ms) - Total time for inference of
single input sample.

= Energy Consumption (J): It will be mea-
sured with on-board power monitors.

= LUT Utilization (%) ? How much of the
FPGA resources are used concerning Look-
Up Tables.

= Power Consumption (W) - sum system
power during lastname inference.

= Speedup: Performance-performance on an
ARM Cortex-A53 baseline software imple-
mentation.

m Energy Efficiency: Calculated as a ratio
between the reduction of energy con-
sumption compared with software-only
execution.

Results Summary

Table 1 points out the performance and energy
advantages of our HLS-based co-design methodology
to all Al workloads further illustrated in Fig. 3. HLS-
based embedded Al accelerators metrics: Performance
and Resource Utilization.

Table 1: Performance and Resource Metrics of HLS-Based
Embedded Al Accelerators

Speedup | Energy |LUT Utili-| Power
Model vs CPU Savings zation (W)
LeNet-5 |4.6x 3.2x 62% 3.4
Mobile- 5.2x 3.8x 81% 4.1
NetV2
LSTM 4.1 3.5x 75% 3.9

In our findings, we reveal that implementation of
the proposed HLS-directed method presents significant
enhancements with respect to execution frequency as
well as consumption in every single model that was
tested. The MobileNetV2 implementation by the way,
is especially advantaged by the loop unrolling and
data reuse stages, with the largest speedup (5.2x) and
energy reduction (3.8x) attributed to the especially
deepwise convolutions they parallelize.

The LeNet-5 model shows 4.6x speedup and a
moderate usage of the LUTs, which shows the efficiency

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 53

Shaik Sadulla and K P Uvarajan : High-Level Synthesis-Driven Hardware/Software Co-Design for
Reconfigurable Embedded Al Accelerators

Performance Metrics of HLS-Based Al Accelerators

Speedup vs CPU

Speedup (x)
N w E= w

—

o

Energy Savings

80

60

401

Utilization (%)

201

0

3.5
3.0
225
5
= 2.0
S
E]
T 15
=4
1.0
0.5
LeNet-5 MobileNetv2 LSTM 0.0 LeNet-5 MobileNetv2 LSTM
LUT Utilization Power Consumption
al
3l
=
@
22
o
a
i

LeNet-5 MobileNetV2 LSTM

]

LeNet-5 MobileNetV2 LSTM

Fig. 3. Performance and Resource Utilization Metrics of HLS-Based Embedded Al Accelerators

of the modules generated by HLS to resize small CNNs. In
the meantime, the LSTM model, despite implementing
a slightly slower speedup (4.1xB), demonstrates
potential of using framework with significant energy
gains on such sequential architectures.

These results validate that the HLS-based co-
design architecture allows scalability in performance
and power consumption in addition to assisting a wide
variety of Al response on FPGA SoCs. It also shows
that in practice it is possible to use reconfigurable
embedded Al accelerators on an energy-limited edge
system in real-time.

DiscussioN

The experimental evidence confirms the claim that
High-Level Synthesis (HLS) can enable the scalable
design of Artificial Intelligence (Al) kernels quickly
without consuming resources, and still accomplish
the soft wareability and programmability required
of embedded systems. The subject hardware
/ software co-design solution is an effective
compromise between computation and control with
the embedded processor hosting high-level control
and data preprocessing, as well as tasks with lower
performance/computational requirements, with the

design migrating performance-bound operations like
convolutions, matrix multiplication, and activation
functions to the programmable logic of the FPGA.
Such a partitioning strategy provides an increase in
overall system throughput and energy efficiency with
relatively little added complexity of development.

Further, the HLS-based flowing simplifies design
space exploration due to the abstracted performance
modeling of a design, making it possible to refine
its hardware modules iteratively without involving
manual RTL changes. Nevertheless, with all these
benefits; there are major challenges. At the top of the
list is the automation of optimal HW/SW partitioning,
now being largely driven by manual profiling and
expensively acquired domain expertise. Also, the
latency of communication and bandwidth between
the processing system and programmable logic may
become a bottleneck in some models and especially
those that rely on many memory accesses or time
dimension (such as RNNs or transformers). Such
restrictions point to a potential direction to more
intelligent partitioning algorithms, compiler-level
optimizations and dynamic reconfiguration support
in order to enhance the deployment of Al models in
resource-limited edge settings.

54 SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533

Shaik Sadulla and K P Uvarajan : High-Level Synthesis-Driven Hardware/Software Co-Design for
Reconfigurable Embedded Al Accelerators

ConcLusioN AND FuTurRe WORK

It outlines a fully equipped and top-to-bottom synthesis
(HLS)-driven hardware/software (HW/SW) co-design
flow that is well centered to execute Al inference tasks
in reconfigurable embedded systems efficiently. The
planned framework achieves a high degree of scalability
that enables the design to be developed significantly
faster as compared to human-oriented HLS tools due to
the underlying performance-driven HW/SW partitioning
strategy. Although this may sound counterintuitive, the
resulting design performance is essentially the same in
time, energy efficiency, and resource utilization. With
practical performance on an FPGA-based System-on-
Chip, experimental validation with benchmark neural
networks, LeNet-5, MobileNetV2, and LSTM, show
speedup of up to 5.2x and energy reduction of up to
3.8x over CPU-based only implementations.

Major contributions of this work can be considered
to be:

e Ascalable and modular HLS based design flow
allowing a wide range of Al models;

o Efficiently distributions and partitioning of
computational work loads;

e Incorporation of made hardware accelerators
into FPGA SoC ecosystems into real-time edges.

Although the framework provides encouraging
findings, still there are some points that are under
consideration and subject to further study and
development. Proposed future work is:

e Dynamic partial reconfiguration (DPR): pro-
viding the possibility of hardware reloading
on the fly in order to service multi-model and
multi-task Al applications;

e Learning-enabled HW/SW partitioning: the
exploitation of machine learning methods to
automate and optimize the design-space ex-
ploration and the workload mapping;

e Support of heterogeneous architecture: a
more flexible extension of the co-design
methodology would embrace systems com-
bining FPGAs with RISC-V cores, custom neural
processors, or GPUs accelerators.

On the whole, the suggested method provides a good
basis to establish energy-efficient, configurable, and
expandable to Al accelerators in the next-generation
embedded and edge computing system..

REFERENCES

1.

10.

1.

Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona,
A., Anderson, J. H., ... & Brown, S. (2011). LegUp: High-
level synthesis for FPGA-based processor/accelerator
systems. Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA),
33-36. https://doi.org/10.1145/1950413.1950423

Chen, Y., Krishna, T., Emer, J., & Sze, V. (2017). Eyeriss:
An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE Journal of Solid-
State Circuits, 52(1), 127-138. https://doi.org/10.1109/
JSSC.2016.2616357

Han, S., Mao, H., & Dally, W. J. (2016). Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and Huffman coding. In Proceedings
of the International Conference on Learning Represen-
tations (ICLR).

Nane, R., Pilato, C., Govindarajan, S., Choi, J., Canis,
A., Fort, B., ... & Anderson, J. H. (2016). A survey and
evaluation of FPGA high-level synthesis tools. [EEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10), 1591-1604. https://doi.
org/10.1109/TCAD.2015.2513673

Xilinx. (2023). Vitis high-level synthesis user guide
(UG1399 v2023.1). Retrieved from https://docs.xilinx.
com

Xu, X., Wang, Z., Zhang, J., & Li, C. (2023). Hardware-
software co-design of deep neural network accelerators
using high-level synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(2),
389-401. https://doi.org/10.1109/TCAD.2022.3198507
Velliangiri, A. (2025). Low-power loT node design for re-
mote sensor networks using deep sleep protocols. Na-
tional Journal of Electrical Electronics and Automation
Technologies, 1(1), 40-47.

Poornimadarshini, S. (2025). Robust audio signal en-
hancement using hybrid spectral-temporal deep learn-
ing models in noisy environments. National Journal of
Speech and Audio Processing, 1(1), 30-36.

Madhanraj. (2025). Unsupervised feature learning for ob-
ject detection in low-light surveillance footage. National
Journal of Signal and Image Processing, 1(1), 34-43.
Uvarajan, K. P. (2024). Smart antenna beamforming for
drone-to-ground RF communication in rural emergency
networks. National Journal of RF Circuits and Wireless
Systems, 1(2), 37-46.

Kabasa, B., Chikuni, E., Bates, M. P., & Zengeni, T. G. (2023).
Data Conversion: Realization of Code Converter Using Shift
Register Modules. Journal of VLSI Circuits and Systems, 5(1),
8-19. https://doi.org/10.31838/jvcs/05.01.02

SCCTS Transactions on Reconfigurable Computing | May - August | ISSN: 3049-1533 55

