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Abstract 
High performance and low energy consumption computing devices are 
necessitated by the increasing global demand of embedded incorporated 
artificial intelligence (AI) for edge and low power devices. A reconfigurable 
computing architecture has desirable properties with much interest in using 
field-programmable gate arrays (FPGA), which support flexible architecture 
to allow faster processing of AI workloads. Nevertheless, the complexity and 
time limits are the problems of a traditional RTL-based development that 
stands in the way of rapid deployment. The paper suggests a streamlined 
high-level synthesis (HLS) driven hardware / software co-design approach 
to the design of reconfigurable AI accelerators in the context of embedded 
platforms. We use HLS tools to synthesize hardware automatically using high-
level descriptions and also using performance-guided partitioning functionality 
to distribute the computations to use both hardware and software. In this 
paper, we realize and assess AI models, e.g. convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) on FPGA-based system-on-
chip platforms. It is experimentally shown that the proposed architecture 
can provide a 5.2-fold speedup with 3.8-fold energy savings on a par with 
typical CPU-only systems with very little sacrifice in the model accuracy. 
The suggested framework delivers the potential to offer scalable, effective, 
and fast producing of AI applications in resource-scarce settings, helping to 
both prototype and roll out real-time edge cognizance. The work can express 
the future of HLS-guided co-design as a way to reduce the complexity of 
development and yet provide substantial performance and energy gains 
within embedded AI systems.
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Introduction
With the growing combination of artificial intelligence 
(AI) with edge computing and embedded platforms, 
pressure has mounted to develop hardware developed 
to offer both high computational throughput and low 

energy consumption. Examples of applications include 
real-time object detectors, speech recognition, and 
predictive maintenance, which utilize AI models: 
specifically convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) models, 
which are computationally and memory demanding.  
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We show that the development time of our 
methodology is significantly less than the conventional 
one but attains the performance up to 5.2x speedup and 
energy savings of 3.8x compared to the conventional 
CPU based execution. This paper gives us a feasible 
roadmap to having efficient and flexible AI that fits in 
the edge.

Recent appropriate effort has started on HLS to 
allow AI acceleration on reconfigurable platforms, 
usually in isolation, lacking a full co-design environment 
.[1] Our work superiorizes and advances the above 
efforts to cover end to end HW/SW integration of 
embedded applications.

Background and Related Work

Embedded AI Workloads
Popular edge devices employing embedded AI 
workloads are convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and transformers 
to support real-time image classification, natural 
language processing and sensor data aggregation. Such 
models are based on a lot of matrix multiplications and 
convolution, and sequential processing of data, which 
requires high throughput and memory bandwidth. But 
the limitations on the energy budget, the computer 
cache size as well as the thermal constraints of the 
embedded systems present serious challenges in 
efficiently executing programs on these systems.[1, 2]

Reconfigurable Computing Platforms
Reconfigurable computing, especially through field-
programmable gate arrays (FPGAs) can be viewed as an 
efficient method toward addressing the computational 
needs of AI in an embedded context (in terms of 
performance and energy). In modern FPGAs, there 
are heterogeneous components like DSP slices, block 
RAMs, AXI interconnects and embedded soft/hard 
processor cores (e.g., ARM Cortex-A53 on Xilinx Zynq 
UltraScale+ MPSoC). These allow developers to use 
custom high-performance hardware accelerators to 
take over compute-intensive AI workloads, reserving 
control flow to software, yielding an ideal trade-off 
between performance and versatility.[3]

High-Level Synthesis Tools
High-Level Synthesis (HLS) tools allow the automatic 
conversion of high-level C/C++ or SystemC to register-

The performance and energy efficiency demands of 
these resource-constrained environments is usually 
not met by the traditional general-purpose processors. 
The reconfigurable computing platform in the form of 
field-programmable gate arrays (FPGAs) has proven 
to offer a viable solution to the above-mentioned 
issues, since it has the benefit of being architecturally 
flexible, paralleled and customizable in nature. They 
permit the insertion of domain-specific accelerators, 
specific to individual AI loads and deliver significant 
performance benefits in terms of throughput and 
power efficiency. Nevertheless, the architecture and 
compilation of such accelerators in register-transfer 
level (RTL) form describe complex time-consuming 
development procedures that slow down fast 
prototyping and execution.

High-Level Synthesis (HLS) provides an even 
higher level of abstraction in that the hardware 
designers are free to specify functionality with high-
level programming languages (C/C++ or SystemC). 
The design cycle is then speeded up and productivity 
increased as HLS tools automatically generate 
synthesizable RTL. Combined with a hardware/
software (HW/SW) co-design approach HLS enables an 
efficient partitioning of AI workloads where compute-
intensive functions are ported to reconfigurable logic 
and tasks that require software control are left as 
software. Although the state of the art has improved 
over the past, current literature tends to miss a 
generic framework on handling HLS-driven co-design 
that tackles the issues of performance optimization, 
hardware/software division, and hardware utilization 
in embedded AI applications in a systematic way. In 
addition, there is little research on running full-
fledged AI flow, including inference of CNNs and RNN, 
on embedded FPGAs with HLS tools and automated co-
design flows.

In the present paper, we have tried to bridge this 
gap, as described in the co-design approach explored 
in this paper. These are our contributions:

•	 A custom accelerator generation design flow 
with an HLS kernels representation of AI;

•	 The HW/SW partitioning plan is performance 
driven;

•	 Benchmark AI model experimental assessment 
on FPGA system-on-chip (SoC) running plat-
forms.
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transfer level (RTL) hardware level description, FPGA-
based accelerators are developed much more easily 
with the help of HLS tools. Libraries like Xilinx Vitis 
HLS[4] and Intel HLS Compiler,[5] or academic tools 
such as LegUp[6] enable the system designer to rapidly 
prototype in hardware components in minutes for 
design space exploration by loop pipelining, loop 
unrolling, and bit-width relaxation and optimization. 
They have attracted growing interest in applying 
AI inference acceleration with FPGAs, where the 
parallelism of repetitive and structured operations has 
mass appeal.

HW/SW Co-Design in AI
Hardware/software (HW/SW) co-design can be an 
important tool to partition a embedded AI workload 
between software processors and programmable logic. 
The latest papers explored how to map the intermediate 
layers of deep learning/operations to FPGA-based 
accelerators, leaving control/preprocessing on 
embedded CPUs.[6] Nonetheless, the current methods 
are primarily based on manual partitioning or even 
relying on fixed accelerator templates and do not have 
a well-defined process that employs HLS automation 
to make the deployment efficient and scalable. 
Moreover, the combination of various AI models, such 
as RNNs or attention-based transformers is optimally 
able only to a certain extent, since data dependencies 
are irregular and data can only be synchronized in 
isolated dimensions.

Research Gaps and Motivation
Although the HLS tools have the potential capabilities 
of hardware acceleration, there is no unified and 
standard process of co-design with a complete 
integration of HLS and related embedded AI pipeline. 
In particular, difficulties are outlined in:

•	 Automating HW/SW partitioning by means of 
performance and resource limits;

•	 Issues of data transfer, across heterogeneous 
components;

•	 Enabling different AI architectures with differ-
ent computation profile.

This paper overcomes these difficulties by suggesting 
a unified, HLS-based HW/SW co-design infrastructure 
on embedded reconfigurables which are demonstrated 
by AI workload deployments on actual infrastructure.

Proposed HLS-Driven Co-Design 
Methodology
In order to meet the increasing complexity and the 
performance requirement of embedded AI workloads, 
we are building a high-level synthesis (HLS)-based 
hardware/software (HW/SW) co-design technique 
of reconfigurable systems. This approach continues 
to advance the previous work to fill the algorithm-
hardware gap in terms of allowing automatic 
generation of hardware and systematically performing 
workload partitioning between processing cores and 
programmable logic. The suggested flow guarantees 
the high speed of prototyping, scalability of design, 
and optimal utilization of hardware to deploy it on 
low-capacity embedded systems.

Design Flow Overview
The suggested method in co-design involves five main 
steps, and it is demonstrated in Fig. 1. HLS-Based 
Framework Hardware/Software Co-Design- Based 
Reconfigurable Embedded AI Accelerator. The following 
stages can be identified: (a) Model Definition, during 
which AI models are defined in higher-level frameworks; 
(b) Code Translation, where a small but important 
computational kernels are translated to a compatible 
HLS language; (c) Hardware Generation done through 
commercial HLS tools; (d) Partitioning of the workloads 
in hardware and software due to performance profiling; 
and (e) System Integration, the final deployment of the 
product on the FPGA SoC platforms.

Model Definition:
Such high-level machine learning frameworks as 
TensorFlow Lite, PyTorch, or ONNX are first used to 
define and train AI models. These frameworks allow 
the quick estimation of CNNs, RNN or attention-based 
models with pre-trained weights. At this stage also 
quantization and pruning can be used to optimize 
models deployment in an edge.

Code Translation:
The AI model is compiled with the extraction of 
computation intensive kernels (e.g. convolution, 
matrix multiplication, activation functions) and 
reimplemented in HLS-compatible C/C++ or SystemC. 
The translation tries to preserve the dataflow nature 
in translating the code towards hardware translation.
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Hardware Generation
The translated kernels are translated using HLS tools 
(e.g. Xilinx Vitis HLS, Intel HLS Compiler or LegUp) 
to synthesize them to register-transfer level (RTL) 
modules. Cycle-accurate performance estimation, 
area utilization indicators and latency/power models 
leading to later design decisions can also be obtained 
with such tools.

Partitioning:
The partitioning strategy used is profiling-based 
HW/SW partitioning in order to decide which 
operations are taken to the programmable logic and 
which operations stayed in the processor world. To 
determine acceleration candidates, metrics like the 
time that a kernel takes to execute, bandwidth needs 
of a kernel and data dependency graphs are used. 
The purpose of the partitioning process is to achieve 
optimum performance and minimal overhead of 
communications.

System Integration:
The generated hardware components are disparate 
to FPGA system-on-chip (SoC) systems via platforms-
level instruments, as Xilinx Vitis, Intel OpenCL SDK, or 
SDSoC. This phase will include building runtime, device 
driver, DMA interface and software APIs around which 
communication can be established with host processor 
and custom accelerators. End result bit streams get 
implemented into SoCs like Xilinx Zynq UltraScale+ 
MPSoC or Intel Arria 10.

Optimization Techniques
In order to optimize resources and performance, 
a number of HLS-specific design optimizations are 
deployed during hardware generation as depicted 
in Fig. 2. HLS-Specific Optimization Techniques for 
Optimizing Efficient AI Accelerator. These are loop 
pipelining and unrolling, partitioning into arrays, 
reuse of data with the use of double buffering and bit-
width optimization.

Loop Pipelining and Unrolling:
Loop pipelining is a technique which allows some of 
the succeeding operation iterations to overlap so that 
full throughput is achieved within deeply nested loops. 
Operation unrolling replicates operations on many 

hardware units to leverage parallelism, especially of 
Massively Parallel AI operations such as a dot product 
or convolution case.

Array Partitioning:
Input/output arrays and weight buffers are distributed 
over many memory banks on-chip to reduce memory 
access bottlenecks. This enhances concurrency of 
access, and lowers shared memory contention latency.

Data Reuse Buffers and Double Buffering:
To take advantage of spatial and temporal locality, on-
chip data reuse buffers are presented (line buffers or 
window buffers). The overlapping of the stages of data 
loading and computing increases uninterrupted data 
processing because the techniques of double buffering 
are used.

Bit-Width Optimization:
To reduce logic usage and enhance power efficiency, 
yet still retain model accuracy, fixed-point arithmetic 
and implementation-specific bit-width reduction  

Fig. 1: HLS-Driven Hardware/Software Co-Design 
Methodology for Reconfigurable Embedded AI 

Accelerators
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(e.g. INT8 or INT16) are used. Dynamic range analysis 
of the AI kernel outputs direct precision scaling.

Fig: 2: HLS-Specific Optimization Techniques for Efficient 
AI Accelerator Design

Summary:
The HLS-based co-design approach would not only 
abstract away the complexity of the hardware 
development but would also automate and optimize 
the design of embedded AIs accelerators as well. The 
strategy allows the smooth integration of hardware/
software, custom performance, and scaling of the 
deployment on the reconfigurable edge platform.

Experimental Setup and Results

Setup
In order to test how effective the proposed hardware/
software co-design methodology based on HLS would 
be, we have designed and experimented with several 
embedded AI models on a reconfigurable computing 
platform. The experimental condition is as under:

•	 Target Platform Xilinx Zynq UltraScale+ MPSoC 
(ZCU104), which combines a quad-core ARM Cor-
tex-A53 processing system with programmable 
logic (PL) in a way that allows flexible, hard-
ware/software partitioning and acceleration.

•	 AI Benchmarks: We choose three typical neu-
ral networks architecture:
	� LeNet-5: A traditional convolutional neu-

ral network and handwritten digit recog-
nition task.

	� MobileNetV2: A Mobile and embed-
ded-friendly, depthwise separable convo-
lutional model.

	� LSTM: Neural network good to apply to a 
sequence problem with real-time input 
data.

•	 Metric of Evaluation:
	� Latency (ms) - Total time for inference of 

single input sample.
	� Energy Consumption (J): It will be mea-

sured with on-board power monitors.
	� LUT Utilization (%) ? How much of the 

FPGA resources are used concerning Look-
Up Tables.

	� Power Consumption (W) - sum system 
power during lastname inference.

	� Speedup: Performance-performance on an 
ARM Cortex-A53 baseline software imple-
mentation.

	� Energy Efficiency: Calculated as a ratio 
between the reduction of energy con-
sumption compared with software-only 
execution.

Results Summary
Table 1 points out the performance and energy 
advantages of our HLS-based co-design methodology 
to all AI workloads further illustrated in Fig. 3. HLS-
based embedded AI accelerators metrics: Performance 
and Resource Utilization.

Table 1: Performance and Resource Metrics of HLS-Based 
Embedded AI Accelerators

Model
Speedup 
vs CPU

Energy 
Savings

LUT Utili-
zation

Power 
(W)

LeNet-5 4.6× 3.2× 62% 3.4

Mobile-
NetV2

5.2× 3.8× 81% 4.1

LSTM 4.1× 3.5× 75% 3.9

In our findings, we reveal that implementation of 
the proposed HLS-directed method presents significant 
enhancements with respect to execution frequency as 
well as consumption in every single model that was 
tested. The MobileNetV2 implementation by the way, 
is especially advantaged by the loop unrolling and 
data reuse stages, with the largest speedup (5.2×) and 
energy reduction (3.8×) attributed to the especially 
deepwise convolutions they parallelize.

The LeNet-5 model shows 4.6x speedup and a 
moderate usage of the LUTs, which shows the efficiency 
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of the modules generated by HLS to resize small CNNs. In 
the meantime, the LSTM model, despite implementing 
a slightly slower speedup (4.1xB), demonstrates 
potential of using framework with significant energy 
gains on such sequential architectures.

These results validate that the HLS-based co-
design architecture allows scalability in performance 
and power consumption in addition to assisting a wide 
variety of AI response on FPGA SoCs. It also shows 
that in practice it is possible to use reconfigurable 
embedded AI accelerators on an energy-limited edge 
system in real-time.

Discussion
The experimental evidence confirms the claim that 
High-Level Synthesis (HLS) can enable the scalable 
design of Artificial Intelligence (AI) kernels quickly 
without consuming resources, and still accomplish 
the soft wareability and programmability required 
of embedded systems. The subject hardware 
/ software co-design solution is an effective 
compromise between computation and control with 
the embedded processor hosting high-level control 
and data preprocessing, as well as tasks with lower 
performance/computational requirements, with the 

design migrating performance-bound operations like 
convolutions, matrix multiplication, and activation 
functions to the programmable logic of the FPGA. 
Such a partitioning strategy provides an increase in 
overall system throughput and energy efficiency with 
relatively little added complexity of development.

Further, the HLS-based flowing simplifies design 
space exploration due to the abstracted performance 
modeling of a design, making it possible to refine 
its hardware modules iteratively without involving 
manual RTL changes. Nevertheless, with all these 
benefits; there are major challenges. At the top of the 
list is the automation of optimal HW/SW partitioning, 
now being largely driven by manual profiling and 
expensively acquired domain expertise. Also, the 
latency of communication and bandwidth between 
the processing system and programmable logic may 
become a bottleneck in some models and especially 
those that rely on many memory accesses or time 
dimension (such as RNNs or transformers). Such 
restrictions point to a potential direction to more 
intelligent partitioning algorithms, compiler-level 
optimizations and dynamic reconfiguration support 
in order to enhance the deployment of AI models in 
resource-limited edge settings.

Fig. 3. Performance and Resource Utilization Metrics of HLS-Based Embedded AI Accelerators
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Conclusion and Future Work
It outlines a fully equipped and top-to-bottom synthesis 
(HLS)-driven hardware/software (HW/SW) co-design 
flow that is well centered to execute AI inference tasks 
in reconfigurable embedded systems efficiently. The 
planned framework achieves a high degree of scalability 
that enables the design to be developed significantly 
faster as compared to human-oriented HLS tools due to 
the underlying performance-driven HW/SW partitioning 
strategy. Although this may sound counterintuitive, the 
resulting design performance is essentially the same in 
time, energy efficiency, and resource utilization. With 
practical performance on an FPGA-based System-on-
Chip, experimental validation with benchmark neural 
networks, LeNet-5, MobileNetV2, and LSTM, show 
speedup of up to 5.2x and energy reduction of up to 
3.8x over CPU-based only implementations.

Major contributions of this work can be considered 
to be:

•	 A scalable and modular HLS based design flow 
allowing a wide range of AI models;

•	 Efficiently distributions and partitioning of 
computational work loads;

•	 Incorporation of made hardware accelerators 
into FPGA SoC ecosystems into real-time edges.

Although the framework provides encouraging 
findings, still there are some points that are under 
consideration and subject to further study and 
development. Proposed future work is:

•	 Dynamic partial reconfiguration (DPR): pro-
viding the possibility of hardware reloading 
on the fly in order to service multi-model and 
multi-task AI applications;

•	 Learning-enabled HW/SW partitioning: the 
exploitation of machine learning methods to 
automate and optimize the design-space ex-
ploration and the workload mapping;

•	 Support of heterogeneous architecture: a 
more flexible extension of the co-design 
methodology would embrace systems com
bining FPGAs with RISC-V cores, custom neural 
processors, or GPUs accelerators.

On the whole, the suggested method provides a good 
basis to establish energy-efficient, configurable, and 
expandable to AI accelerators in the next-generation 
embedded and edge computing system..
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