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INTRODUCTION

ABSTRACT

The increased demands in energy efficient artificial intelligence (Al) at the
edge have motivated the research on the low power reconfigurable computing
architecture. Such architectures, and field-programmable gate arrays
(FPGAs) and coarse-grained reconfigurable arrays (CGRAs) in particular, offer
an attractive tradeoff between computational flexibility and performance
efficiency. This paper offers a hardware-specific perspective of design and
optimization policies of deploying Edge-Al workloads on those platforms. Power
reducing methods, such as a dynamic voltage and frequency scaling (DVFS),
dynamic partial reconfiguration (DPR), and power gating are investigated
comprehensively in the domain of inference operations in the Al environment.
Also Al-specific hardware-level optimization, like quantization-aware design
and resource-limited acceleration, is integrated. We have proposed a design
frame work consisting of workload profiling, logic-level power modeling and
architecture-aware mapping to maximize energy efficiency. Experiments of
benchmark Edge-Al workloads such as convolutional neural networks (CNNs)
and signal processing kernels show that up to 60% less power is consumed
and has twice the energy efficiency over typical baseline static designs. The
results underline that reconfigurable computing is a scalable and sustainable
option of future edge intelligence systems to operate on ultra-low-power at
the edge and deploy Al at runtime in resource-limited settings. The proposed
research will add a single view of architecture-level and workload-level co-
optimization in next-generation Edge-Al platforms.
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Optimization Perspective. SCCTS Transactions on Reconfigurable Computing,
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limited with high energy, thermal and form factor
constraints and development of energy-efficient

The ubiquity of edge devices in smart cities, driverless
cars, industrial loT and healthcare monitoring has
also ratcheted up the need to use real-time artificial
intelligence (Al) inference at the network edge. In
contrast to cloud-based Al processing, edge Al is

but still high-performance hardware platform is of
extreme importance. Reconfigurable computing, and
especially field-programmable gate arrays (FPGA) and
coarse-grained reconfigurable arrays (CGRAs) have also
become an attractive solution because they are highly
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adaptive to workload, have reduced latency, and can
be reused. Devices on these platforms can support
custom datapath architecture, optimized memory
hierarchy and dynamic reconfiguration capabilities,
which are suitable to the heterogeneous and time-
varying nature of Edge-Al tasks.

Nonetheless, the current body of knowledge is
itself mostly limited to performance-acceleration or
steady-state energy-reduction measures, and ignores
more broadly co-optimization solutions, which address
dynamic power control, run-time flexibility, and Al-
specific design constraints. Besides, although most of
the Al accelerators implemented in FPGAs have shown
encouraging performances, they are not fine-grained
reconfigurable, energy-proportional and system-level
power model based on which they cannot support
ultra-low power requirements and mission-critical
applications at the edge.l"2

These limitations are discussed in this paper
which introduces a hardware-focused model to
design, optimize, and evaluate Key principles in
architecting low-power reconfigurable platforms to
execute Edge-Al workloads are discussed in this paper.
It explores cutting-edge technologies like number
voltage and frequency scaling (DVFS), dynamic partial
reconfiguration (DPR), power gating and quantization
of neural networks. Moreover, experimental analysis
on real-world Al benchmarks point out that these
architectures hold potential to drastically cut down
energy cost without losing out inference latency or
accuracy.

BACKGROUND AND MOTIVATION

Edge-AI Requirements

Edge-Al applications such as autonomous navigation,
wearable health monitors, and smart surveillance
demand not only real-time inference with less latency,
large energy saving, and small memory footprint. In
comparison to centralized cloud Al systems, edge
nodes have to work with limited power budget,
restricted computational resources and dynamic
runtime environments. These problems require
creation of energy-efficient hardware that is dynamic.

Reconfigurable Computing Paradigms
Reconfigurable computing is also rising as a potential
answer to the Edge-Al challenge by offering program-

mable structures of hardware enabling customization
of a workload. Fine-grained architectures fine-grained
(i.e., field-programmable gate arrays (FPGA), or fine-
grained reconfigurable arrays (FGRAs)), give detailed
control over the logic-level execution whereas, coarse-
grained reconfigurable arrays (CGRAs) have a higher
efficiency in mapping of data-parallel tasks with less
complex interconnect.!"! These paradigms provide the
best of both industries because it has the advantage
of being near ASICs and similar to a general-purpose
processor in their flexibility.

Limitations of Conventional Edge SoCs

Conventional systems-on-chip (SoC) designs that have
been used in the edge tend to be fixed-function,
and tuned toward the average-case. It causes low
dynamism to the dynamic workloads where intra-task
variance and input-dependent character have a great
impact on the effectiveness and power consumption.
Moreover, since these architectures are not built to
be reconfigurable, they restrict their scalability and
reusability to newer models of Al in the long run.

Motivation for Hardware-Centric
Reconfiguration

Computationally and energy-trade offs can only
be managed using scale-in/out hardware- centric
techniques like reconfiguration. These strategies
enable the fine-grained power management, and
at run time, change to task characteristics, and,
in general, the dynamic power management with
mechanisms such as the dynamic voltage and the
frequency scaling (DVFS), power gating, and dynamic
partial reconfiguration (DPR). This is aimed at coming
up with architectures that are flexible to changing
workloads but at the same time are tight on energy
budgets.

ReLATED WORK

Reconfigurable Hardware for Edge-AI

Past years have been important in terms of progress
to on-chip deployment of Al inference workloads on
reconfigurable platforms. Zhang et al.”! designed a
parameterizable CNN accelerator on FPGAs which are
more energy-efficient than GPUs. In the same case,
Chen et al.P¥l suggested a memory-optimized FPGA-
based CNN accelerator chipping away at outer memory
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access. Nevertheless, such designs mostly require
specifications that are only interested in representing
static execution models and cannot accommodate
run-time flexibility essential in edge setups.

Power Optimization Techniques

DVFS, clock gating, as well as approximate com-
puting has been covered in multiple works in an
attempt to optimize the power profile of reconfig-
urable systems.* ! Although such strategies show
performance improvements in the simulation or
controlled environment, they do not perform well
in context-aware workloads of Al that have dynamic
power-performance requirements.

Dynamic Partial Reconfiguration (DPR)
DPR allows modified hardware areas to be
reconfigured at runtime, providing the advantages of
resource modularity and energy economy. However,
reconfiguration latency and overheads on controls are
still major challenges, where Li et al.!! used DPR to
selective reconfigure CNN layers. Low-latency DPR in
the range of fine grained DPR suitable to the ultra-
low-power edge is under-researched.

AI-Specific Hardware Optimization

Such toolchains as FINN! and DNNWeaver® have made
it possible to scale quantized neural networks to FPGAs
at a low memory and power consumption. But, they
tend to focus on fixed models and are not dynamically
reconfigurable and therefore are not easily applied to
various edge workloads.

Research Gap

With these developments, unified design methodolo-
gies that combine Al-specific hardware optimization,
dynamic reconfiguration, fine-grained power man-
agement have remained absent. In a large part of the
current literature, performance and power optimi-
zation are discussed independently. The given paper
attempts to address this gap by presenting an end-
to-end hardware-oriented framework that co-op-
timizes logic-level and system-level metrics to de-
velop energy-efficient, real-time Al-inference at the
edge.

DEesiGN CONSIDERATIONS FOR Low-PowEeRr
RECONFIGURABLE ARCHITECTURES

The co-optimization of logic, memory, and clock are
needed when designing low-power reconfigurable
architecturesinedge-Al. Importantstrategiesaccording
to this section are described with experimental
verification on up-to-date FPGA platforms.

Power Profiling and Budgeting
The power profiling was done with Xilinx Power
Estimator (XPE) and Intel Quartus Power Analyzer
on a MobileNetV2 inference accelerator deployed on
Xilinx Zynq UltraScale+ ZCU104. Static and dynamic
components of power were blocked off. The power
breakdown in logic, BRAM, DSP, and I/0 components
of CNN inference is reflected in figure 1.

Itis noteworthy that DSP blocks and memory access
consumes more than 65 percent dynamic power, and
thus it is necessary to optimize these areas.

3501

300

DSP BRAM 1/0

Logic

Fig. 1: Power breakdown of MobileNetV2 FPGA
implementation (logic, DSP, BRAM, 1/0)

Logic Optimization Techniques

Synthesis Constraints at the RTL-level
RTL power optimization also applied by using enabled
vivado flags whose requirements include -retiming,
-power_opt, and -no_lc. This smaller combinational
logic switching reduced on the logic optimized variant
of the design by ~ 18%.

Pipelineing of Functional Units and
Resource Sharing

Time-multiplexed shared multipliers and adders were
used to maximize the usage of time and minimize the
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usage of LUTs and the DSP blocks based on the edge
classification workload and at the same time provided
only 8 percent latency overhead.

Figure 2 demonstrates a pipelined MAC unit that
is shared among many convolutional layers, and the
access is centrally controlled by FSM.

Control
ES)
-~
Input A Control
-l  Shared MAC
Input|B Unit
| Multiplier F—Output
1
Input|C | Adder |

Fig. 2: Pipelined shared MAC unit with FSM-based control

Memory and Interconnect Power
Reduction
A loop tiled and BRAM banked custom CNN accelerator
was tested. The activations of input input and output
were tiled to 16 8 blocks that could access localized
BRAM instead of using global memory.

This design was applied on Intel Agilex F-Series. In
contrast with the design based on the flat-buffer:

o Power was decreased by 28 percent

e The access penalty of the memory lowered by
1.5x

e Its activity during switching at routing chan-
nels decreased by 23 percent, confirmed by
PowerPlay power analyzer

Figure 3 is a comparison of power consumption using
global and tiled memory architecture.
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Fig. 3: Comparison of BRAM access power:
tiled vs. global buffering

Clock Gating and Power Gating

On the same implementation of Zynqg, we implemented
clock gating over stagnant processing elements (PEs)
on zero apcurrency calculations. The outcomes of
Vivado simulation were:

» Dynamic power decreasing by 21 per cent
* No depreciation of timing or throughput

The simulation was done with High-Level Power
Estimation (HLPE) model, power gating idle
convolutional cores in the simulator are accomplished
by disconnecting them to Vcc using PMOS switches
which are controlled by the runtime scheduler.

Figure 4 shows clock-gated and power-gated areas
through out the reconfigurable architecture, that are
fused with the task scheduler logic.

Power breakdown of MobileNetV2

FPGA implementation
140
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Other
Data
B Row decoder

| Address

Fig. 4: Floorplan of clock and power-gated functional
units on FPGA fabric

Overall, the strategic combination of profiling,
logic optimization, memory architecture and granular
gating may be seen as the cornerstone of low-power
reconfigurable hardware design. All these factors are
put together to underlie energy-aware edge Al systems
that fulfill performance constraints and operate on
the strict power budgets.

DynAMIC PARTIAL RECONFIGURATION FOR
EpGe-Al

Dynamic Partial
Reconfiguration

Reconfiguration Dynamic Partial
(DPR) is an enabling technology
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which permits parts of an FPGA to be altered on
the fly through reconfiguration without stopping
the operation of the whole system. When supply of
energy available to energy-constrained and resource-
limited edge platforms is limited and the amount of
resources is limited, DPR offers a viable way to trade
off hardware reuse, flexibility in functionality, and
optimality in power consumption. This part discusses
where DPR is used, in Edge-Al applications, specifically
the acceleration of CNN inference.

Overview of DPR Workflow
DPR A DPR process is used by which the FPGA fabric
is split into permanent areas and configurable areas
(reconfigurable regions (RRs)), numerous bitstreams
are created representing each of these configurations,
and reconfiguration at runtime is handled through a
reconfiguration controller or processor interface.

The overall steps of the DPR workflow include the
following:

1. Static definition of design: It comprises clocking,
memory interface and 1/0 logic.

2. RR design generation: Partial bitstreams are
generated corresponding to various functional
units (i.e. CNN layers).

3. Runtime control: Aprocessor (e.g., ARM Cortex-A53
on Zynq SoC) forces configuration by writing to the
configuration port (e.g. PCAP or ICAP).

4. Verification and synchronization: Synchronization
is necessary before the execution can resume
after partial reconfiguration.

Figure 5 depicts the full DPR architecture and data
flow and demonstrates how streamed input data is
converted by the fixed controller to a reconfigurable
block of Convolution + ReLU blocks that is updated on
the fly during inference (through bitstream memory).

DPR allows time-multiplexed access to hardware
resources thus achieving smaller area footprint and
on-demand functionalities, and can serve as a perfect
candidate in sequential CNN layer implementation
with limited power and memory resources.

Reconfigurable Region Partitioning

The effective way to partition the FPGA into
reconfigurable regions of well definition is a major
factor toward effective DPR. The subsequent design
factors will be used:

e Granularity: Fine grained areas give flexibili-
ty and add complexity to management of bit-
streams; coarse grained areas enhance reuse
at the expense of region area.

e Modularity: One RR per hardware assignment;
a uniquely specialized hardware: e.g., convo-
lution layer, pooling unit.

e |/0 Consistency: The interfaces between
region static and dynamic must have a con-
sistent protocol (e.g. AXI-Stream) to have a
smooth transition.

Still under the isolation design flow, is located:

o Isolation design flow: Helps to ensure that log-
ic crossing region boundaries conforms to tim-
ing and floorplanning constraints.

In the practical FPGA implementations, advanced
tools such as Xilinx Vivado enable its user to declare
Reconfigurable Partitions (RPs) and assign each
Reconfigurable Partition (RP) to several Reconfigurable
Modules (RM) representing various functional variants.

Context Switching and Reuse

DPR also simplifies switching between contexts by
letting one switch compute modules on an as-needed
basis, depending on the work load. All under inference
Al applications:

e CNNs normally perform layers in a sequential
fashion and this makes them good candidates
of layer-level reconfiguration.

» With DPR, very few (one or two) physical com-
pute units are time-multiplexed to serve mul-
tiple layers.

o Further reconfiguration latency can be min-
imized by bitstream caching and predictive
scheduling (using input metadata).

Common partial bitstreams are 1-3 MB, and
reconfiguration on Zynq SoCs takes 3-15 ms, depending
upon the bandwidth of interfaces (e.g. 150-300 MB/s
using PCAP).

Use Case: CNN Layer Reconfiguration on
FPGA

An accelerator of MobileNetV2 CNN was implemented
in DPR on Xilinx ZCU104 board. Key parameters:

o Static area: DMA engine DMA, controller, mem-
ory interface
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o Reconfigurable area: Convolution + ReLU block
(shared among all the layers)

o Mb. Dimensiellelivro: ~ 2.1 Mb Layer

o Interface to reconfiguration: PCAP (Processor
Configuration Access Port)

Evaluation Results:

o Area saving: 45 percent usage saving of LUT/
DSPs with respect to full layer instantiation

« Power savings: 28 percent of saving in dynam-
ic power with less active modules

o Latency effect: well below significant with
moderate batch sizes; delayed on perfor-
mance

o Energy efficiency, 1.7x energy per-inference
improvement over static deployment

As presented in Table 1, these findings show the trade-
offs of static and DPR-based landscapes. Although
latency may be slightly higher with a dynamic design,
DPR allows better flexibility and energy efficiency,
which makes it an outstanding choice in many edge
deployments where speed and low power are the
ultimate goals of next-generation applications.

Table 1: Comparative Analysis of Static vs. DPR-Based
Reconfigurable Architectures for Edge-Al Applications

DPR-Based

Feature Static Design Design
Resource Utiliza- | High (duplicate Low (shared
tion logic) logic)
Power Consump- | Higher Lower
tion
Flexibility Fixed High
Latency (per Lower Slightly higher
batch)
Suitability for Moderate High
Edge Devices

Configuration port

Bitstream

Static region
_________________________ Controller} - -,
i

Memory
Interface

____________________________________

: :
.

Output _| Convolution + ReLU :

data ! i

| .

E Reconfigurable region

Layer 1

Layer 2

i
——>| S —>{ Controller

Layer 3
X

Control

Fig. 5: DPR layer swapping architecture

AI-CenTrRIC HARDWARE OPTIMIZATION

Some purposeful hardware optimizations are needed
to have an efficient implementation of Al workloads
on reconfigurable platforms deployed at the edge.
These are minimizing bit-width precision, faster fixed
kernels of computation, and taking advantage of
reusable design patterns of task-specific inference.
Figure 6 summarizes the contained core strategies.

Precision Scaling (INTS8, Binarized
Networks)

A precision scaling back on operand bit-widths (e.g.
FP32 to INT8 or binary) can substantially reduce
memory and dynamic power. Quantizing modern CNNs
to INT8 allows achieving up to 4x in throughput with no
significant accuracy degradation. The more ambitious
Binarized Neural Networks (BNNs) save an order of
magnitude of resources and can be operated at ultra-
low-power in resource-constrained environments.

Hardware Acceleration of AI Kernels

Basic operations of Al computational tasks e.g. convolutions
and matrix multiplications are implemented on parallel
MAC arrays or systolic arrays. Optimized datapaths use loop
unrolling, pipelining and tiling to maximize the re-use of
weights and activations. Depthwise and pointwise custom
accelerators (widely used on MobileNet) also decrease
latency and the use of DSPs.

Design Templates for Common Edge-Al
Tasks

Task-specific inference is speeded by hardware
templates that are reusable:

» Object Detection: core functions convolution-
al object detectors (“YOLO-tiny”) containing
an array of NMS engines

o Keyword Spotting: Low-latency 1D CNNs with
low-latency buffers

They can scale with low-power Al processing on
reconfigurable hardware, with the optimizations being
modular and synergistic as demonstrated in Figure 6.

CAse STUDIES AND EXPERIMENTAL
EVALUATION

We do a lot of experiments performance parameters
of the three real-world Edge-Al workloads on the
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Fig. 6: Precision Scaling, Hardware Acceleration, and
Task-Specific Design Templates for Edge-Al Optimization

latest generation of FPGA devices to confirm the work
done and the validity of the low-power reconfigurable
architecture.

Experimental Setup
The assessment was conducted across two FPGA
developers Xilinx Zynq UltraScale+ (ZCU104) and Intel
Agilex F-Series. Third, three benchmarks were put in
place:

» Image classification with MobileNetV2

o Object detection= YOLO-tiny

e Low latency signal processing inference using

FFT

All the designs were conducted both in fixed and DPR-
based designs, and they were scaled precisely where
certainty was possible.

Performance Metrics
To measure performance and efficiency the following
metrics were applied:

o Joule-power consumption (W)

e ms per inference

e Perinference energy (mJ)

e Throughput (fps)
On-chip power monitors and post-implementation
timing simulations were used to get measurements.
Table 2 gives more detailed results of all benchmarks and
configurations and shows the quantitative advantages
of reconfigurable and quantized design techniques.

REesuLTs AND Discussion
Main findings can be outlined as follows:

o Up to 42% idle power was saved in DPR based
designs as these dynamically reconfigured,
only the active layers.

e The INT8 quantization process resulted in 60
percent power ratio compared to the full-pre-
cision inference without substantial accuracy
drop (<1%).

« The energy efficiency was enhanced by 1.7
times, and throughput enhanced by up to 2
times because of the action of pipelining and
resource reuse.

Figure 7 presents a comparison visualization of the
performance trends of MobileNetV2 benchmark to
show trade-offs and synergies of static, DPR, and
INT8 configurations based on power, latency, and
throughput.

These results confirm the expectation that the
suggested reconfigurable architecture provides a good
tradeoff between flexibility, energy, and compute
requirements, and thus it is very well-suited to power-

Table 2: Performance Metrics of Static, DPR, and INT8 Configurations Across Edge-Al Benchmarks

Energy per
Benchmark Configuration Power (W) Latency (ms) Inference (mJ) | Throughput (fps)
MobileNetV2 Static 3.2 34 108.8 29.4
MobileNetV2 DPR 2 37 74 27
MobileNetV2 INT8 1.3 30 39 333
YOLO-tiny Static 4.5 45 202.5 22.2
YOLO-tiny DPR 2.9 48 139.2 20.8
YOLO-tiny INT8 1.8 40 72 25
FFT-based Inference | Static 2.4 22 52.8 45.5
FFT-based Inference | DPR 1.6 23 36.8 43.5
FFT-based Inference | INT8 1 20 20 50
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constrained, time-sensitive deployments of Edge-Al
applications.

MobileNetV2 Performance Comparison

Static
W DPR
- INT8

25

Metric Value
N
S

-
&

=
°

5

0

Power (W)

Latency (ms) Throughput (fps)

Fig. 7: MobileNetV2 Performance Comparison Under
Static, DPR, and INT8 Configurations

ScALABILITY AND DEPLOYMENT CHALLENGES

Although low-power reconfigurable architecture
can be so advantageous in Edge-Al, some scalability
and deployment issues should be resolved to make
deployment in general systems practical, robust, and
secure.

Resource Fragmentation and Routing
Complexity

As number of designs increase, partitioning FPGAs into
multiple reconfigurable areas engorges the routing
congestion an resource fragmentation, results in
suboptimal timing closure and under utilize fabric.
Even fine grained DPR can make this issue worse,
calling for sophisticated floorplanning and placement
strategies in order to achieve performance.

Security and Bitstream Integrity

The use of dynamically loaded partial bitstreams also
possesses an attack surface which may be tampered
with or reverse engineered. To assure that bitstreams
are not tampered with and their confidentiality is
not disclosed, cryptographic measures (e.g., AES
encryption, HMAC authentication) and secure boot
procedures should be used to ensure that one does not
wrongly reconfigure the system and insert hardware
Trojans into it.

Toolchain Limitations and IP Compatibility
Commercial toolchains (examples include the Xilinx
Vivado, Intel Quartus) provide only coarse grained

support of modular DPR and little interoperability
with third party IP. Furthermore, bitstream versioning,
constraint related to the partial reconfiguration and
reliance on proprietary flows discourage platform
portability.

Toward Heterogeneous Reconfigurable
SoCs

The future deployment is demanding a combination
of FPGAs, CPU and Al accelerator to be implemented
into a single reconfigurable SoC fabric. A smooth flow
of heterogeneous components interaction requires
standardized interconnects (e.g. AXl4, NoC) and
converged memory hierarchies. Undertakings on
dynamicized workload partitioning and cross-domain
scheduling will be an essential key to scalable and
reconfigurable edge intelligence.

In order to provide a better presentation of the
multi-faceted nature of the challenges presented
on how to deploy reconfigurable architectures at
scale, Figure 8 offers a hierarchical Challenges
Pyramid. It highlights more fundamental issues like
resource partitioning and interconnection complexity,
intermediate constraints like chain delegation abilities
and [P inter-operability and high-level strategic
aims like assuring security and the shift to hetero-
reconfigurable SoCs.

Scalability and
Deployment Challenges

Toward
Heterogeneous
Reconfigurabilie SocCs

Security and
Bitstream Integrity
Toolchain Limitations and \.\
IP Compatibility R

y Q
p .
Resource Fragmentation and
Routing Complexity

Fig. 8: Hierarchical Challenges in Scaling Low-Power
Reconfigurable Architectures for Edge-Al Deployment

4

ConcLusioN AND FuTurRe WORK

The current publication was a systematic hardware-
oriented study on low-power reconfigurable edge-
Al and sought to propose it as a solution to the
energy-consumption  problem, exacerbated by
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power limitation and time constraints in real-world
applications that require Al inference. Using field-
programmable gate arrays (FPGAs) and coarse-grained
reconfigurable arrays ( CGRAs), the proposed method
will make use of the dynamic partial reconfiguration
(DPR), precision scaling, and hardware-level Al kernel
acceleration to create scalable and flexible computer
systems that can be deployed at the edge.

The study has made critical contributions in the
following ways:

o Single approach to design which integrates
logic optimization with workload-awareness,
reconfiguration at runtime, and quantization.

e Accurate power-performance characterization
of MobileNetV2, YOLO-tiny and FFT inference
application at state-of-the-art reconfigurable
platforms.

e Proving one to two times higher energy ef-
ficiency, up to 60 percent lower power con-
sumption using a hybrid DPR and INT8 deploy-
ment strategies.

e Presentation of modular hardware templates
and pragmatic information on deployment
with experimental validation and analysis of
architecture.

The fact is that alongside these advancements, there
are a number of still open problems. The research will
be able to work on:

o Effortless composition with edge orchestra-
tion systems, making the workloads migration
and adaptive reconfiguration scheduling possi-
ble at runtime.

o Cross-layer co-optimization in which the hard-
ware reconfigurability is balanced with com-
piler optimizations, Al model architecture,
and system-level constraints.

o Adoption of recent hardware technolo-
gies including the use of emerging memory
(e.g., non-volatile memory, e.g., ReRAM),
3D-stacked FPGAs, and photonic interconnec-
tivity to support greater energy scalability.

o Security-wise reconfigurable flows Security-in-
genious reconfiguration stream to guarantee
run time fidelity as well as the bit stream.

With a widening range of Al demands that is becoming
increasingly distributed, reconfigurable architectures

have the potential to become a pillar in the evolution
of future resource-aware, intelligent approaches to
edge computing.
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