
SCCTS  Transactions on Reconfigurable Computing  | May - August | ISSN: 3049-153330

Low-Power Reconfigurable Architectures for  
Edge-AI: A Hardware-Centric Design and  

Optimization Perspective
G. N. Ezeh1*, Besufekad Getachew2

1Electrical and Electronic Engineering Department, University of Ibadan Ibadan, Nigeria
2Electrical and Computer Engineering, Addis Ababa University Addis Ababa, Ethiopia

Abstract 
The increased demands in energy efficient artificial intelligence (AI) at the 
edge have motivated the research on the low power reconfigurable computing 
architecture. Such architectures, and field-programmable gate arrays 
(FPGAs) and coarse-grained reconfigurable arrays (CGRAs) in particular, offer 
an attractive tradeoff between computational flexibility and performance 
efficiency. This paper offers a hardware-specific perspective of design and 
optimization policies of deploying Edge-AI workloads on those platforms. Power 
reducing methods, such as a dynamic voltage and frequency scaling (DVFS), 
dynamic partial reconfiguration (DPR), and power gating are investigated 
comprehensively in the domain of inference operations in the AI environment. 
Also AI-specific hardware-level optimization, like quantization-aware design 
and resource-limited acceleration, is integrated. We have proposed a design 
frame work consisting of workload profiling, logic-level power modeling and 
architecture-aware mapping to maximize energy efficiency. Experiments of 
benchmark Edge-AI workloads such as convolutional neural networks (CNNs) 
and signal processing kernels show that up to 60% less power is consumed 
and has twice the energy efficiency over typical baseline static designs. The 
results underline that reconfigurable computing is a scalable and sustainable 
option of future edge intelligence systems to operate on ultra-low-power at 
the edge and deploy AI at runtime in resource-limited settings. The proposed 
research will add a single view of architecture-level and workload-level co-
optimization in next-generation Edge-AI platforms.
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Introduction

The ubiquity of edge devices in smart cities, driverless 
cars, industrial IoT and healthcare monitoring has 
also ratcheted up the need to use real-time artificial 
intelligence (AI) inference at the network edge. In 
contrast to cloud-based AI processing, edge AI is 

limited with high energy, thermal and form factor 
constraints and development of energy-efficient 
but still high-performance hardware platform is of 
extreme importance. Reconfigurable computing, and 
especially field-programmable gate arrays (FPGA) and 
coarse-grained reconfigurable arrays (CGRAs) have also 
become an attractive solution because they are highly 
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mable structures of hardware enabling customization 
of a workload. Fine-grained architectures fine-grained 
(i.e., field-programmable gate arrays (FPGA), or fine-
grained reconfigurable arrays (FGRAs)), give detailed 
control over the logic-level execution whereas, coarse-
grained reconfigurable arrays (CGRAs) have a higher 
efficiency in mapping of data-parallel tasks with less 
complex interconnect.[1] These paradigms provide the 
best of both industries because it has the advantage 
of being near ASICs and similar to a general-purpose 
processor in their flexibility.

Limitations of Conventional Edge SoCs
Conventional systems-on-chip (SoC) designs that have 
been used in the edge tend to be fixed-function, 
and tuned toward the average-case. It causes low 
dynamism to the dynamic workloads where intra-task 
variance and input-dependent character have a great 
impact on the effectiveness and power consumption. 
Moreover, since these architectures are not built to 
be reconfigurable, they restrict their scalability and 
reusability to newer models of AI in the long run.

Motivation for Hardware-Centric 
Reconfiguration
Computationally and energy-trade offs can only 
be managed using scale-in/out hardware- centric 
techniques like reconfiguration. These strategies 
enable the fine-grained power management, and 
at run time, change to task characteristics, and, 
in general, the dynamic power management with 
mechanisms such as the dynamic voltage and the 
frequency scaling (DVFS), power gating, and dynamic 
partial reconfiguration (DPR). This is aimed at coming 
up with architectures that are flexible to changing 
workloads but at the same time are tight on energy 
budgets.

Related Work

Reconfigurable Hardware for Edge-AI
Past years have been important in terms of progress 
to on-chip deployment of AI inference workloads on 
reconfigurable platforms. Zhang et al.[2] designed a 
parameterizable CNN accelerator on FPGAs which are 
more energy-efficient than GPUs. In the same case, 
Chen et al.[3] suggested a memory-optimized FPGA-
based CNN accelerator chipping away at outer memory 

adaptive to workload, have reduced latency, and can 
be reused. Devices on these platforms can support 
custom datapath architecture, optimized memory 
hierarchy and dynamic reconfiguration capabilities, 
which are suitable to the heterogeneous and time-
varying nature of Edge-AI tasks.

Nonetheless, the current body of knowledge is 
itself mostly limited to performance-acceleration or 
steady-state energy-reduction measures, and ignores 
more broadly co-optimization solutions, which address 
dynamic power control, run-time flexibility, and AI-
specific design constraints. Besides, although most of 
the AI accelerators implemented in FPGAs have shown 
encouraging performances, they are not fine-grained 
reconfigurable, energy-proportional and system-level 
power model based on which they cannot support 
ultra-low power requirements and mission-critical 
applications at the edge.[1, 2]

These limitations are discussed in this paper 
which introduces a hardware-focused model to 
design, optimize, and evaluate Key principles in 
architecting low-power reconfigurable platforms to 
execute Edge-AI workloads are discussed in this paper. 
It explores cutting-edge technologies like number 
voltage and frequency scaling (DVFS), dynamic partial 
reconfiguration (DPR), power gating and quantization 
of neural networks. Moreover, experimental analysis 
on real-world AI benchmarks point out that these 
architectures hold potential to drastically cut down 
energy cost without losing out inference latency or 
accuracy.

Background and Motivation

Edge-AI Requirements
Edge-AI applications such as autonomous navigation, 
wearable health monitors, and smart surveillance 
demand not only real-time inference with less latency, 
large energy saving, and small memory footprint. In 
comparison to centralized cloud AI systems, edge 
nodes have to work with limited power budget, 
restricted computational resources and dynamic 
runtime environments. These problems require 
creation of energy-efficient hardware that is dynamic.

Reconfigurable Computing Paradigms
Reconfigurable computing is also rising as a potential 
answer to the Edge-AI challenge by offering program-
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access. Nevertheless, such designs mostly require 
specifications that are only interested in representing 
static execution models and cannot accommodate 
run-time flexibility essential in edge setups.

Power Optimization Techniques

DVFS, clock gating, as well as approximate com-
puting has been covered in multiple works in an 
attempt to optimize the power profile of reconfig-
urable systems.[4, 5] Although such strategies show 
performance improvements in the simulation or 
controlled environment, they do not perform well 
in context-aware workloads of AI that have dynamic 
power-performance requirements.

Dynamic Partial Reconfiguration (DPR)
DPR allows modified hardware areas to be 
reconfigured at runtime, providing the advantages of 
resource modularity and energy economy. However, 
reconfiguration latency and overheads on controls are 
still major challenges, where Li et al.[6] used DPR to 
selective reconfigure CNN layers. Low-latency DPR in 
the range of fine grained DPR suitable to the ultra-
low-power edge is under-researched.

AI-Specific Hardware Optimization
Such toolchains as FINN[7] and DNNWeaver[8] have made 
it possible to scale quantized neural networks to FPGAs 
at a low memory and power consumption. But, they 
tend to focus on fixed models and are not dynamically 
reconfigurable and therefore are not easily applied to 
various edge workloads.

Research Gap
With these developments, unified design methodolo-
gies that combine AI-specific hardware optimization, 
dynamic reconfiguration, fine-grained power man-
agement have remained absent. In a large part of the 
current literature, performance and power optimi-
zation are discussed independently. The given paper 
attempts to address this gap by presenting an end-
to-end hardware-oriented framework that co-op-
timizes logic-level and system-level metrics to de-
velop energy-efficient, real-time AI-inference at the  
edge.

Design Considerations for Low-Power 
Reconfigurable Architectures
The co-optimization of logic, memory, and clock are 
needed when designing low-power reconfigurable 
architectures in edge-AI. Important strategies according 
to this section are described with experimental 
verification on up-to-date FPGA platforms.

Power Profiling and Budgeting
The power profiling was done with Xilinx Power 
Estimator (XPE) and Intel Quartus Power Analyzer 
on a MobileNetV2 inference accelerator deployed on 
Xilinx Zynq UltraScale+ ZCU104. Static and dynamic 
components of power were blocked off. The power 
breakdown in logic, BRAM, DSP, and I/O components 
of CNN inference is reflected in figure 1.

It is noteworthy that DSP blocks and memory access 
consumes more than 65 percent dynamic power, and 
thus it is necessary to optimize these areas.

Fig. 1: Power breakdown of MobileNetV2 FPGA 
implementation (logic, DSP, BRAM, I/O)

Logic Optimization Techniques
Synthesis Constraints at the RTL-level
RTL power optimization also applied by using enabled 
vivado flags whose requirements include -retiming, 
-power_opt, and -no_lc. This smaller combinational 
logic switching reduced on the logic optimized variant 
of the design by ~ 18%.

Pipelineing of Functional Units and 
Resource Sharing
Time-multiplexed shared multipliers and adders were 
used to maximize the usage of time and minimize the 
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usage of LUTs and the DSP blocks based on the edge 
classification workload and at the same time provided 
only 8 percent latency overhead.

Figure 2 demonstrates a pipelined MAC unit that 
is shared among many convolutional layers, and the 
access is centrally controlled by FSM.

Fig. 2: Pipelined shared MAC unit with FSM-based control

Memory and Interconnect Power 
Reduction
A loop tiled and BRAM banked custom CNN accelerator 
was tested. The activations of input input and output 
were tiled to 16 8 blocks that could access localized 
BRAM instead of using global memory.

This design was applied on Intel Agilex F-Series. In 
contrast with the design based on the flat-buffer:

•	 Power was decreased by 28 percent
•	 The access penalty of the memory lowered by 

1.5x
•	 Its activity during switching at routing chan-

nels decreased by 23 percent, confirmed by 
PowerPlay power analyzer

Figure 3 is a comparison of power consumption using 
global and tiled memory architecture.

Fig. 3: Comparison of BRAM access power:  
tiled vs.  global buffering

Clock Gating and Power Gating
On the same implementation of Zynq, we implemented 
clock gating over stagnant processing elements (PEs) 
on zero apcurrency calculations. The outcomes of 
Vivado simulation were:

•	 Dynamic power decreasing by 21 per cent
•	 No depreciation of timing or throughput

The simulation was done with High-Level Power 
Estimation (HLPE) model, power gating idle 
convolutional cores in the simulator are accomplished 
by disconnecting them to Vcc using PMOS switches 
which are controlled by the runtime scheduler.

Figure 4 shows clock-gated and power-gated areas 
through out the reconfigurable architecture, that are 
fused with the task scheduler logic.

Fig. 4: Floorplan of clock and power-gated functional 
units on FPGA fabric

Overall, the strategic combination of profiling, 
logic optimization, memory architecture and granular 
gating may be seen as the cornerstone of low-power 
reconfigurable hardware design. All these factors are 
put together to underlie energy-aware edge AI systems 
that fulfill performance constraints and operate on 
the strict power budgets.

Dynamic Partial Reconfiguration for 
Edge-AI
Dynamic Partial Reconfiguration Dynamic Partial 
Reconfiguration (DPR) is an enabling technology 
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which permits parts of an FPGA to be altered on 
the fly through reconfiguration without stopping 
the operation of the whole system. When supply of 
energy available to energy-constrained and resource-
limited edge platforms is limited and the amount of 
resources is limited, DPR offers a viable way to trade 
off hardware reuse, flexibility in functionality, and 
optimality in power consumption. This part discusses 
where DPR is used, in Edge-AI applications, specifically 
the acceleration of CNN inference.

Overview of DPR Workflow
DPR A DPR process is used by which the FPGA fabric 
is split into permanent areas and configurable areas 
(reconfigurable regions (RRs)), numerous bitstreams 
are created representing each of these configurations, 
and reconfiguration at runtime is handled through a 
reconfiguration controller or processor interface.

The overall steps of the DPR workflow include the 
following:

1.	 Static definition of design: It comprises clocking, 
memory interface and I/O logic.

2.	 RR design generation: Partial bitstreams are 
generated corresponding to various functional 
units (i.e. CNN layers).

3.	 Runtime control: A processor (e.g., ARM Cortex-A53 
on Zynq SoC) forces configuration by writing to the 
configuration port (e.g. PCAP or ICAP).

4.	 Verification and synchronization: Synchronization 
is necessary before the execution can resume 
after partial reconfiguration.

Figure 5 depicts the full DPR architecture and data 
flow and demonstrates how streamed input data is 
converted by the fixed controller to a reconfigurable 
block of Convolution + ReLU blocks that is updated on 
the fly during inference (through bitstream memory).

DPR allows time-multiplexed access to hardware 
resources thus achieving smaller area footprint and 
on-demand functionalities, and can serve as a perfect 
candidate in sequential CNN layer implementation 
with limited power and memory resources.

Reconfigurable Region Partitioning
The effective way to partition the FPGA into 
reconfigurable regions of well definition is a major 
factor toward effective DPR. The subsequent design 
factors will be used:

•	 Granularity: Fine grained areas give flexibili-
ty and add complexity to management of bit-
streams; coarse grained areas enhance reuse 
at the expense of region area.

•	 Modularity: One RR per hardware assignment; 
a uniquely specialized hardware: e.g., convo-
lution layer, pooling unit.

•	 I/O Consistency: The interfaces between 
region static and dynamic must have a con-
sistent protocol (e.g. AXI-Stream) to have a 
smooth transition.

Still under the isolation design flow, is located: 

•	 Isolation design flow: Helps to ensure that log-
ic crossing region boundaries conforms to tim-
ing and floorplanning constraints.

In the practical FPGA implementations, advanced 
tools such as Xilinx Vivado enable its user to declare 
Reconfigurable Partitions (RPs) and assign each 
Reconfigurable Partition (RP) to several Reconfigurable 
Modules (RM) representing various functional variants.

Context Switching and Reuse
DPR also simplifies switching between contexts by 
letting one switch compute modules on an as-needed 
basis, depending on the work load. All under inference 
AI applications:

•	 CNNs normally perform layers in a sequential 
fashion and this makes them good candidates 
of layer-level reconfiguration.

•	 With DPR, very few (one or two) physical com-
pute units are time-multiplexed to serve mul-
tiple layers.

•	 Further reconfiguration latency can be min-
imized by bitstream caching and predictive 
scheduling (using input metadata).

Common partial bitstreams are 1-3 MB, and 
reconfiguration on Zynq SoCs takes 3-15 ms, depending 
upon the bandwidth of interfaces (e.g. 150-300 MB/s 
using PCAP).

Use Case: CNN Layer Reconfiguration on 
FPGA
An accelerator of MobileNetV2 CNN was implemented 
in DPR on Xilinx ZCU104 board. Key parameters:

•	 Static area: DMA engine DMA, controller, mem-
ory interface
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•	 Reconfigurable area: Convolution + ReLU block 
(shared among all the layers)

•	 Mb. Dimensiellelivro: ~ 2.1 Mb Layer
•	 Interface to reconfiguration: PCAP (Processor 

Configuration Access Port)

Evaluation Results:

•	 Area saving: 45 percent usage saving of LUT/
DSPs with respect to full layer instantiation

•	 Power savings: 28 percent of saving in dynam-
ic power with less active modules

•	 Latency effect: well below significant with 
moderate batch sizes; delayed on perfor-
mance

•	 Energy efficiency, 1.7x energy per-inference 
improvement over static deployment

As presented in Table 1, these findings show the trade-
offs of static and DPR-based landscapes. Although 
latency may be slightly higher with a dynamic design, 
DPR allows better flexibility and energy efficiency, 
which makes it an outstanding choice in many edge 
deployments where speed and low power are the 
ultimate goals of next-generation applications.

Table 1: Comparative Analysis of Static vs. DPR-Based 
Reconfigurable  Architectures for Edge-AI Applications

Feature Static Design
DPR-Based 

Design

Resource Utiliza-
tion

High (duplicate 
logic)

Low (shared 
logic)

Power Consump-
tion

Higher Lower

Flexibility Fixed High

Latency (per 
batch)

Lower Slightly higher

Suitability for 
Edge Devices

Moderate High

AI-Centric Hardware Optimization
Some purposeful hardware optimizations are needed 
to have an efficient implementation of AI workloads 
on reconfigurable platforms deployed at the edge. 
These are minimizing bit-width precision, faster fixed 
kernels of computation, and taking advantage of 
reusable design patterns of task-specific inference. 
Figure 6 summarizes the contained core strategies.

Precision Scaling (INT8, Binarized 
Networks)
A precision scaling back on operand bit-widths (e.g. 
FP32 to INT8 or binary) can substantially reduce 
memory and dynamic power. Quantizing modern CNNs 
to INT8 allows achieving up to 4x in throughput with no 
significant accuracy degradation. The more ambitious 
Binarized Neural Networks (BNNs) save an order of 
magnitude of resources and can be operated at ultra-
low-power in resource-constrained environments.

Hardware Acceleration of AI Kernels
Basic operations of AI computational tasks e.g. convolutions 
and matrix multiplications are implemented on parallel 
MAC arrays or systolic arrays. Optimized datapaths use loop 
unrolling, pipelining and tiling to maximize the re-use of 
weights and activations. Depthwise and pointwise custom 
accelerators (widely used on MobileNet) also decrease 
latency and the use of DSPs.

Design Templates for Common Edge-AI 
Tasks
Task-specific inference is speeded by hardware 
templates that are reusable:

•	 Object Detection: core functions convolution-
al object detectors (“YOLO-tiny”) containing 
an array of NMS engines

•	 Keyword Spotting: Low-latency 1D CNNs with 
low-latency buffers

They can scale with low-power AI processing on 
reconfigurable hardware, with the optimizations being 
modular and synergistic as demonstrated in Figure 6.

Case Studies and Experimental 
Evaluation
We do a lot of experiments performance parameters 
of the three real-world Edge-AI workloads on the Fig. 5: DPR layer swapping architecture
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latest generation of FPGA devices to confirm the work 
done and the validity of the low-power reconfigurable 
architecture.

Experimental Setup
The assessment was conducted across two FPGA 
developers Xilinx Zynq UltraScale+ (ZCU104) and Intel 
Agilex F-Series. Third, three benchmarks were put in 
place:

•	 Image classification with MobileNetV2
•	 Object detection= YOLO-tiny
•	 Low latency signal processing inference using 

FFT

All the designs were conducted both in fixed and DPR-
based designs, and they were scaled precisely where 
certainty was possible.

Performance Metrics
To measure performance and efficiency the following 
metrics were applied:

•	 Joule-power consumption (W)
•	 ms per inference
•	 Per inference energy (mJ)
•	 Throughput (fps)

On-chip power monitors and post-implementation 
timing simulations were used to get measurements. 
Table 2 gives more detailed results of all benchmarks and 
configurations and shows the quantitative advantages 
of reconfigurable and quantized design techniques.

Results and Discussion
Main findings can be outlined as follows:

•	 Up to 42% idle power was saved in DPR based 
designs as these dynamically reconfigured, 
only the active layers.

•	 The INT8 quantization process resulted in 60 
percent power ratio compared to the full-pre-
cision inference without substantial accuracy 
drop (<1%).

•	 The energy efficiency was enhanced by 1.7 
times, and throughput enhanced by up to 2 
times because of the action of pipelining and 
resource reuse.

Figure 7 presents a comparison visualization of the 
performance trends of MobileNetV2 benchmark to 
show trade-offs and synergies of static, DPR, and 
INT8 configurations based on power, latency, and 
throughput.

These results confirm the expectation that the 
suggested reconfigurable architecture provides a good 
tradeoff between flexibility, energy, and compute 
requirements, and thus it is very well-suited to power-

Fig. 6: Precision Scaling, Hardware Acceleration, and 
Task-Specific Design Templates for Edge-AI Optimization

Table 2: Performance Metrics of Static, DPR, and INT8 Configurations Across Edge-AI Benchmarks

Benchmark Configuration Power (W) Latency (ms)
Energy per 

Inference (mJ) Throughput (fps)

MobileNetV2 Static 3.2 34 108.8 29.4

MobileNetV2 DPR 2 37 74 27

MobileNetV2 INT8 1.3 30 39 33.3

YOLO-tiny Static 4.5 45 202.5 22.2

YOLO-tiny DPR 2.9 48 139.2 20.8

YOLO-tiny INT8 1.8 40 72 25

FFT-based Inference Static 2.4 22 52.8 45.5

FFT-based Inference DPR 1.6 23 36.8 43.5

FFT-based Inference INT8 1 20 20 50
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constrained, time-sensitive deployments of Edge-AI 
applications.

Fig. 7: MobileNetV2 Performance Comparison Under 
Static, DPR, and INT8 Configurations

Scalability and Deployment Challenges
Although low-power reconfigurable architecture 
can be so advantageous in Edge-AI, some scalability 
and deployment issues should be resolved to make 
deployment in general systems practical, robust, and 
secure.

Resource Fragmentation and Routing 
Complexity
As number of designs increase, partitioning FPGAs into 
multiple reconfigurable areas engorges the routing 
congestion an resource fragmentation, results in 
suboptimal timing closure and under utilize fabric. 
Even fine grained DPR can make this issue worse, 
calling for sophisticated floorplanning and placement 
strategies in order to achieve performance.

Security and Bitstream Integrity
The use of dynamically loaded partial bitstreams also 
possesses an attack surface which may be tampered 
with or reverse engineered. To assure that bitstreams 
are not tampered with and their confidentiality is 
not disclosed, cryptographic measures (e.g., AES 
encryption, HMAC authentication) and secure boot 
procedures should be used to ensure that one does not 
wrongly reconfigure the system and insert hardware 
Trojans into it.

Toolchain Limitations and IP Compatibility
Commercial toolchains (examples include the Xilinx 
Vivado, Intel Quartus) provide only coarse grained 

support of modular DPR and little interoperability 
with third party IP. Furthermore, bitstream versioning, 
constraint related to the partial reconfiguration and 
reliance on proprietary flows discourage platform 
portability.

Toward Heterogeneous Reconfigurable 
SoCs
The future deployment is demanding a combination 
of FPGAs, CPU and AI accelerator to be implemented 
into a single reconfigurable SoC fabric. A smooth flow 
of heterogeneous components interaction requires 
standardized interconnects (e.g. AXI4, NoC) and 
converged memory hierarchies. Undertakings on 
dynamicized workload partitioning and cross-domain 
scheduling will be an essential key to scalable and 
reconfigurable edge intelligence.

In order to provide a better presentation of the 
multi-faceted nature of the challenges presented 
on how to deploy reconfigurable architectures at 
scale, Figure 8 offers a hierarchical Challenges 
Pyramid. It highlights more fundamental issues like 
resource partitioning and interconnection complexity, 
intermediate constraints like chain delegation abilities 
and IP inter-operability and high-level strategic 
aims like assuring security and the shift to hetero-
reconfigurable SoCs.

Fig. 8: Hierarchical Challenges in Scaling Low-Power 
Reconfigurable Architectures for Edge-AI Deployment

Conclusion and Future Work
The current publication was a systematic hardware-
oriented study on low-power reconfigurable edge-
AI and sought to propose it as a solution to the 
energy-consumption problem, exacerbated by 
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power limitation and time constraints in real-world 
applications that require AI inference. Using field-
programmable gate arrays (FPGAs) and coarse-grained 
reconfigurable arrays ( CGRAs), the proposed method 
will make use of the dynamic partial reconfiguration 
(DPR), precision scaling, and hardware-level AI kernel 
acceleration to create scalable and flexible computer 
systems that can be deployed at the edge.

The study has made critical contributions in the 
following ways:

•	 Single approach to design which integrates 
logic optimization with workload-awareness, 
reconfiguration at runtime, and quantization.

•	 Accurate power-performance characterization 
of MobileNetV2, YOLO-tiny and FFT inference 
application at state-of-the-art reconfigurable 
platforms.

•	 Proving one to two times higher energy ef-
ficiency, up to 60 percent lower power con-
sumption using a hybrid DPR and INT8 deploy-
ment strategies.

•	 Presentation of modular hardware templates 
and pragmatic information on deployment 
with experimental validation and analysis of 
architecture.

The fact is that alongside these advancements, there 
are a number of still open problems. The research will 
be able to work on:

•	 Effortless composition with edge orchestra-
tion systems, making the workloads migration 
and adaptive reconfiguration scheduling possi-
ble at runtime.

•	 Cross-layer co-optimization in which the hard-
ware reconfigurability is balanced with com-
piler optimizations, AI model architecture, 
and system-level constraints.

•	 Adoption of recent hardware technolo-
gies including the use of emerging memory 
(e.g., non-volatile memory, e.g., ReRAM), 
3D-stacked FPGAs, and photonic interconnec-
tivity to support greater energy scalability.

•	 Security-wise reconfigurable flows Security-in-
genious reconfiguration stream to guarantee 
run time fidelity as well as the bit stream.

With a widening range of AI demands that is becoming 
increasingly distributed, reconfigurable architectures 

have the potential to become a pillar in the evolution 
of future resource-aware, intelligent approaches to 
edge computing.
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