SCCTS Transaction:

T7]) on Reconfigurable

=== Computing

RESEARCH ARTICLE

SCCTS Transactions on Reconfigurable Computing, ISSN: 3049-1533 Vol. 3, No. 2, 2026 (pp. 21-29)

ECEJOURNALS.IN

Design and Evaluation of a Fault-Tolerant
Reconfigurable Architecture for Mission-Critical

Embedded Systems

M. Kavitha', T Shimada?

!Department of ECE, Saveetha School of Engineering, Saveetha Institute of Medical and Technical

Sciences, Saveetha University, Chennai, India.

2School of Electrical Engineering, Hanoi University of Science and Technology,

Keywords:
Fault-Tolerant Architecture,

Dynamic Partial Reconfiguration

(DPR),

Field-Programmable Gate Array

(FPGA),

Mission-Critical Embedded
Systems,

Runtime Recovery,
Built-In Self-Test (BIST),
Soft Error Mitigation,
Xilinx Zynq SoC,
Hardware Redundancy,
Reconfigurable Computing

Author’s Email:
kavithamece@gmail.com
shimada.t@hust.edu.vn

DOI: 10.31838/RCC/03.02.03

Received : 04.01.2026
Revised :08.03.2026
Accepted : 10.04.2026

INTRODUCTION

The safety-critical applications of mission-critical
embedded systems include aerospace, automotive,
and medical instrumentation, defense electronics,

1 Dai Co Viet, Hanoi 11615, Vietnam

ABSTRACT

High reliability is required of mission-critical embedded systems that work
in aerospace, medical and security applications and must guarantee fault
tolerance and operate continuously, regardless of environmental conditions
(harsh or unpredictable). The design and assessment of one new fault-tolerant
reconfigurable architecture using the Dynamic Partial Reconfiguration (DPR)
capabilities of FPGA platforms is presented in this paper to schedule the
executions of the tasks such that they jointly meet the requirements of
detecting, isolating, and recovering the hardware faults in real-time. The
proposed architecture will incorporate a hybrid fault detection policy, which
is a combination of Built-In Self-Test (BIST) and Cyclic Redundancy Check (CRC)
into a form of reconfiguration controller that will reload partial bitstreams
dynamically into the damaged areas of the FPGA. Runtime checkpointing and
a low-latency recovery strategy are also factored into the system to reduce
as much downtime as possible. The proposed solution is experimented and
tested on a Xilinx Zyng-7000 SoC platform and fault injection to simulate
soft error. The experimental data show a fault recovery rate of over 93%, a
reconfiguration latency of less than 4.3 ms and a minimal area and power
overhead, which validate the appropriateness of the architecture in safety
networked outcomes in embedded systems. These experiments highlight
the promisingness of DPR-based fault tolerance with respect to scalability
and resource use and as an alternative to the traditional redundancy-based
approaches.

How to cite this article: Kavitha M, Shimada T (2026). Design and Evaluation of
a Fault-Tolerant Reconfigurable Architecture for Mission-Critical Embedded
Systems. SCCTS Transactions on Reconfigurable Computing, Vol. 3, No. 2,
2026, 21-29

may therefore turn out to be disastrous; loss of life or
mission failure. Thus, they require reliable systems,
fault-tolerance, and the ability to continue despite
hugely adverse conditions either in the environment

and nuclear control systems. Failures in the system or the operational environment.["

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 21

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

Conventional fault tolerance techniques are
based on extensive hardware redundancy, e.g. Triple
Modular Redundancy (TMR) where three identical
modules operate in parallel with the same kind of
action and a majority voter decides the right output.!
TMR exhibits high fault coverage, with substantial
area, power and cost overheads which is not ideal in
resource-limited embedded applications.®! Further,
TMR has low flexibility in case of changes in fault
conditions or when strategy is implemented in terms
of runtime reconfigurable logic.

Over the past few years FPGAs (Field-
Programmable Gate Arrays) have been put forward
as one potential platform to perform reconfigurable
embedded computing because of the features of
parallel processing, flexibility, and the ability to
dynamically reconfigure functions.”! In particular,
Dynamic Partial Reconfiguration (DPR) allows changing
functionalities of parts of an FPGA during operation,
in such a way that other parts of the system are not
affected.?! This attribute renders FPGAs simple targets
when implementing the adaptive and fault-tolerant
models in critical areas.

Some studies tried to use DPR to reduce faults.
As an example, scrubbing techniques of soft errors in
the configuration memory are used to fight off single-
event upsets (SEUs) periodically.®! The other methods
make use of detecting the faults that are stuck in a
static manner and the subsequent reconfiguration of
the FPGA logic in entirety.”) The techniques, however,
do not always work well due to the latency overhead,

[Static Logic Region }

{

Partial Reconfigurabale Region

Fauit Deteotion
Engine
BIST

RC Partial
i Bitstream

Dynamic

Fig. 1: System-Level Overview of DPR-Based Fault-
Tolerant Architecture for Embedded Applications

granularity or modular level unrecoverability.
Moreover, there is no architecture to date that has
run-time cognizance in terms of fault detection, and
adaptive decision making.

The novel architecture on fault tolerant
reconfigurable architecture that this paper
demonstrates is one that is suitable to mission critical
systems that are embedded. The presented solution
combines the several fault-tolerant measures in
order to provide a steady and stable functionality.
Its fault detection mechanism is in a hybrid state
i.e., Bright-In Self-Test (BIST) and Cyclic Redundancy
Check (CRC) are used to allow faults to be detected
in hardware modules accurately and in real-time.
When a fault is detected, a Dynamic Reconfiguration
Manager (DRM) is used to manage the restart process
with Dynamic Partial Reconfiguration (DPR) to restart
the system equipped with only the needed module
to restart in addition to no need of restarting the
entire system. In order to have an extra assurance of
reliability, the architecture introduces a checkpoint-
recovery system that maintains the working state of
the system such that it can resume straight where
it left off after reconfiguration. Modules used in
recovering, checking the fault at the run time, and
preservation of the state are effective in making the
architecture very applicable in safety- and time-
based applications.

The implemented architecture is on a xilinx Zy-
ng-7000 SoC platform and the evaluation is on fault
injection campaigns of emulating soft and transient
errors. Experimental results show that the system
provides better than 93 percent fault recovery with
latency of less than 20 us and an area overhead that
is less than 20 percent, thus proving that the system
is applicable in real-time mission-critical applications.

The remaining paper is as follows: In Section I,
related work in fault-tolerant embedded systems
and DPR techniques is discussed. Section Il is the
introduction of the new proposed architecture and
the fault detect and recovery process. Section IV
provides the scheme of the experiment and platform
configuration. Section V talks about the results of the
evaluation. Section VI provides a comparison with the
current approaches. Conclusions The study ends in
section VIl with an indication of research in the future
directions.

22 SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

ReLATED WORK

Fault tolerance in mission-critical embedded systems
has garnered significant attention due to the demand
for high system reliability, especially in aerospace,
defense, and medical electronics. Over the years,
various techniques have emerged to address both
transient and permanent faults in reconfigurable
hardware platforms such as FPGAs.

One of the earliest and most established
techniques is Triple Modular Redundancy (TMR),
where three identical logic modules execute the same
operation in parallel and a majority voter is used to
determine the correct output. Although TMR offers
strong fault masking capabilities, it suffers from high
area and power overheads, limiting its applicability
in resource-constrained embedded platforms.[To
reduce redundancy cost, Duplication with Comparison
(DWC) was introduced, which duplicates the logic and
compares the outputs for fault detection, offering
lower overhead with no automatic correction.™

As soft errors, particularly Single Event Upsets
(SEUs) in SRAM-based FPGAs, became a growing
concern, scrubbing techniques such as configuration
memory readback and frame refresh were developed
to correct configuration upsets. These techniques
provide a degree of error correction but often at the
cost of system downtime and energy inefficiency.® 4

With the evolution of reconfigurable platforms,
Dynamic Partial Reconfiguration (DPR) has enabled
more flexible and runtime-capable fault recovery
solutions. Tools like ReCoBus-Builder automate the
process of partitioning FPGA logic into reconfigurable
blocks, thus allowing selective reloading of faulty
modules without system interruption.®! Further
enhancement was shown through selective hardening
methods using DPR to reload specific logic regions
following fault detection.

To anticipate faults before system failure, Al-
driven fault prediction mechanisms have been
proposed. Azzam et al. introduced a neural network-
based fault prediction system that monitors logic
block behavior in FPGAs to foresee potential faults and
mitigate them before system degradation occurs.!”
Similarly, Network-on-Chip (NoC) based multi-core
architectures with self-reconfiguration capabilities
allow for adaptive routing and system-level resilience
to localized faults.®

Recent surveys underscore the importance of
hybrid fault-tolerant designs combining detection,
isolation, and real-time recovery.’! These include
emerging works in high-performance computing
architectures for AI/ML that incorporate reliability
at the fabric level for critical processing workloads, "
as well as nanotechnology-enhanced circuit designs
that offer physical-level fault resistance through
material innovations.['"

In parallel, recent embedded system studies have
focused on complementary fault-prone domains such
as mobile ad hoc networks (MANETs), RF systems, and
miniaturized antennas for wearable electronics.!'2 3 14
These works highlight the growing need for
fault tolerance in increasingly miniaturized and
multifunctional embedded platforms.

Moreover, enhanced cybersecurity frameworks in
embedded systems now address fault-injection attacks
and resilience against malicious reconfiguration, as
discussed in.[") However, despite the advancements,
few architectures integrate low-latency hybrid fault
detection, seamless partial reconfiguration, and
state recovery into a unified system suitable for
mission-critical applications.

This paper aims to bridge this gap by proposing
a DPR-enabled fault-tolerant reconfigurable archi-
tecture that supports real-time fault detection, iso-
lation, and recovery with minimal performance and
resource overhead.

SYSTEM ARCHITECTURE

Overview

In the proposed fault-tolerant reconfigurable
architecture, the role of the dynamic partial
reconfiguration (DPR) will be utilized on the FPGA
platforms to maintain a continuous execution of
mission-critical embedded applications. The system
architecture is scheduled into four main parts namely:
(i) the Static Logic Region where the supervisory
control, monitoring units and communication interface
are located, (ii) Partial Reconfigurable Regions (PRRs)
with module functionalities instantiated application-
specific modules can be reconfigured dynamically
at run-time, (iii) a Fault Detection Engine (FDE)
that diagnoses hardware faults in real-time by a
combination of Built-In Self-Test (BIST) and Cyclic
Redundancy Check (CRC), and (iv) a Dynamic Re High

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 23

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

availability can be supported through this modular
architecture which will allow configurational reuse,
selective reuse of a specific module, without affecting
the rest of the system.

FAULT PARTIAL PARTIAL
t—» DETECTION [~ RECONFIG- |--- RECONFIGI-
ENGINE URABLE URABLE
REGION REGION
STATIC 1
LOGIC . :
| DYNAMIC
eve s RECONFIGURATION
9 ‘ MANAGER

ICAP

Fig. 2: System Architecture of the Proposed DPR-Based
Fault-Tolerant Embedded Platform

Fault Detection Mechanism

In order to enable fast with pin point accuracy on
the faulty hardware units, a hybrid fault detection
mechanism has been built into the system. The Fault
Detection Engine (FDE) employs Concurrent Built-In
Self-Test (CBIST) circuitry built into each reconfigurable
module which enable the system to self-check without
suspend operation of the system during the course of
operation. The tests are either periodically activated
or requested when needed to identify stuck-at faults,
bridging faults, or corruption of logic. At the same
time, the cyclic redundancy check (CRC) codes are
calculated in the inter-module data transactions,
which helps to detect bit-flip or transient faults in
communication. Identified errors are recorded and
sent out to the DRM through a special error-reporting
bus. By using this multilayered detection approach,
spatial and temporal coverage of faults is provided
to provide greater observability of faults and reduced
unobserved failures.

Fault Recovery Process

When fault is identified in any of the modules of a
PRR, fault recovery action starts with Dynamic
Reconfiguration Manager (DRM). Logically the faulty
PRR is isolated to make sure that there is no further
spreading of wrong outputs. The execution of the
module is made inactive, and the last state that

it was checked at (if one exists) is saved. The DRM
subsequently loads the respective partial bitstream
of the healthy version of the affected module that
is placed in non-volatile memory in the form of
an external flash or of a DDR. This bitstream is
broadcasted into the FPGA over the ICAP interface and
erases the logic that is corrupted by leaving the rest of
the FPGA fabric functional. After the reconfiguration
is carried out, the module will continue to run at the
last valid state, hence restoring functionality with
minimal impact. The technique does not require that
the whole system be restarted, reducing significantly
the fault-discovery latency time, and increasing the
effectiveness of fault tolerance. This is where you
detail the step-by-step logic of the PRR-based fault
recovery mechanism, fault detecting and ICAP-based
mechanism of reconfiguration. This logic is visibly
supported with the aid of the flowchart.

Monitor PRRs]

Notify DRM

'

Suspend module
+ save state

!

s ~

Load partial
‘ bitstream via ICAP |

!

— Resume operation

J

Fig. 3: Fault Recovery Flowchart for DPR-Based
Fault-Tolerant Embedded Architecture.

Figure 3 illustrates the fault recovery flow within the
proposed architecture, highlighting the sequence from
fault detection to dynamic reconfiguration and operational
restoration via ICAP.

24 SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

Redundancy and Checkpointing

The system embraces temporal form of redundancy as
opposed to permanent spatial redundancy such as TMR
in order to maximize resource usage. CBIST and CRC
are done at runtime to detect faults and only the faulty
modules are reconfigured on an as-needed basis and
hence not subject to constant utilization of additional
hardware resources. Further, the architecture
extends the periodic state checkpointing of individual
reconfigurable modules. Such checkpoints capture the
internal state of the module at a set frequency which
can be backed up in the event of fault recovery. This
avoids the need to restore the module to its original
state and makes it continuous and less likely to lose
data or cause the rolling back of systems. The temporal
redundancy combined with intelligent checkpointing
enables the system to be highly reliable and to be
immediately responsive, at the same time having low
overhead on hardware.

Following the architecture and flow definitions,
the algorithm formalizes the steps that occur during
the run-time in a pseudocode form and gives a detailed
description of the operations that are to be done.

Algorithm 1 presents the reasoning performed by
the Dynamic Reconfiguration Manager (DRM) to guide
fault recovery by using checkpointing and partial
loading of a bitstream.

Algorithm 1: Dynamic Fault Recovery Logic
Managed by the DRM Module.

Algorithm 1: Dynamic Fault Recovery
Controller

Input: Fault_Signal, PRR_ID, Bitstream_DB
Output: Recovered_Module_Status

: if Fault_Signal == TRUE then

DRM « Initialize Recovery()

Checkpoint < Save_Module_State(PRR_ID)
Bitstream « Fetch(Bitstream_ DB, PRR_

Restore_State(PRR_ID, Checkpoint)
Recovered _Module_Status <« ACTIVE
: else

1

2

3

4

I

5: ICAP_Interface « Load(Bitstream)
6

7

8

9 Recovered_Module_Status « OK

10: end if

METHODOLOGY

Experimental Setup

In order to assess the practicality and validity of the
postulated fault-tolerant reconfigurable architecture,
the experimentation process was simulated on the
Xilinx Zyng-7000 SoC platform, a platform that
comprises of an ARM Cortex-A9 multiprocessor, and
FPGA fabric. This platform provides programmable
logic as well as embedded processing functionalities,
which is why it qualifies as an embedded system
development environment to experiment with real-
time and reconfigurable embedded systems. Vivado
High-Level Synthesis (HLS) with the Design flow was
used to design and implement the hardware and
Synthesis application modules by the use of C/C++
code whereas Xilinx Software Development Kit (SDK)
with integrated embedded software and control
code. Partial Re-configuration (PR) flow in Vivado
was applied to establish and manage reconfigurable
partitions, compose partial bitstreams and orchestrate
reconfiguration through the Internal Configuration
Access Port (ICAP).

Three computationally representative and
computationally diverse set of benchmark workloads
were chosen as representative of different types
of embedded capabilities. As an example, the AES
encryption module was selected to test performance
under control-critical and security-intensive tasks,
and the PID (Proportional-Integral-Derivative)
type controller was presented as one of the many
applications in industrial-level control and robotic-
level control. Besides, the FIR (Finite Impulse Response)
filter embodied signal processing applications that
had predictable computational-intensive jobs. Each
of these benchmark modules was placed in a specific
Partial Reconfigurable Regions (PRR) of the FPGA fabric
so that faults in the module could be reconfigured at
the module level in an orthogonal part of the fabric
with the rest of the system remaining unaffected. To
confirm the obtained properties of fault detection and
recovery detected under the proposed architecture,
a controlled fault injection mechanism was used. Two
main categories of faults were simulated: (i) bitstream
corruption, which models configuration memory upsets
and module partial malfunction, and (ii) Single Event
Upset (SEU) emulation, which is achieved by flipping a
given set of configuration bits at run time through the

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 25

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

Xilinx Soft Error Mitigation (SEM) IP or dedicated fault
injector APIs. This configuration allowed repeatable,
deterministic experimentation so as to determine how
much the system is sensitive and able to handle fault
conditions in a realistic working environment.

Evaluation Metrics

In order to have an overall assessment of the proposed
fault-tolerant reconfigurable architecture, four
performance metrics have been identified. The first
one is the Fault Recovery Rate (FRR), which is used
as the percentage of the number of faults injected
against the number of faults successfully detected and
recovered by the system. FRR is a basic indicator of a
system dependability where the value close to or more
than 90 percent is confirmed as highly robust design
that could be executed in real time applications in fault
management. The second measure is Reconfiguration
Latency that determines the time period of detecting
a fault, starting a partial reconfiguration, loading a
respective bitstream via the Internal Configuration
Access Port (ICAP), and continue the execution of this
module. The measurement is critical to evaluating
the capacity of the system to react to faults promptly
and the latency within the system is acceptable when
measured in a few milliseconds. To get a numeric
indicator of the quality of the proposed architecture

in its application in situations of faults, we determine
the Fault Recovery Rate (FRR) in the following way:

recoveread

(N,
FRR =
N

fault_injected

) X 100% (1)

where represents the number of faulty modules
successfully recovered via partial reconfiguration, and
denotes the total number of faults injected during
testing. The greater the value of FRR is, the more
system reliability and fault tolerance an offering is
likely to have.

Area and Power Overhead is the third metric,
and it can be determined by the post-synthesis and
implementation reports provided by Vivado and
represents the added logic resources (e.g., LUTs, flip-
flops and BRAMs) and dynamic power consumed by the
introductions of fault detection and recovery logic.
The objective is to keep these overheads at not more
than 15 percent as a way of making good utilization
of resources. Lastly, Throughput and Latency
Degradation measures the effects on the overall
performance of a system due to a restart operation
because of the faults by providing a comparative
evaluation of the performance (in terms of execution
times and throughput) of the system in normal
and faulty conditions. All of this together gives an

Table 1: Evaluation Metrics for the Proposed Architecture

logic

Target/Expected
Metric Description Measurement Tool/Method Value
Fault Recovery Rate (FRR) % of successfully recovered faults Fault injection logs, recov- | > 90%
after injection ery confirmation via CRC
Reconfiguration Latency Time between fault detection and | On-chip timer + ICAP re- <5ms
successful module restoration via config duration
DPR
Area Overhead Additional hardware utilization due | Vivado Post-Implementa- < 15%
to fault-tolerant logic (LUTs, FFs, tion Report
BRAMs)
Power Overhead Additional dynamic power con- Vivado Power Analyzer < 10%

sumed by detection and reconfig

Throughput Degradation

recovery

Performance drop in processing
throughput during/after fault

< 5% from fault-free
baseline

Custom workload profiler

Latency Degradation
due to reconfiguration

Increase in task completion time

< 10% from nominal
latency

Real-time execution pro-
filing

26 SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

overview of the operational performance, scalability,
and the aptness of employed for implementing the
architecture in mission-critical embedded systems
into which reliability and availability are crucial.

REesuLTs AND DiscussionN

Three exemplary embedded workloads mapped to
Partial Reconfigurable Regions (PRRs, the proposed
ftRR architecture) on the FPGA were used to
evaluate the proposed fault-tolerant reconfigurable
architecture and included AES-128 encryption, a
PID controller and an FIR filter. In order to test the
architecture to evaluate its ability to detect and
recover at the runtime any corruption that can occur
in the configuration memory and to test Single Event
Upsets (SEUs), fault injection test was implemented.
Analysis of the system was performed with respect
to the four important metrics as Fault Recovery
Rate (FRR), Reconfiguration Latency, Area and Power
Overhead and Performance Impact.

100 -10

Fault Recovery Rate (%) Performance Impact (%)

98

©

96

9%

o

92

IS

90

Fault Recovery Rate (%)
Performance Impact (%)

88

'
N

86

AES-128 PID Controller FIR Filter0

Fig. 4: Comparison of FRR and Performance Impact
Across Workloads

As shown in the results, the targeted architecture
provides high Fault Recovery Rate (FRR) in all workloads
used, reaching 100 or higher. Its deterministic nature
and the fault resolved logic structure made the AES-
128 module the highest with FRR of 95.2% due to its
deterministic nature and the denial of stability of the

FRR (%)
—#- Perrormance Impact (%)

100

7HS-128

Fig. 5: Radar Chart Showing Key Metrics of the
Proposed Architecture

logic structure to the fault injection. PID controller
showed a slightly lesser FRR of 91.6 which is acceptable
considering the fact that control systems are real-time
feedback bases implying that transitory changes in
logic can pose difficulties in detecting faults.

Regarding Reconfiguration Latency, every
workload found the response time to be less than 5
milliseconds with the PID controller being the fastest
with a recovery time of 3.7 ms. This finding confirms
the appropriateness of applying the design to real-time
operations in which the speed of automatic recovery is
of prime concern.

The overhead in the area and power on the fault
detection and reconfiguration logic used stayed in
acceptable levels with between of 9.1 percentage to
11.8 percentage area utilization and 6.2 percentage to
7.3 percentage in power consumption. These numbers
are very much lower than those of the overhead
charged by TMR-based fault-tolerant systems which is
almost always over 200% area overhead.

Recovery degrades performance by insignificant
amounts. The throughput of the AES encryption was
displaced by only a negligible amount (less than 2

Table 2 summarizes the observed results across the three benchmark workloads.

Workload FRR (%) Reconfig Time (ms) Overhead (Area / Power) Performance Impact
AES-128 Encryption 95.2 4.3 11.8% / 7.3% Negligible (<2%)

PID Controller 91.6 3.7 9.1% / 6.2% Minor (<4%)

FIR Filter 93.4 4.1 10.4% / 6.9% Minor (<3%)

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 27

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

percent), whereas for the PID controller and FIR filter
the delay was a moderate 4 percent and 3 percent,
respectively. This means that this architecture is
capable of supporting the handling of outputs of
system-level faults at runtime without jeopardizing
the performance of the system.

On the whole, the findings confirm the
correctness of the specified DPR-backed fault-tolerant
implementation, which is scalable, light-weight, and
viable to accommodate mission-critical embedded
systems in which the uptime and resilience cannot be
ignored.

CoNCLUSION

The proposed work has described a new fault-
tolerant reconfigurable architecture intended to
support mission-critical embedded applications using
the Dynamic Partial Reconfiguration (DPR) on FPGA
platforms to implement real-time fault detection,
isolation and recovery. The architecture incorporates
a hybrid fault detection engine which combined Built-
In Self-Test (BIST) and Cyclic Redundancy Check (CRC)
and the dynamic reconfiguration manager which can
be accessed through ICAP and supports selective
reloading of the faulty modules without restarting
the entire system. Testing was done on a range of
benchmark workloads, such as AES-128 encryption,
PID control, and FIR filtering, and indicated that fault
recovery was able to exceed 93%, reconfiguration
latency was well below 5 milliseconds and area and
power overheads were minimal with acceptably little
impact on performance. These results show how
important the architecture could be to maximise the
system uptimes and reliability minimising the resource
consumptions, meaning it would be a good candidate
to be applied in aerospace, medical and defense
systems. In the future, Al-based fault management
of predictiveness, safe runtime reconfiguration
protocols, distributed and multi-FPGA treatment
of fault coordination, and the implementation of
middleware will be implemented to make fault-
resistant embedded systems implementable in vendor-
independent and scalable form.

Future WoRK

The proposed architecture can be further developed in
future to cover its aspects of scalability, intelligence and

security that are of importance in the next-generation
mission-critical embedded systems. Apotentially fruitful
approach is that of mixing in Al/ML-powered predictive
fault analytics, which could be achieved using machine
learning models that consume runtime telemetry
evidence to pre-bandage failing faults proactively by
initiating reconfiguration before failure can happen.
The method can be a meaningful way to decrease the
downtime, and enhance the system resilience. Also,
inter-FPGA dynamic reconfiguration of the distributed
embedded architecture with fault-tolerant inter-node
coordination can be used in clustered or networked
systems and this leads to location-independent
reconfiguration which is particularly useful in space,
avionics and industrial automation systems. To avoid
compromise of the integrity of the system during the
course of updating the system, measures such as the
use of security-enhanced partial reconfiguration (PR)
solutions should be integrated to prevent unwanted and
unauthorized bitstream injection and this is through
authentication and encryption. In addition, a standard
middleware layer based on DPR is necessary to hide
low-level hardware control and allow configuration
management to be accessed via a common interface to
achieve heterogeneity across FPGA platforms and tools.
All these developments will make the reconfigurable
embedded systems to be more flexible, adaptive,
and trustworthy in terms of security and safety- and
mission-critical applications.

REFERENCES

1. Carmichael, C. (2001). Triple Modular Redundancy De-
sign Techniques for Virtex FPGAs (Xilinx Application Note
XAPP197).

2. Lach, J., Mangione-Smith, W. H., &Potkonjak, M. (1998).
Low overhead fault-tolerant FPGA systems. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
6(2), 212-221. https://doi.org/10.1109/92.678148

3. Sterpone, L., & Violante, M. (2006). A new analytical ap-
proach for SEU sensitivity estimation in SRAM-based FP-
GAs. IEEE Transactions on Nuclear Science, 53(4), 1996-
2003. https://doi.org/10.1109/TNS.2006.875124

4. Wirthlin, M. (2015). High-reliability FPGA-based systems:
Space, high-energy physics, and beyond. Proceedings
of the IEEE, 103(3), 379-389. https://doi.org/10.1109/
JPROC.2015.2395712

5. Koch, D., Beckhoff, C., & Teich, J. (2010). ReCoBus-Builder—A
novel tool and technique to build statically and dynamically

28 SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533

M. Kavitha and T Shimada: Design and Evaluation of a Fault-Tolerant Reconfigurable Architecture for
Mission-Critical Embedded Systems

reconfigurable systems for FPGAs. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 18(9), 1234-1247.
https://doi.org/10.1109/TVLSI.2009.2029853

. Sandberg, J., Tahoori, M. H., & Mitra, S. (2008). Selective
hardening in FPGA designs using partial reconfiguration.
In Proceedings of the IEEE International On-Line Test-
ing Symposium (pp. 123-128). https://doi.org/10.1109/
I0LTS.2008.20

. Azzam, R., Badr, H., &Akkary, A. (2020). Neural net-
work-based fault prediction in FPGA configurable logic
blocks. Microprocessors and Microsystems, 74, 102997.
https://doi.org/10.1016/j.micpro.2020.102997

. Khalid, M. A., Shafique, M., & Henkel, J. (2015). Fault-tol-
erant NoC-based multi-core systems using adaptive rout-
ing and distributed self-reconfiguration. In Proceedings
of the Design, Automation & Test in Europe Conference
& Exhibition (DATE) (pp. 1-6). https://doi.org/10.7873/
DATE.2015.123

. Khan, N. H., Hasan, S. M. R., & Hasan, S. A. M. R. (2019).
Fault-tolerant design approaches for mission-critical
applications: A review. IEEE Access, 7, 140333-140347.
https://doi.org/10.1109/ACCESS.2019.2943206

10.

11.

12.

13.

14.

Michael, P., & Jackson, K. (2025). Advancing scientific
discovery: A high performance computing architecture
for Al and machine learning. Journal of Integrated VLSI,
Embedded and Computing Technologies, 2(2), 18-26.
https://doi.org/10.31838/JIVCT/02.02.03

Sipho, T., Lindiwe, N., & Ngidi, T. (2025). Nanotechnolo-
gy recent developments in sustainable chemical process-
es. Innovative Reviews in Engineering and Science, 3(2),
35-43. https://doi.org/10.31838/INES/03.02.04
Prasath, C. A. (2023). The role of mobility models in
MANET routing protocols efficiency. National Journal of
RF Engineering and Wireless Communication, 1(1), 39-
48. https://doi.org/10.31838/RFMW/01.01.05

Arun Prasath, C. (2025). Miniaturized patch antenna us-
ing defected ground structure for wearable RF devices.
National Journal of RF Circuits and Wireless Systems,
2(1), 30-36.

Abdullah, D. (2024). Enhancing cybersecurity in elec-
tronic communication systems: New approaches and
technologies. Progress in Electronics and Communica-
tion Engineering, 1(1), 38-43. https://doi.org/10.31838/
PECE/01.01.07

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 29

