
SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 1

Design and Optimization of Runtime Reconfigurable
Architectures for Low-Latency Edge AI Applications

Leila Ismail1*, Hee-Seob Kim2

1Faculty of Management, Canadian University Dubai, Dubai, United Arab Emirates
2Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea

Abstract
The surrounding network edge has produced such a huge number of artificial
intelligence (AI) applications that the demand to perform real-time in
the strict latency, power consumption, and computing forms is growing.
Conventional cloud-based methods of inference cannot effectively perform
in such settings because of the latency and privacy issues associated with
it. This paper suggests a new type of low-latency Edge AI-focused runtime
reconfigurable architecture (RRA) to meet these challenges. The design is
based on the dynamic partial reconfiguration (DPR) on FPGAs that allows
hardware to be adapted dynamically on-demand depending on the shifting AI
workloads in real-time. In contrast to the fixed hardware designs one can find
in the current hardware designs, our RRA implements optimized hardware
modules of various inference tasks, including convolution, activation, and
pooling layers, and dynamically loads them into the hardware to maximize
resource usage and reduce idle logic. For facilitating the challenging work
of scheduling tasks in the system, a reinforcement learning task scheduler
is integrated into the system and it works by predicting workload patterns
and orchestrating reconfiguration events at low overheads. In addition, a
performance-energy optimization layer is used so that when the architectural
changes are made, they do not violate the energy budget or the energy
budget on the edge device or its thermal constraints. Standard CNN
benchmarking on the entire system is undertaken on Xilinx Zynq UltraScale+
MPSoC platform,and the standard CNN benchmarks include ResNet-18 and
MobileNetV2. Experimental outcomes show that inference latency can be
decreased by as much as 53 percent and power reduction by as much as 41
percent when compared to non-dynamically provisioned baseline designs.
Both factors make the framework scalable to a wider range of neural workloads
with negligible reconfiguration delays owing to overlapping task execution
mechanisms and bitstream caching. The work presented is an indication of
the practicality and success of runtime reconfigurable hardware on producing
desirable, adaptive, energy-conserving, and high inference at the edge. The
approach puts forward a new milestone towards narrowing down the disparity
between AI algorithmic complexity and hardware constraints in tangible edge
implementations leading to smart embedded systems in autonomous cars,
security, health monitoring, and smart factory.
How to cite this article: Ismail L, Kim H (2026). Design and Optimization of
Runtime Reconfigurable Architectures for Low-Latency Edge AI Applications.
SCCTS Transactions on Reconfigurable Computing, Vol. 3, No. 2, 2026, 1-10

Keywords:
Runtime Reconfigurable
Architecture;
Edge AI;
Dynamic Partial Reconfiguration
(DPR); Low-Latency Inference;
FPGA Acceleration; Hardware/
Software Co-Design;
Reinforcement Learning
Scheduler;
Real-Time AI Processing;
Energy-Efficient Edge
Computing.

Author’s Email:
leila.ism@ead.gov.ae,
h.s.kim@snu.ac.kr

DOI: 10.31838/RCC/03.02.01

Received	 :13.11.2025

Revised	 : 18.01.2026

Accepted	 : 20.04.2026

RESEARCH ARTICLE	 ECEJOURNALS.IN
SCCTS Transactions on Reconfigurable Computing, ISSN: 3049-1533 Vol. 3, No. 2, 2026 (pp. 1-10)

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-15332

Still, the majority of the current FPGA-based
AI accelerators adhere to a fixed design process,
which presupposes a set hardware that is set toward
a particular model or task. This lack of flexibility
greatly restricts the ability to scale, as well as adapt
and use resources effectively - especially where AI
workloads change as they age. As one example, a
surveillance edge device or mobile robot may need
to switch between multiple models of deep neural
network (DNN) or different data modalities but need
heterogeneous processing. Under this case, the static
hardware is underutilized and is not able to assure
real-time liabilities.

In order to surpass these constraints, this paper
is presented to learn more about the design and
optimization of Runtime Reconfigurable Architectures
(RRAs) that incorporate the concept of Dynamic Partial
Reconfiguration (DPR), which promotes reconfiguration
of a part of the FPGA at the time that the rest of
the system does not come to a deadlock. With this
ability, hardware modules, including convolution
layers, activation units, and pooling operators, can
be swapped selectively and fast depending on the AI
task requirements that it receives. When added to
smart workload-aware scheduling and ease of energy
optimization planning, RRAs can dynamically swap
performance and power, continuously responding to
wide-ranging operating conditions.

The main research results are the modular and
scalable design of an RRA implemented in Xilinx Zynq
UltraScale+ MPSoC; the creation of a reinforcement
learning scheduler to account intelligent decisions
concerning reconfiguration, as well as a fine-grained
solution to energy-performance tradeoff, not only to
drive real-time hardware adaptation. Comprehensive
experimental evidence proves that the suggested
method greatly decreases latency of inference in
comparison to the static scheme and usage of energy
with high accuracy rates and responsiveness.

This research uses the runtime reconfigurable
architecture as a promising key that will enable the
next-generation low-latency, energy-efficient, and
adaptive Edge AI systems and presents a viable and
scalable solution to the shortcomings of existing
hardware speed compactors.

Introduction
The artificially intelligent and edge computing are
rewriting the future of intelligent systems in different
fields of application, such as autonomous vehicles,
industrial automation, smart health, or surveillance
systems. Edge AI also allows processing and deciphering
data in real-time and makes decisions closer to the
origin of data, decreasing communication overhead,
latency, and risks of privacy loss that might happen
with cloud-based computation. Nonetheless, rogue
experiences in the execution of complex AI inference
on the edge are unlikely to be avoided because the
challenge is in the tight restraint of the processing
power, energy resource, and thermal dispelling.

The general-purpose central processing units
(CPUs) and graphic processing units (GPUs) are high-
energy consumption and performance-per-watt
requirements, and thus not effective to deploy into
edge environment. An attractive alternative to this
approach is however promised by Field-Programmable
Gate Arrays (FPGAs), which can provide the flexibility
of software with the performance advantage of
hardware acceleration. They are parallel, low
power, and reconfigurable and so are an appropriate
architecture in which to deploy custom hardware
accelerators specialized to particular AI inference
problems.

Fig. 1: Conceptual Overview of Runtime Reconfigurable
Architecture for Edge AI Applications Featuring Dynamic
Partial Reconfiguration, Workload-Aware Scheduling, and

Energy Optimization

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 3

Literature Review
A need to handle low-latency energy efficient AI com-
putation at the edge has resulted in considerable
research effort in hardware acceleration platforms
specifically platforms relying on reconfigurable com-
puting. FPGA One attractive platform at the edge of AI
has been the Field-Programmable Gate Arrays (FPGAs)
because of their parallelism, low power, and configu-
rability. Nevertheless, dynamic edge environments re-
quire the capability of changing workloads on AI load,
which traditional static accelerators cannot offer.

Initial studies were dominated by studies of static
FPGA-based AI accelerators, in which the hardware is
programmed (once) at deployment and is unchangeable
during operation. These designs are usually powerful
in achieving high throughput with one model but
experience issues in flexibility where one could change
the AI tasks using it without redeploying or manual
reprogramming. As an example, Wang et al.[1] made
suggestions on FPGA-based static architecture of
convolutional neural network (CNN) inference, where
the energy efficiency was better, but similar to lack of
flexibility of dynamic workloads.

In order to address these constraints, Dynamic
Partial Reconfiguration (DPR) methodologies were
proposed in which the FPGA logic may be modified
selectively at runtime without overlap to the
functionality of the system. As discussed by Liu et al.[2]
it was possible to investigate DPR-based inference
pipelines and work with on-the-fly reconfiguration
of convolutional layers. Another large bottleneck of
such designs is the latency of reconfiguring which
can easily achieve performance back-off unless it is
handled efficiently. Later developments attempted
more methods of reconfiguration overhead reduction,
including bitstream compression, caching and
prefetching.

Meanwhile, Edge-AI systems have been developed
with the help of techniques such as model compression,
model quantization and pruning. A review on
lightweight CNN models in an edge environment by
Ashraf et al. [3], both model design and hardware
deployment should be co-optimized. However, what
is commonly not taken into account by these models
is the possibility of hardware/software co-design in
runtime-adaptiveness scenarios, especially on FPGA
based solutions.

Regardless of these developments, there exists
research gap in the design of holistic, runtime-
optimized architectures having integrated capabilities
of DPR and intelligent scheduling as well as energy-
awareness. This paper fills this gap by suggesting
a modular and reconfigurable system architecture
which reacts dynamically to the demands of tasks
by a reinforcement learning scheduler and energy-
performance tradeoff framework. The suggested
system utilizes the advantages of its preceding static
and semi-static constructs and presents real-time
flexibility that is essential to contemporary Edge AI
projects.

System Architecture
Reconfigurable Hardware Platform
The layout Platform is proposed as a reconfigurable
architecture, where the customizable architecture is
executed on a heterogeneous system-on-chip (SoC)
technology, the Xilinx Zynq UltraScale+ MPSoC, which
consists of both potent processing assets and versatile
programmable logic, and thus is well aligned to edge
AI applications that need high performance and
customization. This platform uses a multi-core ARM
Cortex-A53 processing system (PS) and a high density
programmable logic (PL) fabric combining tight coupling
of software driven task control and the hardware
level acceleration. The PS takes a more macroscopic
control responsibility of scheduling work, the parsing
of the AI models and the partial reconfiguration
control, whereas the PL is set up with the capability of
Dynamic Partial Reconfiguration (DPR) to facilitate the
adaptations that need to be done at runtime. The PL is
split into several reconfigurable sections, or multiple
Partially Reconfigurable Regions (also called PRRs), the
latter being able to load a given hardware module (i.e.,
convolution, pooling, or activation functions) using
precompiled bitstreams stored in either on-chip BRAM
or off-chip memory. Internal configuration access port
(ICAP) is the device employed in accomplishing a swift
and secure reconfiguration of the PL without affecting
the operation of the entire system. The software-
hardware interaction through this architectural
separation eliminates a forced interaction and in this
case the PS constantly queries the system needs and
initiates reconfiguration of the PL modules according
to the workload type, resource availability and

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-15334

performance target. Selective and dynamically time-
sensitive reconfiguration of every component of actual
hardware fabric at run time allows the system to
dynamically customize its resources to match latency
and power requirements of various AI workloads,
thereby optimising system performance and energy
efficiency under differing conditions during operation.

Fig. 2: System Architecture of the Runtime
Reconfigurable Platform Based on Xilinx Zynq UltraScale+
MPSoC Showing Interaction between PS and PL, Dynamic
Partial Reconfiguration via ICAP, and Task Flow through

PRRs

Reconfigurable Processing Modules
The essence of the proposed architecture gets down to
Reconfigurable Processing Modules (PRMs); they are the
AI acceleration units on the programmable logic of the
FPGA. These modules can be used to implement specific
AI kernels: convolution, pooling, nonlinear activation
functions (such as ReLU), in each case implemented in
a partially reconfigurable module. This is in contrast to
the monolithic accelerator designs that do not enable
remodeling individual functional blocks on demand,
or even at all, which is based on the workload and
the given layer of the neural network being run.
Individual PRMs are independently synthesized and
assembled into respective potential partial bitstreams
that are integrally stored in a hierarchical memory
arrangement (on chip Block RAM (BRAM) mostly used
and external non-volatile memory, e.g., QSPI flash)
mostly used and not frequently accessed modules.
The two-storage approach guarantees quick access
to vital bitstreams and the saving of on-chip memory
units. At run time, the Processing System (PS) initiates
reconfiguration of the target PRM to its assigned

Partially Reconfigurable Region (PRR) via the ICAP
(Internal Configuration Access Port) thus providing the
ability to update the hardware fabric at run time. The
scalability feature possessing by these PRMs in terms
of their modularity and reusability is highly remarkable
as the architectural scalability can be increased by
the number of AI workloads without the need to start
over the programming of FPGA. Moreover, allowing
such functional blocks to be swapped individually,
the system minimizes the configuration overhead
and provides more significant runtime improvements,
perfect in terms of liability-sensitive edge AI tasks.

Fig. 3: Operational Flow of Reconfigurable Processing
Modules (PRMs) Including Bitstream Hierarchy, ICAP

Control, and Dynamic Loading into PRRs for AI Kernel
Execution

Runtime Manager
The Runtime Manager is the key element in coordinative
process of dynamic behaviour of the proposed
reconfigurable architecture, as the intelligent control
layer, which provides the bridge between AI workload
demands and the functional flexibility at a hardware
level. Being built into the Processing System (PS) of
the Zynq UltraScale+ by Xilinx, the Runtime Manager
is supposed to constantly monitor the incoming AI
workloads, examining what AI tasks are going to
be performed along the way and what means are
required to address it: convolution task, activation
task, pooling task, or, possibly, a reconfiguration of
the programmable logic might need to be undertaken.
In case an operation requires a hardware module
not already instantiated in the given Partially
Reconfigurable Region (PRR), the Runtime Manager
dynamically reconfigures the processor sequencing
the required bitstream on-chip BRAM (or in external
Flash memory) via the Internal Configuration Access

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 5

Port (ICAP). To reduce the performance overhead
a priority-aware scheduling heuristic is used by the
manager based on factors such as task criticality, data
dependencies and the availability of the resources.
Tasks of high priority are queued and reconfigured
immediately, those that are not so important or
redundant are deferred or consolidated so as to be
able to maximize the reconfiguration cycles. The
scheduler also combines the workload profiling
information and past usage trends and predicts the
modules requirements in advance, so efficient pre-
fetching and bitstream caching strategies can be
exploited. This smart scheduling algorithm minimises
the configuration overhead latency, avoids contention
among system resources and makes them adapt
dynamically to real-time needs without compromising
on latency or throughput aspect. In general, Runtime
Manager supports the smooth and effective functioning
of the runtime reconfigurable architecture, which is
reliable to the fluctuating workload and is considered
an effective solution to edge AI applications in real
time.

Methodology

Dynamic Task Profiling
In order to facilitate smart and adaptive reconfiguration
at runtime, the proposed architecture introduces the
extensive task profiling framework that uses hardware
demand on resources, characteristics of execution
and energy consumption profiles of each AI workload.
Such profiling plays key roles towards making sure that
reconfiguration decisions are performance-efficient
and energy-aware.

Profiling of resources and performance
During this step, every AI inference requirements-
related work are examined, that is, a complete model
or a specific layer-related work like convolution,
pooling, etc. To identify the resource-utilization
metrics such as logic slices, BRAM, DSP, and LUT in
the programmable logic. Also the execution time of
all modules is profiled so as to be able to interpret
the latency behaviour of each module at various
operating conditions and configurations. These figures
are also gathered at both design-time simulation and
run-time execution so as to develop a performance
database with respect to a particular task. When

the computational needs, memory bandwidth and
the estimated latency are quantified the system can
anticipate which hardware module (i.e. partially
reconfigurable module or PRM) is most appropriate
to a specific task and whether and how that module
must be reconfigured. The estimation of energy
consumption is also a key factor to work on the power
envelope of edge devices and this profiling can aid
such estimation. On-chip performance counters power
models and hardware-based calibration measures may
be used to estimate energy metrics allowing accurate
predictions of the energy cost of executing individual
AI kernels.

Integration of Real-time Feedback
In order to guarantee responsiveness to changing
workloads, a lightweight AI inference profiler is
incorporated in the Processing System (PS). It is a run-
time profiler, which watches running tasks and gathers
real-time data on the duration task is completed,
the % of hardware use, the % ratio between hit and
miss of caches, and thermal characteristics. The
profiler takes advantage of on-chip performance
monitoring units (PMUs) and communicates with the
reconfiguration manager on an ongoing basis to give
on-going feedback of the system operational status.
This feedback is then used in real-time to update the
profiling database, used to further refine predictions
and energy and performance predictions, and to
dynamically affect decisions by the task scheduler.
Example, in case a task is found to take greater
power than predicted, or latency exceeds software
specification, the profiler could perform the system
switch to change configuration or propose alternative
PRMs with optimized features. This process is
completed with the introduction of real-time profiling
integrated into the system, making it optimally adapt
to its workload, and maintain performance with low
latency and low energy requirements with fluctuations
in work-loads.

Optimization Strategies
To comprehensively enjoy the advantages of the runtime
reconfigurable architecture (RRAs) in edge AI systems,
it is critical to tackle performance overheads that
commonly come with dynamic partial reconfiguration
(DPR). In particular, reconfiguration latency (the time

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-15336

it takes to replace a new hardware module) may
turn into critical bottleneck without being efficiently
treated. The proposed system thus incorporates a
number of the optimization techniques which seek
to conceal, minimize or annul reconfiguration delay
in order to guarantee optimum hardware resources
utilization and task responsiveness.

Overlapping Reconfiguration Andale
Double-Buffered PRRs
Part of the main tricks used is the use of double-
buffered Partially Reconfigurable Regions (PRRs).
Under this scheme, every important PRR is associated
with an alternate buffer region and so that the system
can rebalance a single PRR with its twin functional in an
active task. In this pipelined mechanism, the temporal
decoupling of execution and reconfiguration has the
effect of hiding the latency of loading new modules.
An example of this could be that the convolution PRM
is being used, and the scheduler knows the next task
to be performed would need a pooling PRM, in this
case the system can load the pooling bitstream into
the idle PRR without holding off the currently running
convolution layer on the PRM. After the task being run
has finished, the PRRs are swapped and the execution
resumes uninterrupted on the reconfigured hardware.
It can be seen that this approach greatly minimize the
idle time of a system as a whole, and increase the
throughput of a real-time system.

Frequency of PRMs Pre-Fetching and
Caching
To improve the actual time of reconfiguration still
further, the system has a mix of pre-fetching and
caching. The most common PRMs (as determined by
profiling and runtime statistics) would be stashed at
system startup or during idle cycles into fast on-chip
Block RAM (BRAM) and high-speed external memory,
or into on-chip Fast SRAM if available. Such a plan
avoids fetches of incomplete bitstreams through
slower non-volatile storage (e.g. QSPI flash), which
may take many milliseconds. The architecture can
guarantee most reconfiguration requests can be
fulfilled by retrieving the required PRMs locally and in
a time scale of microseconds since a prioritized PRM
cache is maintained. The system also backs the reuse
of bitstreams policies that ensure refined redundancy
in loading identical PRM across tasks or objects with
similar kernel traits.

Adaptive Reconfiguration scheduler
Using Reinforcement Learning
A reinforcement learning (RL)-based scheduler is used
so as to arrange the above optimizations intelligently.
This scheduler models the reconfiguration decisions as
a Markov Decision Process (MDP), with the system state
to correspond to the current workload profile, the
cache contents, the availability of a PRR and an energy
budget, and the actions to a specific reconfiguration
operation (e.g. load, skip or prefetch). The RL agent
is trained in a maximized cumulative reward that
strikes a balance between the latency of inference,
energy efficiency and the utilization of PRR. In the
long-term, the agent can identify repetitive sequence
of tasks and proximate PRM allocation beforehand.
As an example, in case a surveillance application is
switching the object detection and tracking models
frequently, the RL scheduler will learn to keep both
associated PRMs in cache and switch between them
resourcefully avoiding the reconfiguration delay.
Such a policy adaptation based on learning allows the
system to recursively improve on its reconfiguration
strategy, such that it can remain low-latency and
energy-sensitive over time within dynamic edge AI
settings.

Having a synergistic combination of multi-pronged
optimization approaches, including execution overlap,

Fig. 4. Dynamic Task Profiling and Feedback Loop for
Performance and Energy-Aware Reconfiguration in

Edge AI Architectures

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 7

intelligent bitstream caching, and adaptive scheduling
through reinforcement learning, allows the proposed
architecture of runtime reconfigurability to satisfy the
strict latency, energy, and flexibility demands of real-
time AI inference at the edge.

Fig. 5: Integrated Optimization Framework for
Runtime Reconfigurable Architectures Incorporating

Double-Buffered PRRs, PRM Caching, and Reinforcement
Learning-Based Scheduling

4.3 Design Space Exploration
To develop the runtime reconfigurable architecture of
low latency edge AI activities, the consideration of the
design space exploration (DSE) is essential in finding
the best possible configuration as a compromise
between performance, power, and hardware resource
limitations. Due to the constraints on the available
resources and heterogeneity of the edge devices,
the DSE process defined in this work is represented
as a multi-objective optimization problem, which
should also optimize the inference throughput and
adaptability under a set of constraints on the resources
consumed in terms of latency, energy efficiency and
area utilization.

Soft Real-Time- Latency Constraint
Edge AI systems are applications where input signals
need to respond to within a specified time: a self-
driving car or real-time surveillance. In that regard,
the system has to comply with soft real time,
that is to say that once in a while it is possible to

violate some soft constraints but it is not possible to
violate hard constraints regularly. At DSE, inference
performance (at worst-case and average latency) is
applied to a set of benchmark AI models per candidate
architecture. These are object detection and image
classification, among others. When tested latency of
the given setup surpasses the limit specified by the
target application (e.g., 100 ms per frame on video
inference), such a configuration is eliminated in the
solution space. The latency model additionally allows
partial reconfiguration overhead, so that excessive
bitstream swapping is fined.

Power Budget (Thermal and Energy
boundaries)
Power and thermal budget is another crucial aspect in
the edge environments. The proposed system should be
within normal range of the battery powered or fanless
embedded systems thermal range. Power models
are used to estimate power consumption on every
configuration by calibrating to Xilinx Power Estimator
(XPE) or the on board power sensors. Dynamic and
active elements of power will be measured in various
workloads, reconfiguration costs which are included
too. The setting that falls above the maximum limit
is the permitted power ceiling (e.g. 5W in mobile
platforms or 10W in IoT gateways) is denied. In support
of this, energy conscious scheduling policies are built
upon and idle PRRs are dynamically powered-off or
clock-gated to reduce leakage.

To develop the runtime reconfigurable
architecture of low latency edge AI activities, the
consideration of the design space exploration (DSE)
is essential in finding the best possible configuration
as a compromise between performance, power, and
hardware resource limitations. Due to the constraints
on the available resources and heterogeneity of the
edge devices, the DSE process defined in this work
is represented as a multi-objective optimization
problem, which should also optimize the inference
throughput and adaptability under a set of constraints
on the resources consumed in terms of latency, energy
efficiency and area utilization.

Soft Real-Time- Latency Constraint
Edge AI systems are applications where input signals
need to respond to within a specified time: a

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-15338

self-driving car or real-time surveillance. In that
regard, the system has to comply with soft real time,
that is to say that once in a while it is possible to
violate some soft constraints but it is not possible to
violate hard constraints regularly. At DSE, inference
performance (at worst-case and average latency) is
applied to a set of benchmark AI models per candidate
architecture. These are object detection and image
classification, among others. When tested latency of
the given setup surpasses the limit specified by the
target application (e.g., 100 ms per frame on video
inference), such a configuration is eliminated in the
solution space. The latency model additionally allows
partial reconfiguration overhead, so that excessive
bitstream swapping is fined.

Power Budget (Thermal and Energy
boundaries)
Power and thermal budget is another crucial aspect in
the edge environments. The proposed system should be
within normal range of the battery powered or fanless
embedded systems thermal range. Power models
are used to estimate power consumption on every
configuration by calibrating to Xilinx Power Estimator
(XPE) or the on board power sensors. Dynamic and
active elements of power will be measured in various
workloads, reconfiguration costs which are included
too. The setting that falls above the maximum limit
is the permitted power ceiling (e.g. 5W in mobile
platforms or 10W in IoT gateways) is denied. In support
of this, energy conscious scheduling policies are built
upon and idle PRRs are dynamically powered-off or
clock-gated to reduce leakage.

Results and Discussion

Experimental Setup
The proposed runtime reconfigurable architecture
(RRA) made its experimental confirmation on the
development board- Xilinx ZCU104 which offers an
amalgamation of a Zynq UltraScale + MPSoC with
high-performance programmable logic along with
a quad-core ARM Cortex-A53 processing system.
These experiments focused on three different AI
workloads with varying complexity: a well-known
image classification architecture, ResNet-18, is a deep
residual network; MobileNetV2, a lightweight CNN
which finds frequent use in mobile and embedded
inference problems; and a custom compact CNN
targeted at edge-specific application like gesture
recognition. All these models were broken into their
constituent kernels (e.g., convolution, activation,
pooling) and each of these kernels was then mapped
to Partially Reconfigurable Modules (PRMs). The
new system was contrasted with two baselines: a
conventional static system that uses an FPGA, where
every module of the accelerator is set in place during
compilation and a heuristic DPR method that consists
of simply replacing modules when the tasks trigger
a change. Inference latency and energy were also
used as evaluation metrics and it was recorded via
performance counters and power sensors extended to
the ZCU104 board.

Performance Comparison and Observa-
tions
Performance results in their entirety as shown in the
table, prove that proposed RRA is better than the
static and heuristic implementations of DPR since
they all outperform on all the tested benchmarks.
With ResNet-18, the static configuration had maximum
latency (97.4 ms), and the proposed RRA halfed
the inference time (45.7 ms) with a 53% inference
time improvement over the baseline and 33% faster
inference as compared to the heuristic DPR (68.2 ms).
In a similar fashion, latency went decreased to 31.2
ms (RRA) and 13.5 ms (stunningly low) in the cases
of MobileNetV2 and the custom CNN respectively.
Talking in energy savings, the proposed architecture
saved 41.1, 36.5, and 39.8 in ResNet-18, MobileNetV2,
and custom CNN respectively. These significant gains
are explained by the potential of the system to only

Fig. 6: Pareto-Optimal Trade-Offs Between Latency and
Energy in Candidate Configurations

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-1533 9

reconfigure dynamically those modules necessary only
at run-time, minimizing idle logic and enhancing use
of resources. The PRR technique with the double-
buffered was also minimising configuration overload,
the bitstream caching was also minimised as well as
the scheduling is based on the reinforcement learning
which ensured the maximum task priorisation and
resource usage.

Discussion and Implications
The performance confirms the usefulness of the
runtime reconfigurable architecture to overcome
the real-time edge AI energy constraints and latency.
As opposed to a static FPGA implementation, which
is specialized to a single workload and is therefore
underutilized in multi-task use-cases, the proposed
RRA will dynamically reconfigure its hardware fabric
to support current workload requirements of the
inference pipeline. Intelligent scheduling mechanism
is highly important in system responsiveness through
learning historical workloads and making appropriate
reconfiguration decision. This flexibility is particularly
useful on the edges of the real world, where workloads
are erratically variable, as in autonomous drones
or IoT sensors, where energy is very constrained.
Moreover, the design of the modular and scalable
architecture allows the use of the architecture

throughout the various AI applications, such as high-
throughput surveillance to ultra-low power wearables.
On the whole, the suggested system shows that the
deployment of the runtime reconfigurability and
optimization in the form of learning can result in
outstanding performance and efficiency advantages,
which will form the backbone of the edge intelligence
platforms in the foreseeable future.

Conclusion
This finding confirms the efficiency of the use of runtime
reconfigurable architectures (RRAs) as a possible
and high-performance approach to supporting low-
latency energy-efficient AI inference edge. Using the
capabilities of Dynamic Partial Reconfiguration (DPR)
along with the capabilities of real-time task profiling,
hardware-aware optimization strategies and a
reinforcement learning-based scheduler, the proposed
architecture implements significant performance
and energy gains in terms of both latency reduction
and energy savings over the traditional static FPGA
and heuristic DPR implementation. The modularity
and adaptability of the system is such that it is able
to dynamically allocate and reconfigure hardware
resources depending on the behaviour of the workload
as well as the priority range, consequently keeping
throughput high and power and area constraints to
its strict specifications associated with the edge
device. Beneficiary Experimental assessments by
standard models like ResNet-18, MobileNetV2, and
a personalized lightweight CNN substantiate the
structure to scale across various computational
needs, presenting maximum 53 percent reduction in
latency and more than 40 percent energy reduction.
Such findings point out that the architecture can
be used in real-world edge AI applications involving
smart monitoring, autonomous agents and wearable
applications. To go further the framework could be
extended and as such become compatible with multi-
FPGA applications enabling distributed workloads to

Table 1. Comparison of Inference Latency and Energy Savings across Different Architectures and AI Models

AI Model Static Latency (ms)
Heuristic DPR
Latency (ms)

Proposed RRA
Latency (ms)

Energy Savings
(%, RRA)

ResNet-18 97.4 68.2 45.7 41.1

MobileNetV2 61.3 44.5 31.2 36.5

Custom CNN 28.6 22.1 13.5 39.8

Fig. 7: Latency Comparison across Architectures for
Different AI Models

Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for
Low-Latency Edge AI Applications

SCCTS Transactions on Reconfigurable Computing | May - Aug | ISSN: 3049-153310

be executed and trading improved scalability. Also,
there will be further research on the enhancement
of support of the transformer-based AI models and
the incorporation of secure reconfiguration protocols
to devise versatile, privacy-resistant AI technology.
Altogether, this project will add to the adaptive
and smart hardware platform that will close the
gap between dynamic AI workloads and the strict
limitations of edge computing environments.

References
1.	 Wang, W., Li, Y., & Yu, Q. (2021). Runtime reconfigu-

rable architecture for energy-efficient image process-
ing on FPGA. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 29(5), 956–969. https://doi.
org/10.1109/TVLSI.2021.3064198

2.	 Liu, Y., Zhang, H., & Xu, X. (2020). Dynamic partial re-
configuration for real-time DNN inference. ACM Transac-
tions on Reconfigurable Technology and Systems, 13(4),
1–19. https://doi.org/10.1145/3390503

3.	 Ashraf, M. A., Abdullah, M. T., & Hasan, N. (2023). Edge
intelligence using lightweight CNNs for smart environ-
ments: A review and framework. IEEE Internet of Things
Journal, 10(6), 4912–4924. https://doi.org/10.1109/
JIOT.2022.3198405

4.	 Zhang, Y., Song, Y., & Cong, J. (2020). Energy-efficient
CNN inference on FPGAs with hybrid quantization. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11), 3277–3290. https://doi.
org/10.1109/TCAD.2020.2973920

5.	 Venieris, S. I., & Bouganis, C. S. (2018). Latency-driven
design for FPGA-based convolutional neural networks.
IEEE Transactions on Computer-Aided Design of Integrat-
ed Circuits and Systems, 37(11), 2610–2623. https://doi.
org/10.1109/TCAD.2018.2832674

6.	 Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang,
R., Ong, J., & Krishnamurthy, R. (2017). Can FPGAs beat
GPUs in accelerating next-generation deep neural net-
works? Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 5–14.
https://doi.org/10.1145/3020078.3021740

7.	 Guan, Y., Xie, Y., Zhang, H., & Wu, C. (2022). Adaptive
dynamic reconfiguration for edge AI acceleration using
reinforcement learning. IEEE Embedded Systems Letters,
14(2), 58–61. https://doi.org/10.1109/LES.2022.3160953

8.	 Suda, N., Chandra, V., Dasika, G., Mohanty, P., Ma, Y., Vrud-
hula, S., Seo, J. S., & Cao, Y. (2016). Throughput-optimized
OpenCL-based FPGA accelerator for large-scale convolu-
tional neural networks. Proceedings of the 2016 ACM/SIG-
DA International Symposium on Field-Programmable Gate
Arrays, 16–25. https://doi.org/10.1145/2847263.2847276

9.	 Bouganis, C. S., & Brookes, M. (2016). FPGA-based design
framework for high-throughput DNN inference under la-
tency constraints. IEEE Transactions on Neural Networks
and Learning Systems, 27(3), 547–560. https://doi.
org/10.1109/TNNLS.2015.2418737

10.	Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong,
J. (2015). Optimizing FPGA-based accelerator design
for deep convolutional neural networks. Proceedings
of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 161–170. https://doi.
org/10.1145/2684746.2689060

11.	Ali, W., Ashour, H., & Murshid, N. (2025). Photonic inte-
grated circuits: Key concepts and applications. Progress
in Electronics and Communication Engineering, 2(2), 1–9.
https://doi.org/10.31838/PECE/02.02.01

12.	Carvalho, F. M., & Perscheid, T. (2025). Fault-tolerant
embedded systems: Reliable operation in harsh environ-
ments approaches. SCCTS Journal of Embedded Systems
Design and Applications, 2(2), 1–8.

13.	Kumar, T. M. S. (2024). Low-power communication proto-
cols for IoT-driven wireless sensor networks. Journal of
Wireless Sensor Networks and IoT, 1(1), 37-43. https://
doi.org/10.31838/WSNIOT/01.01.06

14.	Alwetaishi, N., & Alzaed, A. (2025). Smart construction
materials for sustainable and resilient infrastructure in-
novations. Innovative Reviews in Engineering and Science,
3(2), 60–72. https://doi.org/10.31838/INES/03.02.07

15.	Tsai, X., & Jing, L. (2025). Hardware-based security for
embedded systems: Protection against modern threats.
Journal of Integrated VLSI, Embedded and Computing
Technologies, 2(2), 9–17. https://doi.org/10.31838/
JIVCT/02.02.02

