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Abstract 
The surrounding network edge has produced such a huge number of artificial 
intelligence (AI) applications that the demand to perform real-time in 
the strict latency, power consumption, and computing forms is growing. 
Conventional cloud-based methods of inference cannot effectively perform 
in such settings because of the latency and privacy issues associated with 
it. This paper suggests a new type of low-latency Edge AI-focused runtime 
reconfigurable architecture (RRA) to meet these challenges. The design is 
based on the dynamic partial reconfiguration (DPR) on FPGAs that allows 
hardware to be adapted dynamically on-demand depending on the shifting AI 
workloads in real-time. In contrast to the fixed hardware designs one can find 
in the current hardware designs, our RRA implements optimized hardware 
modules of various inference tasks, including convolution, activation, and 
pooling layers, and dynamically loads them into the hardware to maximize 
resource usage and reduce idle logic. For facilitating the challenging work 
of scheduling tasks in the system, a reinforcement learning task scheduler 
is integrated into the system and it works by predicting workload patterns 
and orchestrating reconfiguration events at low overheads. In addition, a 
performance-energy optimization layer is used so that when the architectural 
changes are made, they do not violate the energy budget or the energy 
budget on the edge device or its thermal constraints. Standard CNN 
benchmarking on the entire system is undertaken on Xilinx Zynq UltraScale+ 
MPSoC platform,and the standard CNN benchmarks include ResNet-18 and 
MobileNetV2. Experimental outcomes show that inference latency can be 
decreased by as much as 53 percent and power reduction by as much as 41 
percent when compared to non-dynamically provisioned baseline designs. 
Both factors make the framework scalable to a wider range of neural workloads 
with negligible reconfiguration delays owing to overlapping task execution 
mechanisms and bitstream caching. The work presented is an indication of 
the practicality and success of runtime reconfigurable hardware on producing 
desirable, adaptive, energy-conserving, and high inference at the edge. The 
approach puts forward a new milestone towards narrowing down the disparity 
between AI algorithmic complexity and hardware constraints in tangible edge 
implementations leading to smart embedded systems in autonomous cars, 
security, health monitoring, and smart factory.
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Still, the majority of the current FPGA-based 
AI accelerators adhere to a fixed design process, 
which presupposes a set hardware that is set toward 
a particular model or task. This lack of flexibility 
greatly restricts the ability to scale, as well as adapt 
and use resources effectively - especially where AI 
workloads change as they age. As one example, a 
surveillance edge device or mobile robot may need 
to switch between multiple models of deep neural 
network (DNN) or different data modalities but need 
heterogeneous processing. Under this case, the static 
hardware is underutilized and is not able to assure 
real-time liabilities.

In order to surpass these constraints, this paper 
is presented to learn more about the design and 
optimization of Runtime Reconfigurable Architectures 
(RRAs) that incorporate the concept of Dynamic Partial 
Reconfiguration (DPR), which promotes reconfiguration 
of a part of the FPGA at the time that the rest of 
the system does not come to a deadlock. With this 
ability, hardware modules, including convolution 
layers, activation units, and pooling operators, can 
be swapped selectively and fast depending on the AI 
task requirements that it receives. When added to 
smart workload-aware scheduling and ease of energy 
optimization planning, RRAs can dynamically swap 
performance and power, continuously responding to 
wide-ranging operating conditions.

The main research results are the modular and 
scalable design of an RRA implemented in Xilinx Zynq 
UltraScale+ MPSoC; the creation of a reinforcement 
learning scheduler to account intelligent decisions 
concerning reconfiguration, as well as a fine-grained 
solution to energy-performance tradeoff, not only to 
drive real-time hardware adaptation. Comprehensive 
experimental evidence proves that the suggested 
method greatly decreases latency of inference in 
comparison to the static scheme and usage of energy 
with high accuracy rates and responsiveness.

This research uses the runtime reconfigurable 
architecture as a promising key that will enable the 
next-generation low-latency, energy-efficient, and 
adaptive Edge AI systems and presents a viable and 
scalable solution to the shortcomings of existing 
hardware speed compactors.

Introduction
The artificially intelligent and edge computing are 
rewriting the future of intelligent systems in different 
fields of application, such as autonomous vehicles, 
industrial automation, smart health, or surveillance 
systems. Edge AI also allows processing and deciphering 
data in real-time and makes decisions closer to the 
origin of data, decreasing communication overhead, 
latency, and risks of privacy loss that might happen 
with cloud-based computation. Nonetheless, rogue 
experiences in the execution of complex AI inference 
on the edge are unlikely to be avoided because the 
challenge is in the tight restraint of the processing 
power, energy resource, and thermal dispelling.

The general-purpose central processing units 
(CPUs) and graphic processing units (GPUs) are high-
energy consumption and performance-per-watt 
requirements, and thus not effective to deploy into 
edge environment. An attractive alternative to this 
approach is however promised by Field-Programmable 
Gate Arrays (FPGAs), which can provide the flexibility 
of software with the performance advantage of 
hardware acceleration. They are parallel, low 
power, and reconfigurable and so are an appropriate 
architecture in which to deploy custom hardware 
accelerators specialized to particular AI inference 
problems.

Fig. 1: Conceptual Overview of Runtime Reconfigurable 
Architecture for Edge AI Applications Featuring Dynamic 
Partial Reconfiguration, Workload-Aware Scheduling, and 

Energy Optimization
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Literature Review
A need to handle low-latency energy efficient AI com-
putation at the edge has resulted in considerable 
research effort in hardware acceleration platforms 
specifically platforms relying on reconfigurable com-
puting. FPGA One attractive platform at the edge of AI 
has been the Field-Programmable Gate Arrays (FPGAs) 
because of their parallelism, low power, and configu-
rability. Nevertheless, dynamic edge environments re-
quire the capability of changing workloads on AI load, 
which traditional static accelerators cannot offer.

Initial studies were dominated by studies of static 
FPGA-based AI accelerators, in which the hardware is 
programmed (once) at deployment and is unchangeable 
during operation. These designs are usually powerful 
in achieving high throughput with one model but 
experience issues in flexibility where one could change 
the AI tasks using it without redeploying or manual 
reprogramming. As an example, Wang et al.[1] made 
suggestions on FPGA-based static architecture of 
convolutional neural network (CNN) inference, where 
the energy efficiency was better, but similar to lack of 
flexibility of dynamic workloads.

In order to address these constraints, Dynamic 
Partial Reconfiguration (DPR) methodologies were 
proposed in which the FPGA logic may be modified 
selectively at runtime without overlap to the 
functionality of the system. As discussed by Liu et al.[2]  
it was possible to investigate DPR-based inference 
pipelines and work with on-the-fly reconfiguration 
of convolutional layers. Another large bottleneck of 
such designs is the latency of reconfiguring which 
can easily achieve performance back-off unless it is 
handled efficiently. Later developments attempted 
more methods of reconfiguration overhead reduction, 
including bitstream compression, caching and 
prefetching.

Meanwhile, Edge-AI systems have been developed 
with the help of techniques such as model compression, 
model quantization and pruning. A review on 
lightweight CNN models in an edge environment by 
Ashraf et al. [3], both model design and hardware 
deployment should be co-optimized. However, what 
is commonly not taken into account by these models 
is the possibility of hardware/software co-design in 
runtime-adaptiveness scenarios, especially on FPGA 
based solutions.

Regardless of these developments, there exists 
research gap in the design of holistic, runtime-
optimized architectures having integrated capabilities 
of DPR and intelligent scheduling as well as energy-
awareness. This paper fills this gap by suggesting 
a modular and reconfigurable system architecture 
which reacts dynamically to the demands of tasks 
by a reinforcement learning scheduler and energy-
performance tradeoff framework. The suggested 
system utilizes the advantages of its preceding static 
and semi-static constructs and presents real-time 
flexibility that is essential to contemporary Edge AI 
projects.

System Architecture
Reconfigurable Hardware Platform
The layout Platform is proposed as a reconfigurable 
architecture, where the customizable architecture is 
executed on a heterogeneous system-on-chip (SoC) 
technology, the Xilinx Zynq UltraScale+ MPSoC, which 
consists of both potent processing assets and versatile 
programmable logic, and thus is well aligned to edge 
AI applications that need high performance and 
customization. This platform uses a multi-core ARM 
Cortex-A53 processing system (PS) and a high density 
programmable logic (PL) fabric combining tight coupling 
of software driven task control and the hardware 
level acceleration. The PS takes a more macroscopic 
control responsibility of scheduling work, the parsing 
of the AI models and the partial reconfiguration 
control, whereas the PL is set up with the capability of 
Dynamic Partial Reconfiguration (DPR) to facilitate the 
adaptations that need to be done at runtime. The PL is 
split into several reconfigurable sections, or multiple 
Partially Reconfigurable Regions (also called PRRs), the 
latter being able to load a given hardware module (i.e., 
convolution, pooling, or activation functions) using 
precompiled bitstreams stored in either on-chip BRAM 
or off-chip memory. Internal configuration access port 
(ICAP) is the device employed in accomplishing a swift 
and secure reconfiguration of the PL without affecting 
the operation of the entire system. The software-
hardware interaction through this architectural 
separation eliminates a forced interaction and in this 
case the PS constantly queries the system needs and 
initiates reconfiguration of the PL modules according 
to the workload type, resource availability and 
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performance target. Selective and dynamically time-
sensitive reconfiguration of every component of actual 
hardware fabric at run time allows the system to 
dynamically customize its resources to match latency 
and power requirements of various AI workloads, 
thereby optimising system performance and energy 
efficiency under differing conditions during operation.

Fig. 2: System Architecture of the Runtime 
Reconfigurable Platform Based on Xilinx Zynq UltraScale+ 
MPSoC Showing Interaction between PS and PL, Dynamic 
Partial Reconfiguration via ICAP, and Task Flow through 

PRRs

Reconfigurable Processing Modules
The essence of the proposed architecture gets down to 
Reconfigurable Processing Modules (PRMs); they are the 
AI acceleration units on the programmable logic of the 
FPGA. These modules can be used to implement specific 
AI kernels: convolution, pooling, nonlinear activation 
functions (such as ReLU), in each case implemented in 
a partially reconfigurable module. This is in contrast to 
the monolithic accelerator designs that do not enable 
remodeling individual functional blocks on demand, 
or even at all, which is based on the workload and 
the given layer of the neural network being run. 
Individual PRMs are independently synthesized and 
assembled into respective potential partial bitstreams 
that are integrally stored in a hierarchical memory 
arrangement (on chip Block RAM (BRAM) mostly used 
and external non-volatile memory, e.g., QSPI flash) 
mostly used and not frequently accessed modules. 
The two-storage approach guarantees quick access 
to vital bitstreams and the saving of on-chip memory 
units. At run time, the Processing System (PS) initiates 
reconfiguration of the target PRM to its assigned 

Partially Reconfigurable Region (PRR) via the ICAP 
(Internal Configuration Access Port) thus providing the 
ability to update the hardware fabric at run time. The 
scalability feature possessing by these PRMs in terms 
of their modularity and reusability is highly remarkable 
as the architectural scalability can be increased by 
the number of AI workloads without the need to start 
over the programming of FPGA. Moreover, allowing 
such functional blocks to be swapped individually, 
the system minimizes the configuration overhead 
and provides more significant runtime improvements, 
perfect in terms of liability-sensitive edge AI tasks.

Fig. 3: Operational Flow of Reconfigurable Processing 
Modules (PRMs) Including Bitstream Hierarchy, ICAP 

Control, and Dynamic Loading into PRRs for AI Kernel 
Execution

Runtime Manager
The Runtime Manager is the key element in coordinative 
process of dynamic behaviour of the proposed 
reconfigurable architecture, as the intelligent control 
layer, which provides the bridge between AI workload 
demands and the functional flexibility at a hardware 
level. Being built into the Processing System (PS) of 
the Zynq UltraScale+ by Xilinx, the Runtime Manager 
is supposed to constantly monitor the incoming AI 
workloads, examining what AI tasks are going to 
be performed along the way and what means are 
required to address it: convolution task, activation 
task, pooling task, or, possibly, a reconfiguration of 
the programmable logic might need to be undertaken. 
In case an operation requires a hardware module 
not already instantiated in the given Partially 
Reconfigurable Region (PRR), the Runtime Manager 
dynamically reconfigures the processor sequencing 
the required bitstream on-chip BRAM (or in external 
Flash memory) via the Internal Configuration Access 



Leila Ismail and Hee-Seob Kim : Design and Optimization of Runtime Reconfigurable Architectures for  
Low-Latency Edge AI Applications

SCCTS  Transactions on Reconfigurable Computing  | May - Aug | ISSN: 3049-1533 5

Port (ICAP). To reduce the performance overhead 
a priority-aware scheduling heuristic is used by the 
manager based on factors such as task criticality, data 
dependencies and the availability of the resources. 
Tasks of high priority are queued and reconfigured 
immediately, those that are not so important or 
redundant are deferred or consolidated so as to be 
able to maximize the reconfiguration cycles. The 
scheduler also combines the workload profiling 
information and past usage trends and predicts the 
modules requirements in advance, so efficient pre-
fetching and bitstream caching strategies can be 
exploited. This smart scheduling algorithm minimises 
the configuration overhead latency, avoids contention 
among system resources and makes them adapt 
dynamically to real-time needs without compromising 
on latency or throughput aspect. In general, Runtime 
Manager supports the smooth and effective functioning 
of the runtime reconfigurable architecture, which is 
reliable to the fluctuating workload and is considered 
an effective solution to edge AI applications in real 
time.

Methodology

Dynamic Task Profiling
In order to facilitate smart and adaptive reconfiguration 
at runtime, the proposed architecture introduces the 
extensive task profiling framework that uses hardware 
demand on resources, characteristics of execution 
and energy consumption profiles of each AI workload. 
Such profiling plays key roles towards making sure that 
reconfiguration decisions are performance-efficient 
and energy-aware.

Profiling of resources and performance
During this step, every AI inference requirements-
related work are examined, that is, a complete model 
or a specific layer-related work like convolution, 
pooling, etc. To identify the resource-utilization 
metrics such as logic slices, BRAM, DSP, and LUT in 
the programmable logic. Also the execution time of 
all modules is profiled so as to be able to interpret 
the latency behaviour of each module at various 
operating conditions and configurations. These figures 
are also gathered at both design-time simulation and 
run-time execution so as to develop a performance 
database with respect to a particular task. When 

the computational needs, memory bandwidth and 
the estimated latency are quantified the system can 
anticipate which hardware module (i.e. partially 
reconfigurable module or PRM) is most appropriate 
to a specific task and whether and how that module 
must be reconfigured. The estimation of energy 
consumption is also a key factor to work on the power 
envelope of edge devices and this profiling can aid 
such estimation. On-chip performance counters power 
models and hardware-based calibration measures may 
be used to estimate energy metrics allowing accurate 
predictions of the energy cost of executing individual 
AI kernels.

Integration of Real-time Feedback
In order to guarantee responsiveness to changing 
workloads, a lightweight AI inference profiler is 
incorporated in the Processing System (PS). It is a run-
time profiler, which watches running tasks and gathers 
real-time data on the duration task is completed, 
the % of hardware use, the % ratio between hit and 
miss of caches, and thermal characteristics. The 
profiler takes advantage of on-chip performance 
monitoring units (PMUs) and communicates with the 
reconfiguration manager on an ongoing basis to give 
on-going feedback of the system operational status. 
This feedback is then used in real-time to update the 
profiling database, used to further refine predictions 
and energy and performance predictions, and to 
dynamically affect decisions by the task scheduler. 
Example, in case a task is found to take greater 
power than predicted, or latency exceeds software 
specification, the profiler could perform the system 
switch to change configuration or propose alternative 
PRMs with optimized features. This process is 
completed with the introduction of real-time profiling 
integrated into the system, making it optimally adapt 
to its workload, and maintain performance with low 
latency and low energy requirements with fluctuations 
in work-loads.

Optimization Strategies
To comprehensively enjoy the advantages of the runtime 
reconfigurable architecture (RRAs) in edge AI systems, 
it is critical to tackle performance overheads that 
commonly come with dynamic partial reconfiguration 
(DPR). In particular, reconfiguration latency (the time 
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it takes to replace a new hardware module) may 
turn into critical bottleneck without being efficiently 
treated. The proposed system thus incorporates a 
number of the optimization techniques which seek 
to conceal, minimize or annul reconfiguration delay 
in order to guarantee optimum hardware resources 
utilization and task responsiveness.

Overlapping Reconfiguration Andale 
Double-Buffered PRRs
Part of the main tricks used is the use of double-
buffered Partially Reconfigurable Regions (PRRs). 
Under this scheme, every important PRR is associated 
with an alternate buffer region and so that the system 
can rebalance a single PRR with its twin functional in an 
active task. In this pipelined mechanism, the temporal 
decoupling of execution and reconfiguration has the 
effect of hiding the latency of loading new modules. 
An example of this could be that the convolution PRM 
is being used, and the scheduler knows the next task 
to be performed would need a pooling PRM, in this 
case the system can load the pooling bitstream into 
the idle PRR without holding off the currently running 
convolution layer on the PRM. After the task being run 
has finished, the PRRs are swapped and the execution 
resumes uninterrupted on the reconfigured hardware. 
It can be seen that this approach greatly minimize the 
idle time of a system as a whole, and increase the 
throughput of a real-time system.

Frequency of PRMs Pre-Fetching and 
Caching
To improve the actual time of reconfiguration still 
further, the system has a mix of pre-fetching and 
caching. The most common PRMs (as determined by 
profiling and runtime statistics) would be stashed at 
system startup or during idle cycles into fast on-chip 
Block RAM (BRAM) and high-speed external memory, 
or into on-chip Fast SRAM if available. Such a plan 
avoids fetches of incomplete bitstreams through 
slower non-volatile storage (e.g. QSPI flash), which 
may take many milliseconds. The architecture can 
guarantee most reconfiguration requests can be 
fulfilled by retrieving the required PRMs locally and in 
a time scale of microseconds since a prioritized PRM 
cache is maintained. The system also backs the reuse 
of bitstreams policies that ensure refined redundancy 
in loading identical PRM across tasks or objects with 
similar kernel traits.

Adaptive Reconfiguration scheduler 
Using Reinforcement Learning
A reinforcement learning (RL)-based scheduler is used 
so as to arrange the above optimizations intelligently. 
This scheduler models the reconfiguration decisions as 
a Markov Decision Process (MDP), with the system state 
to correspond to the current workload profile, the 
cache contents, the availability of a PRR and an energy 
budget, and the actions to a specific reconfiguration 
operation (e.g. load, skip or prefetch). The RL agent 
is trained in a maximized cumulative reward that 
strikes a balance between the latency of inference, 
energy efficiency and the utilization of PRR. In the 
long-term, the agent can identify repetitive sequence 
of tasks and proximate PRM allocation beforehand. 
As an example, in case a surveillance application is 
switching the object detection and tracking models 
frequently, the RL scheduler will learn to keep both 
associated PRMs in cache and switch between them 
resourcefully avoiding the reconfiguration delay. 
Such a policy adaptation based on learning allows the 
system to recursively improve on its reconfiguration 
strategy, such that it can remain low-latency and 
energy-sensitive over time within dynamic edge AI 
settings.

Having a synergistic combination of multi-pronged 
optimization approaches, including execution overlap, 

Fig. 4. Dynamic Task Profiling and Feedback Loop for 
Performance and Energy-Aware Reconfiguration in  

Edge AI Architectures
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intelligent bitstream caching, and adaptive scheduling 
through reinforcement learning, allows the proposed 
architecture of runtime reconfigurability to satisfy the 
strict latency, energy, and flexibility demands of real-
time AI inference at the edge.

Fig. 5: Integrated Optimization Framework for  
Runtime Reconfigurable Architectures Incorporating 

Double-Buffered PRRs, PRM Caching, and Reinforcement 
Learning-Based Scheduling

4.3 Design Space Exploration
To develop the runtime reconfigurable architecture of 
low latency edge AI activities, the consideration of the 
design space exploration (DSE) is essential in finding 
the best possible configuration as a compromise 
between performance, power, and hardware resource 
limitations. Due to the constraints on the available 
resources and heterogeneity of the edge devices, 
the DSE process defined in this work is represented 
as a multi-objective optimization problem, which 
should also optimize the inference throughput and 
adaptability under a set of constraints on the resources 
consumed in terms of latency, energy efficiency and 
area utilization.

Soft Real-Time- Latency Constraint
Edge AI systems are applications where input signals 
need to respond to within a specified time: a self-
driving car or real-time surveillance. In that regard, 
the system has to comply with soft real time, 
that is to say that once in a while it is possible to 

violate some soft constraints but it is not possible to 
violate hard constraints regularly. At DSE, inference 
performance (at worst-case and average latency) is 
applied to a set of benchmark AI models per candidate 
architecture. These are object detection and image 
classification, among others. When tested latency of 
the given setup surpasses the limit specified by the 
target application (e.g., 100 ms per frame on video 
inference), such a configuration is eliminated in the 
solution space. The latency model additionally allows 
partial reconfiguration overhead, so that excessive 
bitstream swapping is fined.

Power Budget (Thermal and Energy 
boundaries)
Power and thermal budget is another crucial aspect in 
the edge environments. The proposed system should be 
within normal range of the battery powered or fanless 
embedded systems thermal range. Power models 
are used to estimate power consumption on every 
configuration by calibrating to Xilinx Power Estimator 
(XPE) or the on board power sensors. Dynamic and 
active elements of power will be measured in various 
workloads, reconfiguration costs which are included 
too. The setting that falls above the maximum limit 
is the permitted power ceiling (e.g. 5W in mobile 
platforms or 10W in IoT gateways) is denied. In support 
of this, energy conscious scheduling policies are built 
upon and idle PRRs are dynamically powered-off or 
clock-gated to reduce leakage.

To develop the runtime reconfigurable 
architecture of low latency edge AI activities, the 
consideration of the design space exploration (DSE) 
is essential in finding the best possible configuration 
as a compromise between performance, power, and 
hardware resource limitations. Due to the constraints 
on the available resources and heterogeneity of the 
edge devices, the DSE process defined in this work 
is represented as a multi-objective optimization 
problem, which should also optimize the inference 
throughput and adaptability under a set of constraints 
on the resources consumed in terms of latency, energy 
efficiency and area utilization.

Soft Real-Time- Latency Constraint
Edge AI systems are applications where input signals 
need to respond to within a specified time: a  
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self-driving car or real-time surveillance. In that 
regard, the system has to comply with soft real time, 
that is to say that once in a while it is possible to 
violate some soft constraints but it is not possible to 
violate hard constraints regularly. At DSE, inference 
performance (at worst-case and average latency) is 
applied to a set of benchmark AI models per candidate 
architecture. These are object detection and image 
classification, among others. When tested latency of 
the given setup surpasses the limit specified by the 
target application (e.g., 100 ms per frame on video 
inference), such a configuration is eliminated in the 
solution space. The latency model additionally allows 
partial reconfiguration overhead, so that excessive 
bitstream swapping is fined.

Power Budget (Thermal and Energy 
boundaries)
Power and thermal budget is another crucial aspect in 
the edge environments. The proposed system should be 
within normal range of the battery powered or fanless 
embedded systems thermal range. Power models 
are used to estimate power consumption on every 
configuration by calibrating to Xilinx Power Estimator 
(XPE) or the on board power sensors. Dynamic and 
active elements of power will be measured in various 
workloads, reconfiguration costs which are included 
too. The setting that falls above the maximum limit 
is the permitted power ceiling (e.g. 5W in mobile 
platforms or 10W in IoT gateways) is denied. In support 
of this, energy conscious scheduling policies are built 
upon and idle PRRs are dynamically powered-off or 
clock-gated to reduce leakage.

Results and Discussion

Experimental Setup
The proposed runtime reconfigurable architecture 
(RRA) made its experimental confirmation on the 
development board- Xilinx ZCU104 which offers an 
amalgamation of a Zynq UltraScale + MPSoC with 
high-performance programmable logic along with 
a quad-core ARM Cortex-A53 processing system. 
These experiments focused on three different AI 
workloads with varying complexity: a well-known 
image classification architecture, ResNet-18, is a deep 
residual network; MobileNetV2, a lightweight CNN 
which finds frequent use in mobile and embedded 
inference problems; and a custom compact CNN 
targeted at edge-specific application like gesture 
recognition. All these models were broken into their 
constituent kernels (e.g., convolution, activation, 
pooling) and each of these kernels was then mapped 
to Partially Reconfigurable Modules (PRMs). The 
new system was contrasted with two baselines: a 
conventional static system that uses an FPGA, where 
every module of the accelerator is set in place during 
compilation and a heuristic DPR method that consists 
of simply replacing modules when the tasks trigger 
a change. Inference latency and energy were also 
used as evaluation metrics and it was recorded via 
performance counters and power sensors extended to 
the ZCU104 board.

Performance Comparison and Observa-
tions
Performance results in their entirety as shown in the 
table, prove that proposed RRA is better than the 
static and heuristic implementations of DPR since 
they all outperform on all the tested benchmarks. 
With ResNet-18, the static configuration had maximum 
latency (97.4 ms), and the proposed RRA halfed 
the inference time (45.7 ms) with a 53% inference 
time improvement over the baseline and 33% faster 
inference as compared to the heuristic DPR (68.2 ms). 
In a similar fashion, latency went decreased to 31.2 
ms (RRA) and 13.5 ms (stunningly low) in the cases 
of MobileNetV2 and the custom CNN respectively. 
Talking in energy savings, the proposed architecture 
saved 41.1, 36.5, and 39.8 in ResNet-18, MobileNetV2, 
and custom CNN respectively. These significant gains 
are explained by the potential of the system to only 

Fig. 6: Pareto-Optimal Trade-Offs Between Latency and 
Energy in Candidate Configurations
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reconfigure dynamically those modules necessary only 
at run-time, minimizing idle logic and enhancing use 
of resources. The PRR technique with the double-
buffered was also minimising configuration overload, 
the bitstream caching was also minimised as well as 
the scheduling is based on the reinforcement learning 
which ensured the maximum task priorisation and 
resource usage.

Discussion and Implications
The performance confirms the usefulness of the 
runtime reconfigurable architecture to overcome 
the real-time edge AI energy constraints and latency. 
As opposed to a static FPGA implementation, which 
is specialized to a single workload and is therefore 
underutilized in multi-task use-cases, the proposed 
RRA will dynamically reconfigure its hardware fabric 
to support current workload requirements of the 
inference pipeline. Intelligent scheduling mechanism 
is highly important in system responsiveness through 
learning historical workloads and making appropriate 
reconfiguration decision. This flexibility is particularly 
useful on the edges of the real world, where workloads 
are erratically variable, as in autonomous drones 
or IoT sensors, where energy is very constrained. 
Moreover, the design of the modular and scalable 
architecture allows the use of the architecture 

throughout the various AI applications, such as high-
throughput surveillance to ultra-low power wearables. 
On the whole, the suggested system shows that the 
deployment of the runtime reconfigurability and 
optimization in the form of learning can result in 
outstanding performance and efficiency advantages, 
which will form the backbone of the edge intelligence 
platforms in the foreseeable future.

Conclusion
This finding confirms the efficiency of the use of runtime 
reconfigurable architectures (RRAs) as a possible 
and high-performance approach to supporting low-
latency energy-efficient AI inference edge. Using the 
capabilities of Dynamic Partial Reconfiguration (DPR) 
along with the capabilities of real-time task profiling, 
hardware-aware optimization strategies and a 
reinforcement learning-based scheduler, the proposed 
architecture implements significant performance 
and energy gains in terms of both latency reduction 
and energy savings over the traditional static FPGA 
and heuristic DPR implementation. The modularity 
and adaptability of the system is such that it is able 
to dynamically allocate and reconfigure hardware 
resources depending on the behaviour of the workload 
as well as the priority range, consequently keeping 
throughput high and power and area constraints to 
its strict specifications associated with the edge 
device. Beneficiary Experimental assessments by 
standard models like ResNet-18, MobileNetV2, and 
a personalized lightweight CNN substantiate the 
structure to scale across various computational 
needs, presenting maximum 53 percent reduction in 
latency and more than 40 percent energy reduction. 
Such findings point out that the architecture can 
be used in real-world edge AI applications involving 
smart monitoring, autonomous agents and wearable 
applications. To go further the framework could be 
extended and as such become compatible with multi-
FPGA applications enabling distributed workloads to 

Table 1. Comparison of Inference Latency and Energy Savings across Different Architectures and AI Models

AI Model Static Latency (ms)
Heuristic DPR 
Latency (ms)

Proposed RRA 
Latency (ms)

Energy Savings  
(%, RRA)

ResNet-18 97.4 68.2 45.7 41.1

MobileNetV2 61.3 44.5 31.2 36.5

Custom CNN 28.6 22.1 13.5 39.8

Fig. 7: Latency Comparison across Architectures for 
Different AI Models
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be executed and trading improved scalability. Also, 
there will be further research on the enhancement 
of support of the transformer-based AI models and 
the incorporation of secure reconfiguration protocols 
to devise versatile, privacy-resistant AI technology. 
Altogether, this project will add to the adaptive 
and smart hardware platform that will close the 
gap between dynamic AI workloads and the strict 
limitations of edge computing environments.
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