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Abstract 
Reconfigurable hardware architectures are transforming the realm of high 
performance computing. In the face of explosive computational demands 
(exponentially growing across a wide range of domains ranging from financial 
modeling to bioinformatics) the need for robust and adaptable computing 
systems is never higher. In this paper, it will discuss the design of some of 
the fault tolerant reconfigurable computing systems, the applications, the 
challenges and the new ideas in the cutting edge solution in high perfor-
mance computation. Field Programmable Gate Arrays (FPGAs) based recon-
figurable computing systems present a unique combination of flexibility and 
performance that is difficult to equal in traditional computing systems. These 
systems enable, by allowing hardware configuration to be changed dynami-
cally, to obtain optimization to the task at hand resulting in performance and 
energy efficiency gains. While these systems are being deployed to mission 
critical applications, reliability and fault tolerance must be guaranteed. In 
this article, we conduct a thorough study of the core concepts related to the 
reconfigurable systems, their fault tolerant designs, innovative architectures 
developed to overcome the reliability problems, and the real world appli-
cation where these systems are strongly influencing. This article seeks to 
explore a detailed perspective encompassing FPGA based fault detection and 
masking techniques, as well as the implications of the fault tolerant reconfig-
urable computing for high performance computing landscapes, from current 
state to future directions.
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Reconfigurable Computing 
Architectures Understanding
The reconfigurable computing architectures mark 
an important paradigm shift in how we problem 
solve computationally. Unlike fixed hardware 
systems, reconfigurable platforms feature the unique 
capability to reconfigure its hardware structure 
depending on the corresponding algorithmic 
requirements. This flexibility is gained through the 
use of programmable logic devices, which usually 
result in Field Programmable Gate Arrays (FPGAs). 
The concept of hardware plasticity is the heart of 
reconfigurable computing. A configurable logic block 
(CLB) is an array of logic elements, such as flip 

flops and complex functions, circuitry to implement 
multiplexers, registers, latches, etc., interconnected 
by programmable routing resources. As an example of 
these CLBs, they are configurable to produce digital 
circuits ranging from simple logic gates to complex 
arithmetic units. Custom data paths are created 
using programmable interconnects, which result in 
custom hardware tailored to the needs of a particular 
application.

Reconfigurable architectures not only provide 
low cost, but also offer high performance since they 
can utilize parallelism to achieve high performance. 
These systems take advantage of the fact that 
by having multiple processing elements that can 
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operate concurrently, the overall performance can be 
substantially better than that of traditional sequential 
processors on a class of problems. In applications 
where data parallelism is high, or where custom data 
flow architectures are required, this parallelism is 
especially helpful.[1-4]

Fig. 1. Reconfigurable Computing Architectures  
Understanding

Runtime reconfiguration is yet another important 
aspect of reconfigurable computing. This feature 
serves the purpose of dynamic modification of the 
hardware configuration during the program execution, 
allowing the system to respond to altering its 
computational requirements. Runtime reconfiguration 
allows time multiplexing of hardware resources, 
time multiplexing of adaptive algorithms, and even 
self modifying circuits. But, of course, this comes 
at a price: reconfigurable architectures are flexible. 
FPGAs are programmable, therefore overhead is 
incurred in the area, power consumption, maximum 
operating frequency, compared to the Application 
Specific Integrated Circuits (ASICs). Choosing 
reconfigurable platforms for their applications, 
designers must carefully strike the balance between 
flexibility and performance. Yet, the benefits of 
reconfigurable computing have driven adoption 
in a spectrum of high performance applications. 
Having applications in domains ranging from signal 
processing and cryptography to bioinformatics and 
financial modeling, reconfigurable systems show their 
effectiveness in those which require high performance 
but also flexibility. With the increasing focus on the 

design of fault tolerant reconfigurable systems a 
few fundamental and unique characteristics and 
challenges for these flexible architectures must be 
kept in mind. As strong as reconfigurable computing 
is, these same features introduce new considerations 
for its reliability and fault tolerance [5]-[9].

Fault Tolerance Needs in High Perfor-
mance Computing
Reconfigurable hardware is becoming a vital component 
for high performance computing (HPC) environments, 
which are facing demand constraints in computational 
power and energy efficiency. Given that these systems 
are being scaled up to solve more complex problems, 
the probability of faults occurring both before or 
during use also increases. Thus, it requires a sound 
fault tolerance approach to secure computations’ 
reliability and integrity.

The need for fault tolerance in HPC sys-
tems stems from several factors:
Scale and Complexity: Modern HPC systems often 
consist of thousands of components interconnected. 
The probability of component failures increases 
linearly with the system size. Even with high quality 
components, there is simply too much in play in terms 
of elements over prolonged operation periods, thus 
the statistical inevitability of faults is a reality. Long-
Running Computations: Among the applications of HPC 
there are many that involve simulating or analyzing 
something that can run for days or even weeks. 
With these long running jobs these single faults can 
invalidate results or resulted in lots of delay and 
wasted resources.

Critical Applications: The critical domains of 
weather forecasting, financial modeling, and scientific 
research often use HPC systems. Such applications 
are fault tolerant critical systems, and error in these 
applications may impact their users very significantly 
(Table 1).
Energy Considerations: It’s important to keep in 
mind, as HPC systems continue to push performance to 
the limits, power consumption becomes a significant 
factor. Many fault tolerant designs can be designed 
to keep a high efficiency rate without wasting 
computational effort.
Data Integrity: Data on very large scales, or extremely 
valuable/dangerous data completes the metadata 
about such HPC applications. To minimize errors 
caused by human error and noisy measurements, 
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fault-tolerant mechanisms are necessary to provide 
the integrity needed for this data in computing.

The issue of fault tolerance is more colored by the 
need for it with respect to reconfigurable computing. 
The programmable nature of FPGAs introduces unique 
challenges and opportunities for implementing fault-
tolerant designs:

•	 Configuration Errors: Even the process of 
loading a new configuration onto an FPGA can 
themselves be prone to errors. It is critical to 
ensure the configuration bitstream integrity 
and to verify programming correctly.

•	 Soft Errors: Like other semiconductor devices, 
FPGAs are susceptible to the soft errors due to 
cosmic rays or other sources of ionizing radia-
tion. Transient faults can corrupt the state of 
logic elements or memory cells, but the effect 
can be faulty logic elements or memory cells, 
or faulty computations.

•	 Wear-out Effects: Wear-out effects of FPGAs 
tend to generate permanent faults in some 
parts of the device over time. These long term 
reliability concerns must be included in fault 
tolerant designs.

Dynamic Reconfiguration: The capacity to reconfigure 
FPGAs at runtime provides the opportunity to 
leverage them as implementing platforms for new 
adaptive fault tolerance mechanisms. Nevertheless 
it complicates the process of assuring the reliability 
of the reconfiguration process itself. The fault 
tolerance challenges that must be addressed are 
multi-faceted and necessitate a multi-faceted fault 
tolerance solution which includes hardware and 

software techniques. For designers of fault-tolerant 
reconfigurable systems operating in high performance 
computing environments, a number of strategies are 
available from redundancy, and error detection and 
correction schemes to highly sophisticated runtime 
monitoring and recovery mechanisms. In the following 
sections we will investigate how the many aspects 
of designing fault tolerant reconfigurable systems 
are being addressed by the number of techniques 
and architectures which are now being designed to 
actually tackle the problem.[10-12]

Fundamental Principles of Fault 
Tolerant Design
Fault tolerant reconfigurable computing systems 
must be designed to have a deep understanding of 
the fundamental relations that are essential for 
reliable system design. The principles described here 
form the cornerstone of more sophisticated fault 
tolerance techniques. Let’s explore the key concepts 
that guide the development of robust, fault-tolerant 
reconfigurable systems:

Redundancy
Perhaps the most important principle in fault tolerant 
design is redundancy. It involves additional components 
or subsystems that in the event of a failure will 
control. In reconfigurable systems, redundancy can be 
implemented at various levels (Figure 2):
Hardware Redundancy: It consists of duplicating 
critical components and/or whole functional units. As 
an example, triple modular redundancy (TMR) employs 
three identical modules performing a task that have a 
voter circuit for deciding on the correct output.

Table 1: Fault-Tolerance Mechanisms in Reconfigurable Computing Systems

Mechanism Fault-Tolerance Strategy

Triple Modular 
Redundancy (TMR)

Triple Modular Redundancy (TMR) involves replicating critical components three times to ensure 
that the system can tolerate a single failure without affecting operation.

Dynamic 
Reconfiguration

Dynamic reconfiguration allows the system to replace faulty components on the fly, improving 
reliability by adapting hardware resources to changing conditions.

Error Detection and 
Correction Codes

Error detection and correction codes ensure that data transmitted within the system is verified 
and corrected, minimizing the risk of system malfunctions due to corrupted data.

Self-Healing Systems Self-healing systems are designed to detect faults and automatically recover by rerouting tasks 
or bypassing the failed components to maintain continuous operation.

Redundant Processing 
Units

Redundant processing units offer backup components that take over tasks when the primary unit 
fails, ensuring uninterrupted operation of critical applications.

Checkpointing and 
Rollback

Checkpointing and rollback techniques periodically save system states so that in case of failure, 
the system can restore its state and continue operation from the last stable point.
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Information Redundancy: It’s a technique for adding 
more bits to data to detect and correct errors. Past 
examples in the data example are error correcting 
codes (ECCs) which are a common type of the data, 
allowing the system to detect and correct some type 
of bit errors.

Time Redundancy: Transient faults are detected with 
repetitions of operations multiple times. We find this 
approach useful for detecting soft errors on FPGAs.

Software Redundancy: Different versions of software 
algorithms are run to check against and catch errors.

Fault Detection and Isolation
To achieve fault tolerance however, it is first necessary 
to identify where the faults are and what they are. 

Fault detection mechanisms in reconfigurable systems 
often include:

•	 Built-In Self-Test (BIST): Diagnostic tests and 
fault detection performed on the FPGA fabric 
distributed circuitry.

•	 Concurrent Error Detection: Real time moni-
toring techniques that identify errors as they 
occur in system operation.

•	 Signature Analysis: Methods of compressing 
circuit outputs into a simple form which can 
be checked easily for errors.

When a problem is identified it is isolated up to the 
point it can’t spread and affect the remainder of the 
system. It could mean that faulty components would 
be disabled or that data flows will redirect around 
affected areas (Table 2).

Fig. 2: Fundamental Principles of Fault Tolerant Design

Table 2: Performance Benefits of Fault-Tolerant Reconfigurable Computing Systems

Benefit Value Proposition

Increased Reliability Increased reliability is achieved by integrating fault-tolerant mechanisms that prevent system 
failures and ensure continuous operation in critical applications.

Enhanced System Avail-
ability

Enhanced system availability ensures that high-performance applications remain operational 
despite faults, which is vital in mission-critical tasks.

Fault Recovery Speed Fault recovery speed improves as the system can quickly identify and address issues without 
significant delays, enhancing performance in real-time environments.

Improved Data Integrity Improved data integrity ensures that transmitted or processed data remains accurate, reducing 
the chances of errors that could compromise system output.

Extended System Lifes-
pan

Extended system lifespan is facilitated by fault-tolerant mechanisms that reduce the impact of 
hardware failures, resulting in fewer repairs and replacements.

Reduced System Down-
time

Reduced system downtime is a key benefit of fault-tolerant designs, enabling the system to 
continue operating even when certain components fail.
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Error Correction and Recovery
The system must possess mechanisms of correcting 
errors and recovery normal operation after detecting 
a fault. Some common approaches include:

•	 Forward Error Correction: The repetition of 
information without transmitting it is used to 
correct errors.

•	 Checkpoint and Rollback: Keeping system 
state snapshot every once in awhile, and roll 
back to a known good state if there are errors.

•	 Dynamic Reconfiguration: Reusing recon-
figurable chip’s capability of reprogramming 
faulty areas or loading alternative configura-
tions.

Graceful Degradation
In some cases it may not be possible recover from a 
fault completely. Graceful degradation permits the 
system to degrade gracefully as it continues operating 
however much assistance is still available under 
the reduced or degraded level of performance or 
functionality. This principle is especially applicable in 
reconfigurable systems where partial reconfiguration 
can be employed to offer reduced functionality 
versions of critical components.[13-14]

Fault Tolerance Metrics
To evaluate the effectiveness of fault-tolerant designs, 
several metrics are commonly used:

•	 Reliability: Probability that a system will per-
form its intended function according to the 
specified performance measures under stated 
condition.

•	 Availability: The percent of time that a sys-
tem is in a functional condition.

•	 Mean Time Between Failures (MTBF): The 
mean time between system failure.

•	 Mean Time To Repair (MTTR): Time taken, on 
average, to repair a failed system.

•	 These metrics enable designers to quantify 
the available fault tolerance in their systems 
and to make decisions regarding tradeoffs be-
tween reliability, performance and cost.

Design for Testability
To keep fault tolerant systems, importance is attached 
to incorporating features that allow for testing and 
fault diagnosis. This includes:

•	 Scan Chains: ‘Easily tested serial paths 
through the circuit are provided to test inter-
nal states.’

•	 Boundary Scan: Method for establishing and 
testing interconnects between chips.

•	 Debug Interfaces: Monitoring and control 
mechanisms of the internal state of the sys-
tem at run time.

With observation of these fundamental principles, 
designers can build a strong case for fault tolerant 
reconfigurable computing systems. Nevertheless, the 
less generic nature of FPGAs, along with the needs of 
high performance applications, calls for other special 
techniques, which we will discuss later on [15]-[18].

Fault Detection and Masking Techniques 
based on FPGA
The unique opportunities that Field Programmable Gate 
Arrays (FPGAs) present us for the implementation of 
sophisticated fault detection and masking techniques 
are highlighted with the aid of two (2) illustrative 
examples. The reconfigurable nature of these devices 
enables adaptive fault tolerance mechanisms to 
dynamically adapt to changing conditions. Let’s 
explore some of the key FPGA-based techniques for 
fault detection and masking:

Concurrent Error Detection (CED)
We have already described Concurrent Error Detection 
as a powerful way to noisily detect faults during 
normal system operation. In FPGA-based systems, CED 
can be implemented through various methods:
Duplication with Comparison: It entails making two 
copies of a circuit, with exact construction, and then 
comparing the outputs. A fault is indicated by any 
discrepency. However, this simple approach comes at 
a high area overhead (Figure 3).

Parity Prediction: For a circuit, we compute parity 
bits for the expected outputs, and then we check why 
the actual parity bits are different from ours. Full 
duplication is more area efficient than this method, 
except it may miss some types of errors.

Residue Checking: It consists of computing in two 
formally different number systems---one is the original 
number system, and the other is a residue number 
system. If these results differ, there’s error. In particular, 
this method is often good for arithmetic circuits.

Time-Redundant Computation: Transient faults get 
detected by executing the same computation many 
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times, using possibly different encodings of the input. 
The use of FPGAs’ reconfigurability in this context is 
used to implement time multiplexed redundancy.

Dynamic Reconfiguration: Using runtime 
reconfiguration as the basis to allow FPGAs to be used 
as implementing platforms for new adaptive fault 
tolerance mechanisms opens the door for their further 
deployment. However it complicates assurance of the 
reliability of the reconfiguration process itself.

The fault tolerance challenges are multi faceted 
and call out for a multi facet fault tolerance solution 
including hardware and software techniques. 
Redundancy, error detection and correction, and 
highly sophisticated runtime monitoring and recovery 
strategies are available to designers of fault tolerant 
reconfigurable systems operating in high performance 
computing environments. The following sections 
examine how various techniques and architectures 
are being developed to actually face the problem of 
designing fault tolerant reconfigurable systems.

In order to design fault tolerant reconfigurable 
computing systems with a deep understanding of the 
relations that are necessary for reliable system design, 
a deep understanding of the fundamental relations is 
needed. The techniques described here are the basis 
for more sophisticated fault tolerance techniques. Let’s 
explore the key concepts that guide the development 
of robust, fault-tolerant reconfigurable systems. 
Redundancy is perhaps the most important principle 

in fault tolerant design. It consists of additional or 
subsystem components or subcomponents to control 
in the event of failure. In reconfigurable systems, 
redundancy can be implemented at various levels.[19-22]

Fault Detection and Isolation
However, for fault tolerance it is necessary to find and 
define the faults, first. Fault detection mechanisms in 
reconfigurable systems often include:

•	 Built-In Self-Test (BIST): Performed diagnos-
tic tests and fault detection on the FPGA fab-
ric distributed circuitry.

•	 Concurrent Error Detection: Techniques for 
real time monitoring to detect errors as they 
manifest in system operation.

•	 Signature Analysis: Circuit outputs com-
pressed into a simple form to make them easy 
to check for errors.

If there are something to fix it isolates till it cannot 
spread and hit the rest of the system. This could mean 
disabled parts or that data flows will skip over the 
problematic areas.

At the same time, the system needs to have the 
ways of error correction and recovery from fault for 
normal operation. Some common approaches include:

•	 Forward Error Correction: To correct errors, 
information is repeated without transmitting 
it.

Fig. 3: Concurrent Error Detection (CED)
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•	 Checkpoint and Rollback: Roll back to a 
known good state if there are errors, but 
keeping system state snapshot every once in 
awhile.

•	 Dynamic Reconfiguration: Regeneration of 
faulty areas in reconfigurable chip or loading 
of a different configuration.[23-24]

Graceful Degradation
Here it may not be possible to recover completely 
from a fault. Gracious degradation means that the 
system degrades gracefully as it continues working, 
however much of the System’s performance or 
functionality remains available. This principle is also 
applicable when partial reconfiguration can be used to 
provide reduced functionality versions of some critical 
components in reconfigurable systems.

Fault Tolerance Metrics
To evaluate the effectiveness of fault-tolerant designs, 
several metrics are commonly used:

•	 Reliability: Chance of a system being able 
to perform its specified function within pre-
scribed requirements, taking into account its 
status.

•	 Availability: The proportion of a systems time 
spent in a functional condition.

•	 Mean Time Between Failures (MTBF): Mean 
time of system failure.

•	 Mean Time To Repair (MTTR): The average 
time taken to repair a system that failed.

These metrics provide designers with a measure of 
the available fault tolerance that can be achieved 
in different kinds of systems and facilitate decisions 
regarding tradeoffs between reliability, performance 
and cost.

Design for Testability
So that fault tolerant systems are kept, featues are 
used to incorporate testing and fault diagnosis. This 
includes:

•	 Scan Chains: ‘To test internal states, easi-
ly tested serial paths through the circuit are 
provided.’

•	 Boundary Scan: A method for interconnecting 
chips.

•	 Debug Interfaces: At run time, monitoring 
and control mechanisms of the internal state 
of the system.

Designers build the case for fault tolerant 
reconfigurable computing systems with observation 
of these basic principles. However, other special 
techniques are needed, although the less generic 
nature of FPGAs and the need for high performance 
applications require other techniques, which we will 
discuss later on.

Fault Detection and Masking Techniques 
implemented in FPGA
With the aid of two (2) illustrative examples, the 
unique opportunities for applying sophisticated 
fault detection and masking techniques afforded 
by Field Programmable Gate Arrays (FPGAs) are 
highlighted. Adaptive fault tolerance mechanisms 
using these devices are reconfigurable, providing 
adaptive fault tolerance adaptations to changing 
environments. Let’s explore some of the key FPGA-
based techniques for fault detection and masking. 
Concurrent Error Detection is a strong way to noisily 
detect faults throughout normal system operation 
that we have already described above. In FPGA-based 
systems, CED can be implemented through various 
methods. The communication infrastructure in a 
fault-tolerant reconfigurable system plays a critical 
role in both normal operation and fault recovery. 
With consideration of these architectural aspects, 
designers can build reconfigurable computing systems 
which are both highly performant and resistant to a 
broad spectrum of fault possibility. The battlefield is 
to build a flexible, flexible architecture that responds 
to changes and gracefully handle faults when they 
do occur. To address the quest for more reliable and 
fault tolerant FPGA based systems, new architectures 
beyond conventional design approaches have been 
developed. These novel architectures exploit the 
specific advantages that FPGAs provide to realize new 
fault tolerance methods in hardware. Let’s explore 
some of the cutting-edge FPGA architectures designed 
with fault tolerance as a primary consideration. 
Self-healing FPGAs represent a paradigm shift in 
fault-tolerant design, incorporating mechanisms for 
autonomous fault detection, isolation, and recovery. 
Combining the strengths of traditional CPUs with the 
flexibility of FPGAs can lead to highly robust fault-
tolerant systems:

Conclusion
These innovative designs leverage the reconfigurable 
nature of FPGAs to implement fault tolerance 
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through time-multiplexing. These FPGA architectures 
constitute the state-of the art of the fault tolerant 
design for reconfigurable systems. These architectures 
promise to deliver unprecedented levels of reliability 
and resilience for high performance computing 
applications, while using advanced fault tolerance 
mechanisms that are incorporated directly into 
the hardware fabric. With further research in this 
field, we will also witness an evolution of ever more 
sophisticated fault tolerant FPGA architectures in the 
realm of reliable reconfigurable computing. In recent 
years, reconfigurable computing research has begun 
to offer fault tolerant computing systems that are 
being applied to a wide spectrum of industries and 
domains, where high performance, reliability and 
adaptability are critical. Let’s explore some of the 
key real-world applications where these systems are 
making a significant impact:
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