
 24				 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

Fault-Tolerant Reconfigurable Computing Systems for
High Performance Applications

Mohammad Alizadeh1, Ali Esfahani Pour2, Hossein Mahmoudian3*
1-3School of Electrical Engineering Iran University of Science and Technology Tehran, Iran

Abstract
Reconfigurable hardware architectures are transforming the realm of high
performance computing. In the face of explosive computational demands
(exponentially growing across a wide range of domains ranging from financial
modeling to bioinformatics) the need for robust and adaptable computing
systems is never higher. In this paper, it will discuss the design of some of
the fault tolerant reconfigurable computing systems, the applications, the
challenges and the new ideas in the cutting edge solution in high perfor-
mance computation. Field Programmable Gate Arrays (FPGAs) based recon-
figurable computing systems present a unique combination of flexibility and
performance that is difficult to equal in traditional computing systems. These
systems enable, by allowing hardware configuration to be changed dynami-
cally, to obtain optimization to the task at hand resulting in performance and
energy efficiency gains. While these systems are being deployed to mission
critical applications, reliability and fault tolerance must be guaranteed. In
this article, we conduct a thorough study of the core concepts related to the
reconfigurable systems, their fault tolerant designs, innovative architectures
developed to overcome the reliability problems, and the real world appli-
cation where these systems are strongly influencing. This article seeks to
explore a detailed perspective encompassing FPGA based fault detection and
masking techniques, as well as the implications of the fault tolerant reconfig-
urable computing for high performance computing landscapes, from current
state to future directions.
How to cite this article: Alizadeh M, Pour AE, Mahmoudian H (2025).
Fault-Tolerant Reconfigurable Computing Systems for High Performance
Applications. SCCTS Transactions on Reconfigurable Computing, Vol. 2,
No. 1, 2025, 24-32

Reconfigurable Computing
Architectures Understanding
The reconfigurable computing architectures mark
an important paradigm shift in how we problem
solve computationally. Unlike fixed hardware
systems, reconfigurable platforms feature the unique
capability to reconfigure its hardware structure
depending on the corresponding algorithmic
requirements. This flexibility is gained through the
use of programmable logic devices, which usually
result in Field Programmable Gate Arrays (FPGAs).
The concept of hardware plasticity is the heart of
reconfigurable computing. A configurable logic block
(CLB) is an array of logic elements, such as flip

flops and complex functions, circuitry to implement
multiplexers, registers, latches, etc., interconnected
by programmable routing resources. As an example of
these CLBs, they are configurable to produce digital
circuits ranging from simple logic gates to complex
arithmetic units. Custom data paths are created
using programmable interconnects, which result in
custom hardware tailored to the needs of a particular
application.

Reconfigurable architectures not only provide
low cost, but also offer high performance since they
can utilize parallelism to achieve high performance.
These systems take advantage of the fact that
by having multiple processing elements that can

Keywords:
Fault Tolerance;
High Performance;
Reconfigurable Computing;
Reliability;
System Resilience;
Performance Optimization

Corresponding Author Email:
hosseinmah@elec.iust.ac.ir

DOI: 10.31838/RCC/02.01.04

Received	 :	 27.08.24
Revised 	 :	 02.11.24
Accepted	 :	 17.12.24

RESEARCH ARTICLE	 ECEJOURNALS.IN
SCCTS Transactions on Reconfigurable Computing, ISSN: 3049-1533 Vol. 2, No. 1, 2025 (pp. 24-32)

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533	 25

operate concurrently, the overall performance can be
substantially better than that of traditional sequential
processors on a class of problems. In applications
where data parallelism is high, or where custom data
flow architectures are required, this parallelism is
especially helpful.[1-4]

Fig. 1. Reconfigurable Computing Architectures
Understanding

Runtime reconfiguration is yet another important
aspect of reconfigurable computing. This feature
serves the purpose of dynamic modification of the
hardware configuration during the program execution,
allowing the system to respond to altering its
computational requirements. Runtime reconfiguration
allows time multiplexing of hardware resources,
time multiplexing of adaptive algorithms, and even
self modifying circuits. But, of course, this comes
at a price: reconfigurable architectures are flexible.
FPGAs are programmable, therefore overhead is
incurred in the area, power consumption, maximum
operating frequency, compared to the Application
Specific Integrated Circuits (ASICs). Choosing
reconfigurable platforms for their applications,
designers must carefully strike the balance between
flexibility and performance. Yet, the benefits of
reconfigurable computing have driven adoption
in a spectrum of high performance applications.
Having applications in domains ranging from signal
processing and cryptography to bioinformatics and
financial modeling, reconfigurable systems show their
effectiveness in those which require high performance
but also flexibility. With the increasing focus on the

design of fault tolerant reconfigurable systems a
few fundamental and unique characteristics and
challenges for these flexible architectures must be
kept in mind. As strong as reconfigurable computing
is, these same features introduce new considerations
for its reliability and fault tolerance [5]-[9].

Fault Tolerance Needs in High Perfor-
mance Computing
Reconfigurable hardware is becoming a vital component
for high performance computing (HPC) environments,
which are facing demand constraints in computational
power and energy efficiency. Given that these systems
are being scaled up to solve more complex problems,
the probability of faults occurring both before or
during use also increases. Thus, it requires a sound
fault tolerance approach to secure computations’
reliability and integrity.

The need for fault tolerance in HPC sys-
tems stems from several factors:
Scale and Complexity: Modern HPC systems often
consist of thousands of components interconnected.
The probability of component failures increases
linearly with the system size. Even with high quality
components, there is simply too much in play in terms
of elements over prolonged operation periods, thus
the statistical inevitability of faults is a reality. Long-
Running Computations: Among the applications of HPC
there are many that involve simulating or analyzing
something that can run for days or even weeks.
With these long running jobs these single faults can
invalidate results or resulted in lots of delay and
wasted resources.

Critical Applications: The critical domains of
weather forecasting, financial modeling, and scientific
research often use HPC systems. Such applications
are fault tolerant critical systems, and error in these
applications may impact their users very significantly
(Table 1).
Energy Considerations: It’s important to keep in
mind, as HPC systems continue to push performance to
the limits, power consumption becomes a significant
factor. Many fault tolerant designs can be designed
to keep a high efficiency rate without wasting
computational effort.
Data Integrity: Data on very large scales, or extremely
valuable/dangerous data completes the metadata
about such HPC applications. To minimize errors
caused by human error and noisy measurements,

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

 26				 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

fault-tolerant mechanisms are necessary to provide
the integrity needed for this data in computing.

The issue of fault tolerance is more colored by the
need for it with respect to reconfigurable computing.
The programmable nature of FPGAs introduces unique
challenges and opportunities for implementing fault-
tolerant designs:

•	 Configuration Errors: Even the process of
loading a new configuration onto an FPGA can
themselves be prone to errors. It is critical to
ensure the configuration bitstream integrity
and to verify programming correctly.

•	 Soft Errors: Like other semiconductor devices,
FPGAs are susceptible to the soft errors due to
cosmic rays or other sources of ionizing radia-
tion. Transient faults can corrupt the state of
logic elements or memory cells, but the effect
can be faulty logic elements or memory cells,
or faulty computations.

•	 Wear-out Effects: Wear-out effects of FPGAs
tend to generate permanent faults in some
parts of the device over time. These long term
reliability concerns must be included in fault
tolerant designs.

Dynamic Reconfiguration: The capacity to reconfigure
FPGAs at runtime provides the opportunity to
leverage them as implementing platforms for new
adaptive fault tolerance mechanisms. Nevertheless
it complicates the process of assuring the reliability
of the reconfiguration process itself. The fault
tolerance challenges that must be addressed are
multi-faceted and necessitate a multi-faceted fault
tolerance solution which includes hardware and

software techniques. For designers of fault-tolerant
reconfigurable systems operating in high performance
computing environments, a number of strategies are
available from redundancy, and error detection and
correction schemes to highly sophisticated runtime
monitoring and recovery mechanisms. In the following
sections we will investigate how the many aspects
of designing fault tolerant reconfigurable systems
are being addressed by the number of techniques
and architectures which are now being designed to
actually tackle the problem.[10-12]

Fundamental Principles of Fault
Tolerant Design
Fault tolerant reconfigurable computing systems
must be designed to have a deep understanding of
the fundamental relations that are essential for
reliable system design. The principles described here
form the cornerstone of more sophisticated fault
tolerance techniques. Let’s explore the key concepts
that guide the development of robust, fault-tolerant
reconfigurable systems:

Redundancy
Perhaps the most important principle in fault tolerant
design is redundancy. It involves additional components
or subsystems that in the event of a failure will
control. In reconfigurable systems, redundancy can be
implemented at various levels (Figure 2):
Hardware Redundancy: It consists of duplicating
critical components and/or whole functional units. As
an example, triple modular redundancy (TMR) employs
three identical modules performing a task that have a
voter circuit for deciding on the correct output.

Table 1: Fault-Tolerance Mechanisms in Reconfigurable Computing Systems

Mechanism Fault-Tolerance Strategy

Triple Modular
Redundancy (TMR)

Triple Modular Redundancy (TMR) involves replicating critical components three times to ensure
that the system can tolerate a single failure without affecting operation.

Dynamic
Reconfiguration

Dynamic reconfiguration allows the system to replace faulty components on the fly, improving
reliability by adapting hardware resources to changing conditions.

Error Detection and
Correction Codes

Error detection and correction codes ensure that data transmitted within the system is verified
and corrected, minimizing the risk of system malfunctions due to corrupted data.

Self-Healing Systems Self-healing systems are designed to detect faults and automatically recover by rerouting tasks
or bypassing the failed components to maintain continuous operation.

Redundant Processing
Units

Redundant processing units offer backup components that take over tasks when the primary unit
fails, ensuring uninterrupted operation of critical applications.

Checkpointing and
Rollback

Checkpointing and rollback techniques periodically save system states so that in case of failure,
the system can restore its state and continue operation from the last stable point.

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533	 27

Information Redundancy: It’s a technique for adding
more bits to data to detect and correct errors. Past
examples in the data example are error correcting
codes (ECCs) which are a common type of the data,
allowing the system to detect and correct some type
of bit errors.

Time Redundancy: Transient faults are detected with
repetitions of operations multiple times. We find this
approach useful for detecting soft errors on FPGAs.

Software Redundancy: Different versions of software
algorithms are run to check against and catch errors.

Fault Detection and Isolation
To achieve fault tolerance however, it is first necessary
to identify where the faults are and what they are.

Fault detection mechanisms in reconfigurable systems
often include:

•	 Built-In Self-Test (BIST): Diagnostic tests and
fault detection performed on the FPGA fabric
distributed circuitry.

•	 Concurrent Error Detection: Real time moni-
toring techniques that identify errors as they
occur in system operation.

•	 Signature Analysis: Methods of compressing
circuit outputs into a simple form which can
be checked easily for errors.

When a problem is identified it is isolated up to the
point it can’t spread and affect the remainder of the
system. It could mean that faulty components would
be disabled or that data flows will redirect around
affected areas (Table 2).

Fig. 2: Fundamental Principles of Fault Tolerant Design

Table 2: Performance Benefits of Fault-Tolerant Reconfigurable Computing Systems

Benefit Value Proposition

Increased Reliability Increased reliability is achieved by integrating fault-tolerant mechanisms that prevent system
failures and ensure continuous operation in critical applications.

Enhanced System Avail-
ability

Enhanced system availability ensures that high-performance applications remain operational
despite faults, which is vital in mission-critical tasks.

Fault Recovery Speed Fault recovery speed improves as the system can quickly identify and address issues without
significant delays, enhancing performance in real-time environments.

Improved Data Integrity Improved data integrity ensures that transmitted or processed data remains accurate, reducing
the chances of errors that could compromise system output.

Extended System Lifes-
pan

Extended system lifespan is facilitated by fault-tolerant mechanisms that reduce the impact of
hardware failures, resulting in fewer repairs and replacements.

Reduced System Down-
time

Reduced system downtime is a key benefit of fault-tolerant designs, enabling the system to
continue operating even when certain components fail.

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

 28				 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

Error Correction and Recovery
The system must possess mechanisms of correcting
errors and recovery normal operation after detecting
a fault. Some common approaches include:

•	 Forward Error Correction: The repetition of
information without transmitting it is used to
correct errors.

•	 Checkpoint and Rollback: Keeping system
state snapshot every once in awhile, and roll
back to a known good state if there are errors.

•	 Dynamic Reconfiguration: Reusing recon-
figurable chip’s capability of reprogramming
faulty areas or loading alternative configura-
tions.

Graceful Degradation
In some cases it may not be possible recover from a
fault completely. Graceful degradation permits the
system to degrade gracefully as it continues operating
however much assistance is still available under
the reduced or degraded level of performance or
functionality. This principle is especially applicable in
reconfigurable systems where partial reconfiguration
can be employed to offer reduced functionality
versions of critical components.[13-14]

Fault Tolerance Metrics
To evaluate the effectiveness of fault-tolerant designs,
several metrics are commonly used:

•	 Reliability: Probability that a system will per-
form its intended function according to the
specified performance measures under stated
condition.

•	 Availability: The percent of time that a sys-
tem is in a functional condition.

•	 Mean Time Between Failures (MTBF): The
mean time between system failure.

•	 Mean Time To Repair (MTTR): Time taken, on
average, to repair a failed system.

•	 These metrics enable designers to quantify
the available fault tolerance in their systems
and to make decisions regarding tradeoffs be-
tween reliability, performance and cost.

Design for Testability
To keep fault tolerant systems, importance is attached
to incorporating features that allow for testing and
fault diagnosis. This includes:

•	 Scan Chains: ‘Easily tested serial paths
through the circuit are provided to test inter-
nal states.’

•	 Boundary Scan: Method for establishing and
testing interconnects between chips.

•	 Debug Interfaces: Monitoring and control
mechanisms of the internal state of the sys-
tem at run time.

With observation of these fundamental principles,
designers can build a strong case for fault tolerant
reconfigurable computing systems. Nevertheless, the
less generic nature of FPGAs, along with the needs of
high performance applications, calls for other special
techniques, which we will discuss later on [15]-[18].

Fault Detection and Masking Techniques
based on FPGA
The unique opportunities that Field Programmable Gate
Arrays (FPGAs) present us for the implementation of
sophisticated fault detection and masking techniques
are highlighted with the aid of two (2) illustrative
examples. The reconfigurable nature of these devices
enables adaptive fault tolerance mechanisms to
dynamically adapt to changing conditions. Let’s
explore some of the key FPGA-based techniques for
fault detection and masking:

Concurrent Error Detection (CED)
We have already described Concurrent Error Detection
as a powerful way to noisily detect faults during
normal system operation. In FPGA-based systems, CED
can be implemented through various methods:
Duplication with Comparison: It entails making two
copies of a circuit, with exact construction, and then
comparing the outputs. A fault is indicated by any
discrepency. However, this simple approach comes at
a high area overhead (Figure 3).

Parity Prediction: For a circuit, we compute parity
bits for the expected outputs, and then we check why
the actual parity bits are different from ours. Full
duplication is more area efficient than this method,
except it may miss some types of errors.

Residue Checking: It consists of computing in two
formally different number systems---one is the original
number system, and the other is a residue number
system. If these results differ, there’s error. In particular,
this method is often good for arithmetic circuits.

Time-Redundant Computation: Transient faults get
detected by executing the same computation many

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533	 29

times, using possibly different encodings of the input.
The use of FPGAs’ reconfigurability in this context is
used to implement time multiplexed redundancy.

Dynamic Reconfiguration: Using runtime
reconfiguration as the basis to allow FPGAs to be used
as implementing platforms for new adaptive fault
tolerance mechanisms opens the door for their further
deployment. However it complicates assurance of the
reliability of the reconfiguration process itself.

The fault tolerance challenges are multi faceted
and call out for a multi facet fault tolerance solution
including hardware and software techniques.
Redundancy, error detection and correction, and
highly sophisticated runtime monitoring and recovery
strategies are available to designers of fault tolerant
reconfigurable systems operating in high performance
computing environments. The following sections
examine how various techniques and architectures
are being developed to actually face the problem of
designing fault tolerant reconfigurable systems.

In order to design fault tolerant reconfigurable
computing systems with a deep understanding of the
relations that are necessary for reliable system design,
a deep understanding of the fundamental relations is
needed. The techniques described here are the basis
for more sophisticated fault tolerance techniques. Let’s
explore the key concepts that guide the development
of robust, fault-tolerant reconfigurable systems.
Redundancy is perhaps the most important principle

in fault tolerant design. It consists of additional or
subsystem components or subcomponents to control
in the event of failure. In reconfigurable systems,
redundancy can be implemented at various levels.[19-22]

Fault Detection and Isolation
However, for fault tolerance it is necessary to find and
define the faults, first. Fault detection mechanisms in
reconfigurable systems often include:

•	 Built-In Self-Test (BIST): Performed diagnos-
tic tests and fault detection on the FPGA fab-
ric distributed circuitry.

•	 Concurrent Error Detection: Techniques for
real time monitoring to detect errors as they
manifest in system operation.

•	 Signature Analysis: Circuit outputs com-
pressed into a simple form to make them easy
to check for errors.

If there are something to fix it isolates till it cannot
spread and hit the rest of the system. This could mean
disabled parts or that data flows will skip over the
problematic areas.

At the same time, the system needs to have the
ways of error correction and recovery from fault for
normal operation. Some common approaches include:

•	 Forward Error Correction: To correct errors,
information is repeated without transmitting
it.

Fig. 3: Concurrent Error Detection (CED)

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

 30				 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

•	 Checkpoint and Rollback: Roll back to a
known good state if there are errors, but
keeping system state snapshot every once in
awhile.

•	 Dynamic Reconfiguration: Regeneration of
faulty areas in reconfigurable chip or loading
of a different configuration.[23-24]

Graceful Degradation
Here it may not be possible to recover completely
from a fault. Gracious degradation means that the
system degrades gracefully as it continues working,
however much of the System’s performance or
functionality remains available. This principle is also
applicable when partial reconfiguration can be used to
provide reduced functionality versions of some critical
components in reconfigurable systems.

Fault Tolerance Metrics
To evaluate the effectiveness of fault-tolerant designs,
several metrics are commonly used:

•	 Reliability: Chance of a system being able
to perform its specified function within pre-
scribed requirements, taking into account its
status.

•	 Availability: The proportion of a systems time
spent in a functional condition.

•	 Mean Time Between Failures (MTBF): Mean
time of system failure.

•	 Mean Time To Repair (MTTR): The average
time taken to repair a system that failed.

These metrics provide designers with a measure of
the available fault tolerance that can be achieved
in different kinds of systems and facilitate decisions
regarding tradeoffs between reliability, performance
and cost.

Design for Testability
So that fault tolerant systems are kept, featues are
used to incorporate testing and fault diagnosis. This
includes:

•	 Scan Chains: ‘To test internal states, easi-
ly tested serial paths through the circuit are
provided.’

•	 Boundary Scan: A method for interconnecting
chips.

•	 Debug Interfaces: At run time, monitoring
and control mechanisms of the internal state
of the system.

Designers build the case for fault tolerant
reconfigurable computing systems with observation
of these basic principles. However, other special
techniques are needed, although the less generic
nature of FPGAs and the need for high performance
applications require other techniques, which we will
discuss later on.

Fault Detection and Masking Techniques
implemented in FPGA
With the aid of two (2) illustrative examples, the
unique opportunities for applying sophisticated
fault detection and masking techniques afforded
by Field Programmable Gate Arrays (FPGAs) are
highlighted. Adaptive fault tolerance mechanisms
using these devices are reconfigurable, providing
adaptive fault tolerance adaptations to changing
environments. Let’s explore some of the key FPGA-
based techniques for fault detection and masking.
Concurrent Error Detection is a strong way to noisily
detect faults throughout normal system operation
that we have already described above. In FPGA-based
systems, CED can be implemented through various
methods. The communication infrastructure in a
fault-tolerant reconfigurable system plays a critical
role in both normal operation and fault recovery.
With consideration of these architectural aspects,
designers can build reconfigurable computing systems
which are both highly performant and resistant to a
broad spectrum of fault possibility. The battlefield is
to build a flexible, flexible architecture that responds
to changes and gracefully handle faults when they
do occur. To address the quest for more reliable and
fault tolerant FPGA based systems, new architectures
beyond conventional design approaches have been
developed. These novel architectures exploit the
specific advantages that FPGAs provide to realize new
fault tolerance methods in hardware. Let’s explore
some of the cutting-edge FPGA architectures designed
with fault tolerance as a primary consideration.
Self-healing FPGAs represent a paradigm shift in
fault-tolerant design, incorporating mechanisms for
autonomous fault detection, isolation, and recovery.
Combining the strengths of traditional CPUs with the
flexibility of FPGAs can lead to highly robust fault-
tolerant systems:

Conclusion
These innovative designs leverage the reconfigurable
nature of FPGAs to implement fault tolerance

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533	 31

through time-multiplexing. These FPGA architectures
constitute the state-of the art of the fault tolerant
design for reconfigurable systems. These architectures
promise to deliver unprecedented levels of reliability
and resilience for high performance computing
applications, while using advanced fault tolerance
mechanisms that are incorporated directly into
the hardware fabric. With further research in this
field, we will also witness an evolution of ever more
sophisticated fault tolerant FPGA architectures in the
realm of reliable reconfigurable computing. In recent
years, reconfigurable computing research has begun
to offer fault tolerant computing systems that are
being applied to a wide spectrum of industries and
domains, where high performance, reliability and
adaptability are critical. Let’s explore some of the
key real-world applications where these systems are
making a significant impact:

References:
1.	 Yin, P., Wang, C., Waris, H., Liu, W., Han, Y., & Lom-

bardi, F. (2020). Design and analysis of energy-efficient
dynamic range approximate logarithmic multipliers for
machine learning. IEEE Transactions on Sustainable Com-
puting, 6(4), 612-625.

2.	 Zacharelos, E., Nunziata, I., Saggese, G., Strollo, A. G.,
& Napoli, E. (2022). Approximate recursive multipliers
using low power building blocks. IEEE Transactions on
Emerging Topics in Computing, 10(3), 1315-1330.

3.	 Waris, H., Wang, C., Xu, C., & Liu, W. (2021). AxRMs: Ap-
proximate recursive multipliers using high-performance
building blocks. IEEE Transactions on Emerging Topics in
Computing, 10(2), 1229-1235.

4.	 Goldstein, B. F., Srinivasan, S., Das, D., Banerjee, K.,
Santiago, L., Ferreira, V. C., ... & França, F. M. (2020,
February). Reliability evaluation of compressed deep
learning models. In 2020 IEEE 11th Latin American Sym-
posium on Circuits & Systems (LASCAS) (pp. 1-5). IEEE.

5.	 Aranda, L. A., Wessman, N. J., Santos, L., Sán-
chez-Macián, A., Andersson, J., Weigand, R., & Maestro,
J. A. (2020). Analysis of the critical bits of a RISC-V pro-
cessor implemented in an SRAM-based FPGA for space
applications. Electronics, 9(1), 175.

6.	 Wilson, A. E., & Wirthlin, M. (2019, July). Neutron radi-
ation testing of fault tolerant RISC-V soft processor on
Xilinx SRAM-based FPGAs. In 2019 IEEE Space Computing
Conference (SCC) (pp. 25-32). IEEE.

7.	 Ozen, E., & Orailoglu, A. (2019, December). Sani-
ty-check: Boosting the reliability of safety-critical deep
neural network applications. In 2019 IEEE 28th Asian Test
Symposium (ATS) (pp. 7-75). IEEE.

8.	 Vijay, V., Sreevani, M., Rekha, E. M., Moses, K., Pitta-
la, C. S., Shaik, K. S., ... & Vallabhuni, R. R. (2022). A

Review On N-Bit Ripple-Carry Adder, Carry-Select Adder
And Carry-Skip Adder. Journal of VLSI circuits and sys-
tems, 4(01), 27-32.

9.	 Zhao, K., Di, S., Li, S., Liang, X., Zhai, Y., Chen, J., ... &
Chen, Z. (2020). FT-CNN: Algorithm-based fault tolerance
for convolutional neural networks. IEEE Transactions on
Parallel and Distributed Systems, 32(7), 1677-1689.

10.	Zhang, Y., Lin, S., Wang, R., Wang, Y., Wang, Y., Qian, W.,
& Huang, R. (2020, March). When sorting network meets
parallel bitstreams: A fault-tolerant parallel ternary neu-
ral network accelerator based on stochastic computing.
In 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE) (pp. 1287-1290). IEEE.

11.	Gala, N., Menon, A., Bodduna, R., Madhusudan, G. S.,
& Kamakoti, V. (2016, January). SHAKTI processors: An
open-source hardware initiative. In 2016 29th Interna-
tional Conference on VLSI Design and 2016 15th Inter-
national Conference on Embedded Systems (VLSID) (pp.
7-8). IEEE Computer Society.

12.	Gupta, S., Gala, N., Madhusudan, G. S., & Kamakoti, V.
(2015, November). SHAKTI-F: A fault tolerant micropro-
cessor architecture. In 2015 IEEE 24th Asian Test Sympo-
sium (ATS) (pp. 163-168). IEEE.

13.	Ramos, A., Toral, R. G., Reviriego, P., & Maestro, J. A.
(2019). An ALU protection methodology for soft proces-
sors on SRAM-based FPGAs. IEEE Transactions on Comput-
ers, 68(9), 1404-1410.

14.	Coelho, C. N., Kuusela, A., Li, S., Zhuang, H., Ngadiuba,
J., Aarrestad, T. K., ... & Summers, S. (2021). Automat-
ic heterogeneous quantization of deep neural networks
for low-latency inference on the edge for particle detec-
tors. Nature Machine Intelligence, 3(8), 675-686.

15.	Babu, P. A., Nagaraju, V. S., & Vallabhuni, R. R. (2021,
June). Speech emotion recognition system with librosa.
In 2021 10th IEEE international conference on commu-
nication systems and network technologies (CSNT) (pp.
421-424). IEEE.

16.	Gao, Z., Wei, X., Zhang, H., Li, W., Ge, G., Wang, Y.,
& Reviriego, P. (2020, October). Reliability evaluation
of pruned neural networks against errors on parame-
ters. In 2020 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT) (pp. 1-6). IEEE.

17.	Dutta, A., & Touba, N. A. (2007, May). Multiple bit upset
tolerant memory using a selective cycle avoidance based
SEC-DED-DAEC code. In 25th IEEE VLSI Test Symposium
(VTS’07) (pp. 349-354). IEEE.

18.	Radhakrishnan, S., Nirmalraj, T., Ashwin, S., Elamaran, V.,
& Karn, R. K. (2018, March). Fault tolerant carry save ad-
ders-A NMR configuration approach. In 2018 International
Conference on Control, Power, Communication and Com-
puting Technologies (ICCPCCT) (pp. 210-215). IEEE.

19.	Shaker, M. N., Hussien, A., Alkady, G. I., Amer, H. H., &
Adly, I. (2019, June). Mitigating the effect of multiple

Mohammad Alizadeh et al. : Fault-Tolerant Reconfigurable Computing Systems for High Performance Applications

 32				 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

event upsets in fpga-based automotive applications.
In 2019 8th Mediterranean Conference on Embedded
Computing (MECO) (pp. 1-4). IEEE.

20.	Vallabhuni, R. R., Shruthi, P., Kavya, G., & Chandana,
S. S. (2020, December). 6Transistor SRAM cell designed
using 18nm FinFET technology. In 2020 3rd Interna-
tional Conference on Intelligent Sustainable Systems
(ICISS) (pp. 1584-1589). IEEE.

21.	Mansour, W., & Velazco, R. (2013). SEU fault-injection
in VHDL-based processors: A case study. Journal of Elec-
tronic Testing, 29, 87-94.

22.	Rahman, S. M., Ibtisum, S., Bazgir, E., & Barai, T. (2023).
The significance of machine learning in clinical disease
diagnosis: A review. arXiv preprint arXiv:2310.16978.

23.	Rahman, S. M., Ibtisum, S., Podder, P., & Hossain, S. M.
(2023). Progression and challenges of IoT in healthcare: A
short review. arXiv preprint arXiv:2311.12869.

24.	Ibtisum, S., Bazgir, E., Rahman, S. A., & Hossain, S. S.
(2023). A comparative analysis of big data processing
paradigms: Mapreduce vs. apache spark. World Journal
of Advanced Research and Reviews, 20(1), 1089-1098.

25.	Klavin, C. (2024). Analysing antennas with artificial elec-
tromagnetic structures for advanced performance in
communication system architectures. National Journal
of Antennas and Propagation, 6(1), 23–30.

26.	Anandhi, S., Rajendrakumar, R., Padmapriya, T., Man-
ikanthan, S. V., Jebanazer, J. J., & Rajasekhar, J. (2024).
Implementation of VLSI Systems Incorporating Advanced
Cryptography Model for FPGA-IoT Application. Journal of
VLSI Circuits and Systems, 6(2), 107–114. https://doi.
org/10.31838/jvcs/06.02.12

27.	Roper, S., & Bar, P. (2024). Secure computing proto-
cols without revealing the inputs to each of the various
participants. International Journal of Communication
and Computer Technologies, 12(2), 31-39. https://doi.
org/10.31838/IJCCTS/12.02.04

28.	Kavitha, M. (2023). Beamforming techniques for opti-
mizing massive MIMO and spatial multiplexing. National
Journal of RF Engineering and Wireless Communication,
1(1), 30-38. https://doi.org/10.31838/RFMW/01.01.04

29.	Kavitha, M. (2024). Energy-efficient algorithms for ma-
chine learning on embedded systems. Journal of Inte-
grated VLSI, Embedded and Computing Technologies,
1(1), 16-20. https://doi.org/10.31838/JIVCT/01.01.04

30.	Ismail, K., & Khalil, N. H. (2025). Strategies and solutions
in advanced control system engineering. Innovative Re-
views in Engineering and Science, 2(2), 25-32. https://
doi.org/10.31838/INES/02.02.04

31.	Uvarajan, K. P. (2024). Integration of blockchain tech-
nology with wireless sensor networks for enhanced
IoT security. Journal of Wireless Sensor Networks and
IoT, 1(1), 23-30. https://doi.org/10.31838/WSNIOT/
01.01.04

32.	Kumar, T. M. S. (2024). Security challenges and solutions
in RF-based IoT networks: A comprehensive review. SCCTS
Journal of Embedded Systems Design and Applications,
1(1), 19-24. https://doi.org/10.31838/ESA/01.01.04

33.	Sathish Kumar, T. M. (2024). Low-power design tech-
niques for Internet of Things (IoT) devices: Current
trends and future directions. Progress in Electronics and
Communication Engineering, 1(1), 19–25. https://doi.
org/10.31838/PECE/01.01.04

