
 10 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

Comparative Analysis of Programming Models for
Reconfigurable Hardware Systems

João Carlos da Silva1, Maria Luísa de Oliveira Souza2, Antônio de Almeida3*
1,2Department of Electrical Engineering, Londrina State University (UEL), Londrina 86057-970, Brazil

AbstrAct
Field programmable gate array (FPGA) based reconfigurable computing sys-
tems are shown to have great potential for accelerating computationally
intensive applications. To date, however, these systems have had to be pro-
grammed with specialized hardware design skills, making them less accessi-
ble. These models and tools, which aim at simplifying FPGA development, are
examined in this article, and the ease of use, performance, and generational
efficiency in producing hardware designs are compared among them. This
has allowed the use of reconfigurable hardware through high level synthe-
sis (HLS) tools without having in depth hardware design knowledge. We will
demonstrate imperative, functional, and graphical programming paradigms
via Impulse C, Mitrion-C, and DSPLogic. Through analysis of the programming
models, development workflows and results obtained across multiple bench-
mark applications, we can discern the tradeoffs between performance and
productivity for reconfigurable computing.
How to cite this article: Silva JC, Souza MLO, de Almeida A (2025). Com-
parative Analysis of Programming Models for Reconfigurable Hardware Sys-
tems. SCCTS Transactions on Reconfigurable Computing, Vol. 2, No. 1, 2025,
10-15

reconfigurAble systems: ProgrAmming
models
The purpose of programming model is to define what
the hardware abstraction looks like to the developers

and which architectural details we are going to expose
and how data transfers and computations will be
expressed. Let’s examine the key characteristics of
different programming paradigms for FPGAs.

Keywords:
Hardware Abstraction;
Programming Models;
Reconfigurable Hardware;
System Optimization;
Performance Evaluation;
Software-Hardware Co-design

Corresponding Author Email:
almeidadeant@uel.br

DOI: 10.31838/RCC/02.01.02

Received : 12.07.24
Revised : 07.10.24
Accepted : 05.12.24

RESEARCH ARTICLE ECEJOURNALS.IN
SCCTS Transactions on Reconfigurable Computing, ISSN: 3049-1533 Vol. 2, No. 1, 2025 (pp. 10-15)

Fig. 1: Reconfigurable Systems: Programming Models.

João Carlos da Silva et al. : Comparative Analysis of Programming Models for Reconfigurable Hardware Systems

SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533 11

C based HLS
For parallelism and interprocess communication, the
standard C or its syntax extensions, such as Impulse
C, are extended with tools. Sequential programming
model, based on Familiar C syntax. Command matrix
pragmas, and library functions for guiding hardware
generation. Automatic instruction level parallelism.
Processes and streams for support of task and pipeline
parallelism. Integration with existing HDL IP coresels
for Reconfigurable Hardware Systems. Reconfigurable
computing systems that leverage field-programmable
gate arrays (FPGAs) offer immense potential for
accelerating computationally intensive applications.
However, programming these systems has traditionally
required specialized hardware design skills, limiting
their accessibility. This article examines various

high-level programming models and tools aimed at
simplifying FPGA development, comparing their ease
of use, performance, and efficiency in generating
optimized hardware designs (Table 1).

ProgrAmming models for reconfigurAble
systems

• Familiar C-like syntax and sequential pro-
gramming model

• Pragmas and library functions to guide hard-
ware generation

• Automatic extraction of instruction-level par-
allelism

• Support for task-level and pipeline parallelism
through processes and streams

• Integration with existing HDL IP cores

Table 1: Programming Models for Reconfigurable Hardware Systems

Model Feature Overview

Hardware-Software
Co-Design

Hardware-software co-design allows for the joint development of hardware and software
components, optimizing system performance and resource utilization in reconfigurable
hardware.

High-Level Synthesis High-level synthesis provides an abstraction that simplifies the design process, enabling the
automatic conversion of high-level algorithms to hardware implementations.

Dataflow Programming Dataflow programming models are ideal for reconfigurable hardware as they map tasks to
hardware components based on the flow of data, enabling efficient parallelism.[1-5]

Implicit Parallelism Implicit parallelism involves identifying and exploiting parallel operations in programs with-
out the need for explicit parallel constructs, improving execution speed in reconfigurable
hardware.

Reconfigurable Computing
Languages

Reconfigurable computing languages provide domain-specific constructs for designing and
simulating hardware that can be reconfigured during runtime, offering flexibility and per-
formance.

Virtualized Programming
Models

Virtualized programming models abstract the underlying hardware from the software, allow-
ing for resource sharing and efficient execution of multiple tasks on reconfigurable systems.

Table 2: Performance Characteristics of Programming Models for Reconfigurable Systems

Characteristic Measurement Criteria

Performance
Efficiency

Performance efficiency measures how well a programming model translates algorithms into hardware
operations, optimizing both speed and computational power [6]-[9].

Hardware
Utilization

Hardware utilization evaluates how effectively the reconfigurable hardware is used, ensuring that avail-
able resources are maximally employed during computations.

Scalability Scalability assesses the ability of the programming model to handle increasing complexity and larger
datasets without significant performance degradation.

Resource
Flexibility

Resource flexibility indicates the model‚ capacity to adapt and reallocate hardware resources based on
changing system demands or application needs .[10-15]

Development
Complexity

Development complexity considers the ease of using the programming model for system designers, with
a simpler model reducing the learning curve and development time.

Energy Effi-
ciency

Energy efficiency measures the model‚Äôs ability to minimize power consumption while achieving the
required computational performance, which is critical in embedded or mobile systems.

João Carlos da Silva et al. : Comparative Analysis of Programming Models for Reconfigurable Hardware Systems

 12 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

This cuts the learning curve to software developers
at the cost of handshaking control over generated
hardware (Table 2).[16-18]

• Familiar C-like syntax and sequential pro-
gramming model

• Pragmas and library functions to guide hard-
ware generation

• Automatic extraction of instruction-level par-
allelism

• Support for task-level and pipeline parallelism
through processes and streams

• Integration with existing HDL IP cores

This approach offers a gentler learning curve for
software developers but may limit fine-grained control
over generated hardware.

Fig. 2: Functional Programming for FPGAs

functionAl ProgrAmming for fPgAs
Functional languages like Mitrion-C take a radically
different approach:

Mitrion Virtual Processor
Unlike other modern HLS tools, Mitrion-C transcends
generating RTL to output a configuration file for the
Mitrion Virtual Processor (MVP). The target FPGA is
serviced by a massively parallel soft core, optimized
for the MVP.[19-20]

Development Process
1. Mitrion C implementation of an algorithm
2. Mitrion SDK instrumentation and compilation and

simulation.
3. MVP configuration generation
4. Host application integration

Generation of MVP for the target FPGA. Very expressive
for different classes of algorithms. Exploitation of
fine-grained parallelism automatically. Deterministic
execution model. Steep learning curbs for imperative
progamers. No compatibility with existing HDL IP.
Overhead potential to MVP architectureional HLS tools
that generate RTL directly, Mitrion-C compiles to a
configuration for the Mitrion Virtual Processor (MVP).
The MVP is a massively parallel soft core optimized for
the target FPGA.[21-23]

1. Algorithm implementation in Mitrion-C
2. Compilation and simulation with Mitrion SDK
3. MVP configuration generation
4. Integration with host application
5. Synthesis of MVP for target FPGA (Figure 3)

Advantages and Challenges
Advantages:

• Highly expressive for certain algorithm classes
• Automatic exploitation of fine-grained paral-

lelism
• Deterministic execution model

Challenges:
• Steep learning curve for imperative program-

mers
• Limited compatibility with existing HDL IP
• Potential overhead of MVP architecture

DSPLogic: Signal Processing with Graphical
We use DSPLogic as a visual approach to FPGAs
programming, particularly for digital signal processing

João Carlos da Silva et al. : Comparative Analysis of Programming Models for Reconfigurable Hardware Systems

SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533 13

applications. FPGA Implementation custom block
library. Support for Xilinx System Generator. Block
diagram to HDL automatic generationHLS tools
that generate RTL directly, Mitrion-C compiles to a
configuration for the Mitrion Virtual Processor (MVP).
The MVP is a massively parallel soft core optimized
for the target FPGA. DSPLogic represents a visual
approach to FPGA programming, particularly suited for
digital signal processing applications. Let’s examine
its unique features: DSPLogic leverages Simulink’s
graphical environment, extending it with. Hardware
in the Loop Testing and Verification. Also intutitive for
DSP algorithm designers. Rapid prototyping, and design
space exploration. Seamless integration with MATLAB
for algorithm development. Less flexible in general
purpose computing. May lead to less efficient hardware
in non DSP applications. Simulink environment
familiarity is requiredS tools that generate RTL directly,
Mitrion-C compiles to a configuration for the Mitrion
Virtual Processor (MVP). The MVP is a massively parallel
soft core optimized for the target FPGA.[10-14] DSPLogic
represents a visual approach to FPGA programming,
particularly suited for digital signal processing
applications. Let’s examine its unique features.[24]

Programming Models comparison
Having examined the key characteristics of each
programming model, let’s compare their effectiveness
across our benchmark applications. Ease of use and
learning curve. C programmers have a moderate
learning curve. Some hardware thinking is needed
for explicit parallelisms that generate RTL directly,
Mitrion-C compiles to a configuration for the Mitrion
Virtual Processor (MVP). The MVP is a massively parallel
soft core optimized for the target FPGA.

conclusion
In particular, high level programming models for
reconfigurable computing bring productivity gains in the
order of magnitude by providing software developers
increased flexibility to use FPGA acceleration, but
without the need for significant hardware design
expertise. While these tools come with tradeoffs
between ease of use, performance and efficiency.
Impulse C embodies imperative approaches similar to
Impulse C, which give software developers a familiar
point of entry, but might come at some reduction in
performance. Mitrion-C provides powerful abstractions
for some algorithm classes, but at a steeper learning

Fig. 3: Development Process

João Carlos da Silva et al. : Comparative Analysis of Programming Models for Reconfigurable Hardware Systems

 14 SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533

curve than functional models. Specific domains tend
to be good targets for graphical tools like DSPLogic,
but my impression is that such tools tend to be less
flexible when used for general purpose computation.
Application requirements, developer expertise and
platform are the main drivers when choosing which
programming model. As these tools mature, they
provide the ability to transform reconfigurable
computing from a technology of academic interest to
one of accessible application acceleration capability
by diverse developers.

references:
1. Öksüz, E., Altun, A., & Özen, A. (2016, May). A frequency

domain channel equalizer for discrete Wavelet Transform
based OFDM systems. In 2016 24th Signal Processing and
Communication Application Conference (SIU) (pp. 1153-
1156). IEEE.

2. Alves, T. M., & Cartaxo, A. V. (2015). Virtual carri-
er-assisted direct-detection MB-OFDM next-genera-
tion ultra-dense metro networks limited by laser phase
noise. Journal of Lightwave Technology, 33(19), 4093-
4100.

3. Kumar, V., Mukherjee, M., Lloret, J., Ren, Z., & Kumari,
M. (2021). A joint filter and spectrum shifting architec-
ture for low complexity flexible UFMC in 5G. IEEE Trans-
actions on Wireless Communications, 20(10), 6706-6714.

4. Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-ob-
jective genetic algorithm and its applications to flowshop
scheduling. Computers & industrial engineering, 30(4),
957-968.

5. Musharavati, F., & Hamouda, A. S. M. (2012). Enhanced
simulated-annealing-based algorithms and their applica-
tions to process planning in reconfigurable manufactur-
ing systems. Advances in Engineering Software, 45(1),
80-90.

6. Nourelfath, M., Ait-Kadi, D., & Soro, I. (2002, October).
Optimal design of reconfigurable manufacturing systems.
In IEEE international conference on systems, man and
cybernetics (Vol. 3, pp. 6-pp). IEEE.

7. Pandarinath Potluri, Santhosh Kumar Rajamani, V.
Brindha Devi, R. Sampath, Rajeev Ratna Vallabhuni, B.
Mouleswararao, Bharathababu. K, Suraya Mubeen, “IN-
TEGRATED SPECTRAL AND PROSODY CONVERSION WITH
VOCODER OF VOICE SYNTHESIZER FOR HUMAN LIKE
VOICE USING DEEP LEARNING TECHNIQUES,” The Pat-
ent Office Journal No. 52/2022, India. Application No.
202241073323 A.

8. Li, Z., Janardhanan, M. N., Tang, Q., & Nielsen, P. (2018).
Mathematical model and metaheuristics for simultane-
ous balancing and sequencing of a robotic mixed-mod-
el assembly line. Engineering Optimization, 50(5),
877-893.

9. Borba, L., Ritt, M., & Miralles, C. (2018). Exact and
heuristic methods for solving the robotic assembly line
balancing problem. European Journal of Operational Re-
search, 270(1), 146-156.

10. Öztürk, C., Tunalı, S., Hnich, B., & Örnek, M. A. (2013).
Balancing and scheduling of flexible mixed model assem-
bly lines. Constraints, 18, 434-469.

11. Rakesh Bharati, Sourabh jain, Prathiba Jonnala, Rishikesh
Mishra, Meenu Singh, Rajeev Ratna Vallabhuni, Yadavalli.
S. S. Sriramam, R. V. S. Lalitha, “MULTI-TASK MULTI-KER-
NEL LEARNING TECHNIQUE TO ASSESS AND CLASSIFY BIO
AND PSYCHOLOGICAL SIGNALS,” The Patent Office Jour-
nal No. 47/2022, India. Application No. 202211066338 A.

12. Liu, X., & Xu, Q. (2012). On signal selection for visibility
enhancement in trace-based post-silicon validation. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 31(8), 1263-1274.

13. Ma, J., Zuo, G., Loughlin, K., Cheng, X., Liu, Y., Eneyew,
A. M., ... & Kasikci, B. (2020, March). A hypervisor for
shared-memory FPGA platforms. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (pp. 827-844).

14. Merlini, M. A., Poy, I., & Chow, P. (2021, February). Inter-
active debugging at ip block interfaces in fpgas. In The
2021 ACM/SIGDA International Symposium on Field-Pro-
grammable Gate Arrays (pp. 138-144).

15. Luo, T., Liu, S., Li, L., Wang, Y., Zhang, S., Chen, T., ...
& Chen, Y. (2016). DaDianNao: A neural network super-
computer. IEEE Transactions on Computers, 66(1), 73-88.

16. Luong, M. T., Pham, H., & Manning, C. D. (2015). Ef-
fective approaches to attention-based neural machine
translation. arXiv preprint arXiv:1508.04025.

17. Lv, P., Liu, W., & Li, J. (2020, December). A FPGA-based
accelerator implementaion for YOLOv2 object detection
using Winograd algorithm. In 2020 5th International Con-
ference on Mechanical, Control and Computer Engineer-
ing (ICMCCE) (pp. 1894-1898). IEEE.

18. Farooq, U., Marrakchi, Z., Mehrez, H., Farooq, U., Mar-
rakchi, Z., & Mehrez, H. (2012). FPGA architectures: An
overview. Tree-Based Heterogeneous FPGA Architec-
tures: Application Specific Exploration and Optimiza-
tion, 7-48.

19. DR.T.NALLUSAMY, Dr. V.Kannan, Felipe De Castro Dantas
Sales, Mr.J Logeshwaran, Mr. Rajeev Ratna Vallabhuni,
Dr. SAYYED MATEEN, Ms.M.DHARANI, Mr. CH. Mohan Sai
Kumar, Sanjesh Kumar, Mansi Singh, DR. SANDEEP KU-
MAR, PROF.DR.YEGNANARAYANAN VENKATARAMAN, “The
detection of Varied EEG pattern Signal For Chronic Mi-
graine Patients Using Machine Learning Approach,” The
Patent Office Journal No. 47/2022, India. Application No.
202241065256 A.

20. Aridhi, E., Popescu, D., & Mami, A. (2021). FPGA based
co-design of a speed fuzzy logic controller applied to an

João Carlos da Silva et al. : Comparative Analysis of Programming Models for Reconfigurable Hardware Systems

SCCTS Transactions on Reconfigurable Computing | Jan - April | ISSN: 3049-1533 15

autonomous car. International Journal of Reconfigurable
and Embedded Systems (IJRES), 10(3), 195-211.

21. Iyer, N., Anandmohan, P. V., Poornaiah, D. V., & Kulkarni,
V. D. (2011, November). Efficient hardware architectures
for AES on FPGA. In International Conference on Com-
putational Intelligence and Information Technology (pp.
249-257). Berlin, Heidelberg: Springer Berlin Heidelberg.

22. John K-H, Tiegelkamp M. IEC 61131-61133: program-
ming industrial automation systems.. 2001. https://doi.
org/10.1007/978-3-662-07847-1.

23. Plaza, I., Medrano, C., & Blesa, A. (2006). Analysis and
implementation of the IEC 61131-3 software model un-
der POSIX real-time operating systems. Microprocessors
and Microsystems, 30(8), 497-508.

24. Thramboulidis, K. (2012, September). Towards an Ob-
ject-Oriented extension for IEC 61131. In Proceedings
of 2012 IEEE 17th International Conference on Emerg-
ing Technologies & Factory Automation (ETFA 2012) (pp.
1-8). IEEE.

25. Tang, U., Krezger, H., & LonnerbyRakob. (2024). Design
and validation of 6G antenna for mobile communication.
National Journal of Antennas and Propagation, 6(1),
6–12.

26. Bhowmik, S., Majumder, T., & Bhattacharjee, A. (2024).
A Low Power Adiabatic Approach for Scaled VLSI Cir-
cuits. Journal of VLSI Circuits and Systems, 6(1),
1–6. https://doi.org/10.31838/jvcs/06.01.01

27. Antoniewicz, B., & Dreyfus, S. (2024). Techniques on
controlling bandwidth and energy consumption for 5G

and 6G wireless communication systems. International
Journal of Communication and Computer Technologies,
12(2), 11-20. https://doi.org/10.31838/IJCCTS/12.02.02

28. Sathish Kumar, T. M. (2023). Wearable sensors for flex-
ible health monitoring and IoT. National Journal of RF
Engineering and Wireless Communication, 1(1), 10-22.
https://doi.org/10.31838/RFMW/01.01.02

29. Geetha, K. (2024). Advanced fault tolerance mechanisms
in embedded systems for automotive safety. Journal of
Integrated VLSI, Embedded and Computing Technologies,
1(1), 6-10. https://doi.org/10.31838/JIVCT/01.01.02

30. Borhan, M. N. (2025). Exploring smart technologies to-
wards applications across industries. Innovative Reviews
in Engineering and Science, 2(2), 9-16. https://doi.
org/10.31838/INES/02.02.02

31. Velliangiri, A. (2024). Security challenges and solutions
in IoT-based wireless sensor networks. Journal of Wire-
less Sensor Networks and IoT, 1(1), 8-14. https://doi.
org/10.31838/WSNIOT/01.01.02

32. Uvarajan, K. P. (2024). Advanced modulation schemes
for enhancing data throughput in 5G RF communication
networks. SCCTS Journal of Embedded Systems Design
and Applications, 1(1), 7-12. https://doi.org/10.31838/
ESA/01.01.02

33. Uvarajan, K. P. (2024). Integration of artificial intel-
ligence in electronics: Enhancing smart devices and
systems. Progress in Electronics and Communication
Engineering, 1(1), 7–12. https://doi.org/10.31838/
PECE/01.01.02

