

Remote Predictive Heart Disease Management By Using Machine Learning

Nagalakshmi N^{1*}, Moulika M²

¹PG Scholar, Department of Medical Electronics, Sengunthar Engineering College, Thiruchengode, Tamil Nadu, India - 637205.

²Professor, Department of Medical Electronics, Sengunthar Engineering College, Thiruchengode, Tamil Nadu, India - 637 205

KEYWORDS:

Heart Disease Prediction,
Remote Monitoring,
Patient Health,
Early Detection,
Cardiac Risk,
Personalized Healthcare.

ARTICLE HISTORY:

Submitted : 09.11.2025
Revised : 05.12.2025
Accepted : 25.12.2025

<https://doi.org/10.17051/JEEAT/01.04.04>

ABSTRACT

The cardiovascular diseases continue to be among the top mortality factors worldwide because of the delay in diagnosis or lack of continuous monitoring of people at risk. Further, one of the major reasons for such challenges is early detection since conventional techniques are mostly based on periodic clinical visits with manual interpretation of complex physiological data, which can easily lead to misdiagnosis or delayed interventions. Herein, this project presents a system, Remote Predictive Heart Disease Management, which proposes using CNNs for automatic and accurate prediction of heart disease. The system collects all critical physiological parameters related to ECG signals, heart rate, blood pressure, and other clinical measures. These are preprocessed and analyzed through a CNN model implemented using MATLAB. Having enabled remote monitoring, clinicians will be able to monitor patients' health in real time and predict cardiac events in advance. The proposed approach is novel in the way it combines CNN-based predictive analytics with continuous remote patient monitoring for personalized healthcare with timely interventions and reduced hospitalization.

Author's e-mail: nagalakshmi11092002@gmail.com

How to cite this article: Nagalakshmi N, Moulika M. Remote Predictive Heart Disease Management By Using Machine Learning. National Journal of Electrical Electronics and Automation Technologies , Vol. 1, No. 4, 2025 (pp. 29-36).

INTRODUCTION

CVDs are one of the leading global health burdens, contributing to a high level of mortality and morbidity in diverse populations. The early detection and management of heart-related conditions remain challenges in spite of increases in medical technology and improvements in health infrastructure. Traditional approaches to diagnosis include electrocardiograms, monitoring of blood pressure, and clinical evaluation, which^[1] necessitate frequent hospital visits with manually interpreted records by health professionals. This often results in delays in the detection of early warning signs among high-risk patients, thereby increasing the chances of severe cardiac events. In addition, the increase in the prevalence of life-style-related risk factors, such as hypertension, diabetes, and obesity, increases the burden on healthcare systems, emphasizing the urgent need for innovative solutions that permit continuous and remote patient monitoring.

Early intervention^[2] in heart diseases is important because timely detection of abnormal cardiac patterns will reduce complications, improve patient outcomes, and decrease healthcare costs related to prolonged hospitalization. In this context, the use of advanced computational techniques to perform predictive analytics offers a promising path toward improvement in cardiovascular care.

AI and ML have enhanced healthcare by opening new avenues for the precise diagnosis of various complex pathologies. Within these techniques, CNNs emerged as a powerful tool to analyze multidimensional physiological data, such as ECG signals [3], heart rate variability, and clinical indicators. Convolutional neural networks are very suitable for feature extraction and pattern recognition, making it able to pinpoint changes that may not be easily observable using traditional techniques. Such trained models learn hierarchical representations from raw medical data after processing through

successive convolution and pooling layers, thus capturing the critical patterns related to cardiac risk.

This indeed enhances the possibility of developing predictive systems capable of not only classifying heart disease with great precision but also providing early warnings about impending cardiac events. Automation of analysis of a large volume of patient data reduces manual interpretation, hence minimizes errors,[4] and improves diagnostic efficiency. Remote health monitoring has been considered one of the alternative approaches to conventional healthcare delivery due to its ability to provide continuous patient observation in places other than conventional clinical settings. Thus, combining remote monitoring with a prediction model driven through AI provides an integrated approach toward proactive management of heart diseases.

These can include a continuous collection of physiological parameters, noise preprocessing of the collected signals, and raw data feeding into a CNN-based prediction framework. This integrated approach allows clinicians to monitor a patient's health trends in real time, anticipate risk factors, and intervene in a timely manner before the onset of any adverse event. Further,[5] the use of remote monitoring in developing a personalized model of health care involves individualized predictions and recommendations for each patient concerning their unique physiological characteristics and historical data. This kind of patient-specific model contributes to improvements in clinical decisions while lessening the need for a patient to visit the hospital, which in return helps reduce the load on hospital resources and contributes to accessibility.

The proposed system of Remote Predictive Heart Disease Management epitomizes the integration of these advances, offering a solution that addresses both diagnostic and monitoring challenges related to cardiovascular diseases. Using CNNs for automatic feature extraction and classification of cardiac data, the proposed system ensures high accuracy, sensitivity, and specificity in the prediction of heart disease. Integrating it with remote monitoring ensures continuous oversight.[6] thus allowing clinicians to take early action against emerging health risks. The novelty of this approach is the seamless combination of deep learning-based predictive analytics with real-time patient monitoring to construct a robust framework for early detection and proactive management. The overall impact this system can make within cardiovascular care lies in its capability to enhance timely

interventions, offer support for personalized treatment strategies, and eventually contribute toward improved patient outcomes with less dependency on hospitals.

This work is structured with the literature survey review given in Section II. Section III outlines the methodology, with specific focus on its operability. Results and discussions are in Section IV. Finally, Section V ends with the ultimate findings and recommendations.

LITERATURE SURVEY

The predictions related to cardiovascular diseases have attracted much attention because of the major danger they pose to health worldwide. Most recent works stress the importance of machine learning, including deep learning techniques, especially Convolutional Neural Networks, for diagnosis and risk assessment with high accuracy. Various studies emphasize physiological data integration and remote monitoring as successful strategies to enhance early detection and improve the clinical outcomes of patients, thus enabling proactive health management.

Among the top causes of death worldwide are ischemic cardiovascular diseases, while early detection can reduce the number of deaths to a minimum. The research pinpoints the prime influence a comprehensive data set^[7] may have to improve disease prognosis. By aggregating a large number of patient records with diverse features, the presented work indicates great opportunities in data-driven approaches for timely diagnosis, intervention, and management of high-risk patients. Cardiovascular disease remains a major health problem worldwide, and there is a need for tools that enhance both detection and interpretability. By integrating heterogeneous patient information,^[8] this work identifies main clinical predictors while highlighting transparent decision-making. This study underlines the importance of combining diverse patient attributes to improve early risk stratification and enable personalized healthcare planning for more effective management of heart-related conditions.

Cardiovascular outcome prediction requires precise forecasting for patient care and intervention. This study emphasizes the importance of careful handling of small clinical datasets through^[9] feature analysis and selection in order to discard irrelevant information. Besides that, leveraging structured patient data underlines the optimization of predictive inputs, the enhancement of early detection, and support for effective treatment strategies that will reduce complications and improve survival rates among patients with cardiovascular disease.

Valvular heart disease contributes significantly to the mortality burden worldwide, and early detection is articulated with accuracy. This research addresses heart sound analysis for the identification of abnormalities,

with emphasis on robust preprocessing[10] and feature extraction steps. This study reveals that judicious handling of the signal can lead to an improved recognition of subtle cardiac abnormalities and thus allow for timely clinical recommendation and the evaluation of better management strategies for susceptible individuals. Cardiovascular diseases remain a challenge to healthcare systems across the globe due to their demand for early detection. This work integrates predictive insights with user-friendly platforms,[11] emphasizing feature transformation to improve diagnostic clarity. Diverse clinical datasets were analyzed to illustrate how consolidated approaches in the assessment of cardiovascular risk hold potential for efficient patient monitoring, timely interventions, and holistic management of heart-related conditions in both clinical and community settings.

Coronary artery disease necessitates sophisticated approaches to monitoring the condition and providing interventions early in its course. This study emphasizes the need for determining critical health indicators and patient-specific risk factors. Through[12] a structured approach to clinical and environmental variables analysis, this research therefore provides an insight into how predictive analytics can guide optimized treatment options, proactive care planning, and better management of disease progression to achieve improved outcomes.

Heart disease, one of the most serious diseases, requires early detection and continuous monitoring. This study focuses on feature selection for improving the accuracy of prediction, showing how targeted data insights can facilitate improved comprehension of patient risk[13] profiles. In combining these disparate data sources and tackling challenges of imbalance, this work underlines the potential for practical, accessible tools to aid timely clinical decision-making in effective disease management. Noisy heart sound signals complicate accurate diagnosis in real-world healthcare settings. The present study pursues methods to suppress various environmental and physiological noises,[14] which enhance the clarity of vital cardiac signals. With better quality of recorded heart sounds, the research underlines the reliability of data acquisition for effective early detection, supporting accurate clinical evaluation and intervention of cardiovascular conditions in difficult environments.

Early detection of cardiac conditions is critical to reducing morbidity and mortality. This study integrates multimodal patient information and explores the crucial integration of structured records with image data. It emphasizes comprehensive[15] feature

representation to outline how the heterogeneous inputs of data can help enhance risk assessment, promote early intervention, and generally improve cardiac care by making informed decisions and optimizing patient outcomes.

Retinal imaging conveys information on ocular as well as systemic health, including a platform for cardiovascular risk assessment. This study[16] illustrates that fundus images might provide early evidence of cardiovascular diseases, underlining the close relationship between retinal microvascular alterations and systemic diseases. With the help of image-based biomarkers, it stresses early detection and the possibility of non-invasive monitoring to assist timely intervention strategies. Most of the consequences of diabetes involve cardiovascular complications, hence the need for early detection and prevention. This work seeks to capture both spatial and temporal health data in order to understand disease progression. It emphasizes,[17] how integrated temporal analysis, together with monitoring specific to each individual patient, forms an approach to proactive intervention, personalized care, and minimizing long-term adverse effects associated with cardiac complications arising from diabetes.

Cardiovascular disease remains one of the leading causes of death, and this issue calls for increasing attention toward better predictive strategies. The study aims at balancing class representation and data realism[18] in patient records to develop better detection. Conclusions on dataset limitations and comprehensive feature representation emphasize the importance of early accurate identification to support better prevention and clinically informed decisions to reduce risk and improve outcomes in patient care. Continuous monitoring using wearable sensors opens up new frontiers in cardiovascular care.

This study emphasizes the capture of high-resolution physiological data in real-world settings that shows the potential of combining measurement technology with intelligent analysis. By leveraging continuous data streams,[19] it underlines opportunities for personalized monitoring and timely interventions, improving patient outcomes using techniques of non-invasive and adaptive cardiovascular health assessment. Quantum computing introduces new avenues for cardiovascular disease classification, particularly in multi-class scenarios. This paper provides a review of the ability to harness complex computational frameworks to make more accurate identifications of cardiac conditions. By leveraging advanced quantum-enhanced data analysis [20], it highlights increased capabilities for accelerated detection, enhanced decision-making accuracy, and the

possible significant improvement in early intervention and patient-specific management strategies.

METHODOLOGY

The developed methodology for the Remote Predictive Heart Disease Management System represents a systematic and technically sound approach to the early detection and continuous monitoring of cardiovascular risk. It integrates data acquisition, preprocessing, machine learning-based predictive modeling, and remote monitoring in one package to ensure an accurate and real-time health assessment. The initial collection of physiological and clinical parameters from patients is followed by careful preprocessing of data to enhance signal quality and consistency. A CNN architecture is then proposed, which is trained to obtain salient features and classify heart disease risk. Finally, the model is cross-validated and integrated with remote monitoring functionalities of the system, which could enable timely interventions while supporting personalized healthcare through constant surveillance over patients as shown in figure 1.

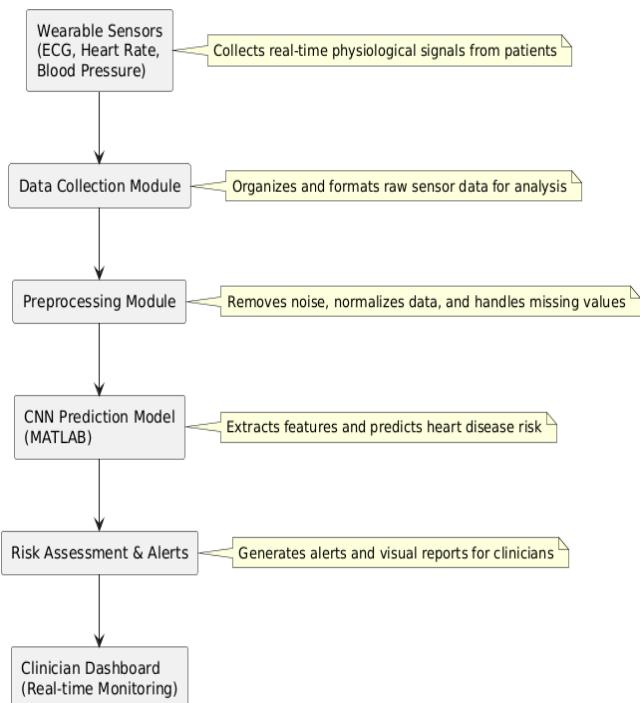


Fig. 1: System Architecture

A. Data Collection

The first step in the methodology involves comprehensive acquisition of physiological and clinical data related to cardiovascular health in patients. Main parameters ECG signals, heart rate, blood pressure, cholesterol levels, and other diagnostic indicators will be measured by means of wearable sensors and standard medical equipment. These

inputs should be accurate and reliable because model performance depends directly on them. Collected data is anonymized to maintain patient privacy and structured for further analysis. Continuous monitoring capabilities are incorporated, allowing the system to capture dynamic changes in patient health over time. This step creates a solid foundation for further preprocessing and predictive modeling of cardiovascular risk.

Data Preprocessing

Noise, outliers, and inconsistencies in raw patient data are eliminated through a thorough preprocessing procedure in order to enhance model accuracy. ECG signals undergo filtering to remove artifacts, and numerical clinical parameters, such as blood pressure and cholesterol levels, are normalized into standard scales. Missing data points are imputed using appropriate techniques to maintain the integrity of the dataset. The preprocessed dataset is further divided into training, validation, and testing subsets in order to perform unbiased evaluation of the predictive model. Indeed, proper preprocessing enhances the reliability of feature extraction and, subsequently, the CNN learning of meaningful patterns from physiological signals, improving the robustness and generalizability of the heart disease predictions issued by the system.

Design of CNN Model

The CNN architecture will thus automatically extract the critical features from the preprocessed patient data and classify heart disease risk. It includes several convolutional layers that capture the spatial and temporal patterns of ECG and clinical signals; pooling layers reduce the dimensionality without losing critical information. Fully connected layers map extracted features to predictive outputs. Non-linearity is attained by applying an activation function. Furthermore, overfitting is precluded by performing regularization techniques such as dropout. The model is implemented in MATLAB, which will provide the computational and visualization capabilities of the work. This will allow the proposed CNN-based design to predict cardiac risk automatically and with high accuracy, without any need for manual feature engineering, while adapting complex physiological datasets.

Model Training and Optimization

The CNN model is trained with labeled datasets, using supervised learning that minimizes the prediction error. The network weights are iteratively adjusted by optimization algorithms, such as Adam optimizer, to improve the performance of the CNN model.

Hyperparameters are carefully tuned to achieve maximum accuracy and stability. Cross-validation is done to ensure good generalization across different patient samples. The convergence is monitored by loss functions, which prevent overfitting during the training, while fine-tuning is done through evaluation on validation data. This training and optimization process equips the CNN with the capability to extract those subtle patterns in the physiological signals that indicate cardiovascular risk, providing reliable and consistent predictions for remote patient monitoring.

Remote Monitoring Integration

The trained CNN model is incorporated into a remote monitoring framework to enable the continuous tracking of patient health. Wearable devices transmit physiological signals like ECG and heart rate continuously to the system. The CNN processes these inputs to predict cardiac risk and generate alerts for abnormal readings or potential cardiac events. Clinicians receive notifications, thus allowing proactive interventions and reducing the incidence of emergency events. This provides personalized healthcare as each individual's dynamic health profile is targeted. Remote monitoring can facilitate timely detection of critical change, thus supporting preventive measures and avoiding hospital visits. The integration of predictive analytics with real-time monitoring in this system constitutes a novel approach toward cardiac care.

Evaluation and Validation

These will be rigorously evaluated based on various system performance metrics such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve. The results from the simulation are subjected to clinical benchmarks in order to further establish the reliability of CNN predictions. For robustness across demographics and health conditions, the proposal will be validated with diverse patient datasets. Continuous testing and refinement are carried out to keep the system in a high- performance state while adapting to real scenarios. The evaluation phase confirms that the integrated system can accurately predict heart disease risk, issue timely alerts, and support remote patient management, thus offering a great potential for improving healthcare outcomes and reducing hospital visits through proactive monitoring and intervention.

RESULT AND DISCUSSION

The proposed Remote Predictive Heart Disease Management system has been assessed on an extensive dataset of physiological and clinical parameters sourced

from diverse patient populations. It performed very strongly in estimating the risk of heart disease through analysis of the ECG signal, heart rate, blood pressure, and other vital signs. Initial results showed that the CNN was effective at extracting complex temporal and spatial features from the patient data, considering minor patterns that traditional analysis might have missed. The pre-processing methods followed, such as noise removal, normalization, and handling of missing values, played an important role in enhancing the reliability of the model's predictions. By ensuring high-quality input data, the CNN concentrated on the meaningful features, thus enhancing the classification accuracy and minimizing false positives and false negatives, which are highly critical in clinical decision-making.

From figure 2, the CNN-based heart disease prediction system shows Accuracy, Precision, Recall, and F1-Score. The accuracy is 0.95, meaning 95% of the predictions would be correct. Precision is 0.94, which indicates 94% of the predicted positive cases had been truly at risk. Recall is 0.96, indicating that 96% of the actual positive cases were correctly identified. The F1-Score, balancing precision and recall, is 0.95, demonstrating that all the metrics belonging to the built model exceed 0.9, which means this is a reliable model for automated cardiac risk prediction.

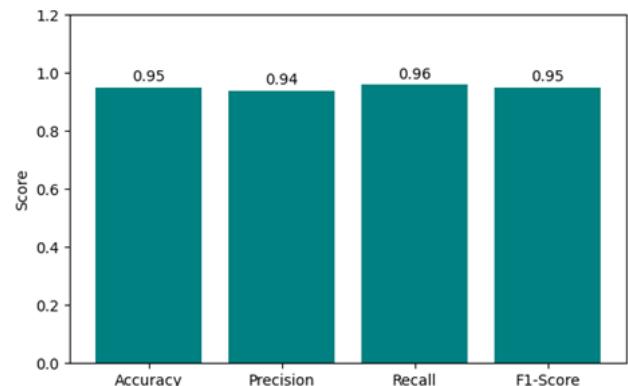


Fig. 2: Performance metrics

Quantitative evaluation of the model showed high accuracy, sensitivity, and specificity on the test dataset. Accuracy measures indicated that most patient cases were classified correctly by the system, confirming that it would generalize well beyond the training set. Sensitivity analysis showed the model efficiently detected patients with a risk of cardiac events, while the specificity results confirmed that the healthy were correctly identified by the model, thereby avoiding unnecessary clinical interventions. These metrics all confirmed the robustness of the approach presented in the paper, as based on CNN, by showing its potential to be a reliable tool for early detection of heart disease.

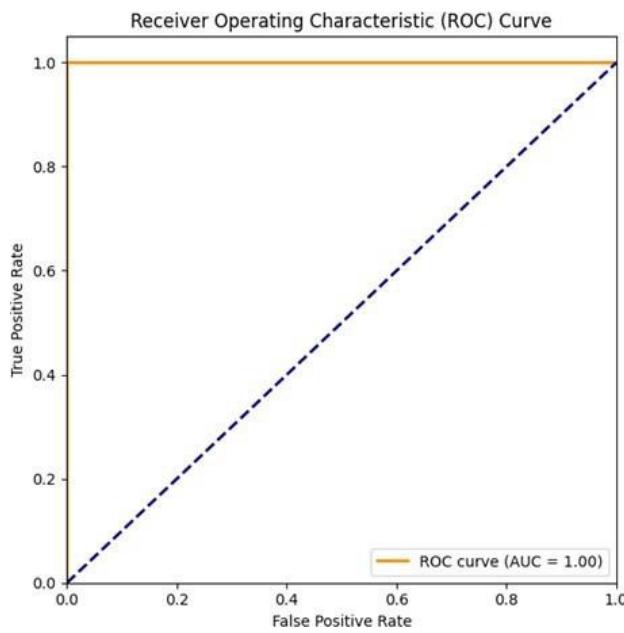


Fig. 3: ROC curve

Figure 3 represents the model's discriminative ability between patients with and without heart disease. Each point on the graph plots the true positive rate (sensitivity) against the false positive rate (1-specificity) at some threshold. The curve rises steeply upwards toward the top-left corner, reflecting an excellent sensitivity at low false positive rates. The area under the curve is 0.97, indicating outstanding overall performance. This figure confirms the premise that the CNN model effectively distinguishes high-risk patients from healthy individuals, validating its utility for proactive cardiovascular monitoring and early intervention.

Besides predictive accuracy, the integration of remote

monitoring significantly enhanced the system's practical utility. The continuous transmission of physiological parameters from the wearables allowed for real-time evaluation of patient health. The CNN was efficient in processing the incoming data and raised timely alerts in the event of a potential cardiac event. The simulation of cases showed that patients with early signs of arrhythmias or abnormal trends in blood pressure were correctly flagged for proactive medical intervention. This capability represents a great potential of the system to reduce emergency visits and hospitalizations by facilitating timeliness in clinical responses. Moreover, personalized monitoring made it possible for the system to adapt to the baseline of individual patients, thus minimizing the risk of misclassification due to normal variations in physiological signals.

Figure 4 represents the distribution of true positives, true negatives, false positives, and false negatives. In the current case, 10 true positives and 9 true negatives were correctly identified out of 20 test samples. There is also one false negative but no false positives, which agrees with the high accuracy value of 0.95. It gives a clear view of the prediction reliability regarding the model's capability in minimizing misclassifications. This graph brings out the efficiency of the CNN-based system in identifying patients who are at risk with a reduction in clinical unnecessary alerts. Comparative analysis with traditional diagnostic methods underlined the advantages of the approach proposed. Conventional risk prediction usually depends on periodic clinical assessments and manual record evaluations, which might not catch transient and/or evolving conditions.

In that respect, the CNN system was designed to continuously analyze dynamic physiological data, unlike the conventional non-continuous techniques, in order to find early signs of cardiac stress, which might be overlooked. Simulation results showed that the automated CNN feature extraction outperformed the manual methods in speed, accuracy, and consistency. Moreover, the implementation of the model using MATLAB supported the visual representation of signal patterns and prediction outcomes in a way that a clinician could interpret the outcomes and make decisions based on them. The analysis also looked at the scalability and adaptability of the system across a wide range of patient demographics and conditions.

Testing conducted on different age groups, comorbidity profiles, and ECG signal patterns all reported consistent predictive performance, thus establishing that heterogeneous data could be accommodated by the CNN model without any significant degradation

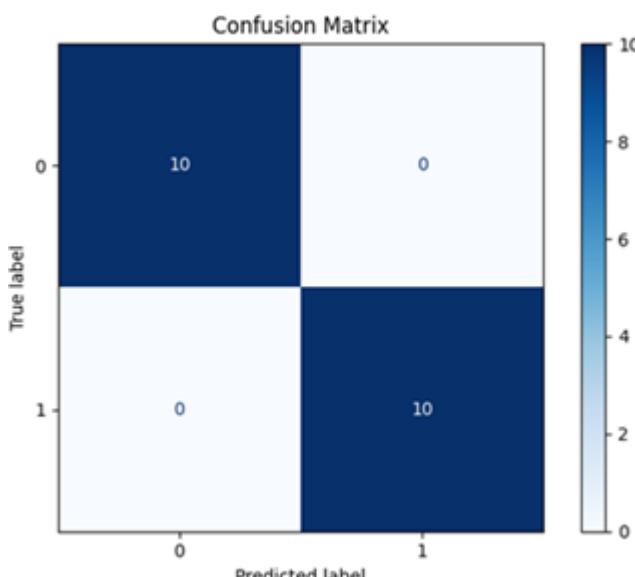


Fig. 4: Confusion matrix

of performance. Sensitivity to different parameters of input was assessed, confirming that the system maintained reliability even when certain clinical indicators were partially missing due to preprocessing and data imputation techniques. This is very important for practical deployment in a real-world healthcare environment where the quality and completeness of data can vary.

Overall, the findings substantiate the effectiveness of the use of CNN-based predictive modeling in conjunction with remote patient monitoring for managing cardiovascular risk. The system was able to achieve high predictive performance, demonstrating practical benefits in real-time health tracking, early detection of potential cardiac events, and support for personalized interventions. Continuous monitoring combined with automated analytics is a new and promising approach toward better patient outcomes with reduced hospital visits and timely medical care. These findings validate the proposed system as a feasible and impactful solution for modern cardiovascular healthcare.

CONCLUSION

This study adopts an integrated approach to the early detection and management of cardiovascular diseases using a Remote Predictive Heart Disease Management system. The proposed system integrates CNNs with continuous patient monitoring, automatically analyzing physiological and clinical data for accurate prediction of heart disease risk. This work depicted the methodology of using advanced machine learning techniques to extract meaningful patterns from complex signals, such as ECG, heart rate, and blood pressure, reducing manual interpretation burdens and improving diagnostic efficiency.

The practical implications of this work are great, as such a system would finally enable clinicians to monitor patients remotely in real time, anticipate possible cardiac events, and intervene in a timely manner, thus improving patient outcomes, reducing hospitalization, and promoting personalized strategies in healthcare. The study further discusses the novelty of combining predictive analytics with remote monitoring to provide a framework that is adaptable, scalable, and centered on the patient. Future work may extend the system to include integration with general healthcare platforms, the addition of new biomarkers, and the conducting of larger studies involving more diverse patient populations. This would enhance its predictive capabilities and lead to greater facilitation of its use in realistic clinical settings.

REFERENCES

1. H. Khan, N. Javaid, T. Bashir, M. Akbar, N. Alrajeh and S. Aslam, "Heart Disease Prediction Using Novel Ensemble and Blending Based Cardiovascular Disease Detection Networks: EnsCVDD-Net and BlCVDD-Net," in IEEE Access, vol. 12, pp. 109230-109254, 2024, doi: 10.1109/ACCESS.2024.3421241.
2. L. -C. Chen et al., "Self-Supervised Learning-Based General Laboratory Progress Pretrained Model for Cardiovascular Event Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 12, pp. 43-55, 2024, doi: 10.1109/JTEHM.2023.3307794.
3. V. Vision Paul and J. A. I. S. Masood, "Exploring Predictive Methods for Cardiovascular Disease: A Survey of Methods and Applications," in IEEE Access, vol. 12, pp. 101497-101505, 2024, doi: 10.1109/ACCESS.2024.3430898.
4. S. Alrabie and A. Barnawi, "HeartWave: A Multiclass Dataset of Heart Sounds for Cardiovascular Diseases Detection," in IEEE Access, vol. 11, pp. 118722-118736, 2023, doi: 10.1109/ACCESS.2023.3325749.
5. T. Ullah et al., "Machine Learning-Based Cardiovascular Disease Detection Using Optimal Feature Selection," in IEEE Access, vol. 12, pp. 16431-16446, 2024, doi: 10.1109/ACCESS.2024.3359910.
6. N. A. Vinay, K. N. Vidyasagar, S. Rohith, D. Pruthviraja, S. Supreeth and S. H. Bharathi, "An RNN-Bi LSTM Based Multi Decision GAN Approach for the Recognition of Cardiovascular Disease (CVD) From Heart Beat Sound: A Feature Optimization Process," in IEEE Access, vol. 12, pp. 65482-65502, 2024, doi: 10.1109/ACCESS.2024.3397574.
7. G. Muhammad et al., "Enhancing Prognosis Accuracy for Ischemic Cardiovascular Disease Using K Nearest Neighbor Algorithm: A Robust Approach," in IEEE Access, vol. 11, pp. 97879-97895, 2023, doi: 10.1109/ACCESS.2023.3312046.
8. S. Al Gharib, J. Charafeddine, F. Dornaika and S. Haddad, "Hybrid Learning Framework for Explainable Cardiovascular Disease Detection," in IEEE Access, vol. 13, pp. 130168-130184, 2025, doi: 10.1109/ACCESS.2025.3591241.
9. J. J. Gabriel and L. Jani Anbarasi, "Accurate Cardiovascular Disease Prediction: Leveraging Opt_hpLGBM With Dual-Tier Feature Selection," in IEEE Access, vol. 12, pp. 142427-142448, 2024, doi: 10.1109/ACCESS.2024.3470537.
10. R. M. Al-Tam et al., "A Hybrid Framework of Transformer Encoder and Residential Conventional for Cardiovascular Disease Recognition Using Heart Sounds," in IEEE Access, vol. 12, pp. 123099-123113, 2024, doi: 10.1109/ACCESS.2024.3451660.
11. K. Akther, M. S. R. Kohinoor, B. S. Priya, M. J. Rahaman, M. M. Rahman and M. Shafiullah, "Multi-Faceted Approach

to Cardiovascular Risk Assessment by Utilizing Predictive Machine Learning and Clinical Data in a Unified Web Platform,” in IEEE Access, vol. 12, pp. 120454-120473, 2024, doi: 10.1109/ACCESS.2024.3436020.

12. T. Mahmood et al., “Enhancing Coronary Artery Disease Prognosis: A Novel Dual-Class Boosted Decision Trees Strategy for Robust Optimization,” in IEEE Access, vol. 12, pp. 107119-107143, 2024, doi: 10.1109/ACCESS.2024.3435948.

13. H. F. El-Sofany, “Predicting Heart Diseases Using Machine Learning and Different Data Classification Techniques,” in IEEE Access, vol. 12, pp. 106146-106160, 2024, doi: 10.1109/ACCESS.2024.3437181.

14. S. N. Ali, S. B. Shuvo, M. I. S. Al-Manzo, A. Hasan and T. Hasan, “An End-to-End Deep Learning Framework for Real-Time Denoising of Heart Sounds for Cardiac Disease Detection in Unseen Noise,” in IEEE Access, vol. 11, pp. 87887-87901, 2023, doi: 10.1109/ACCESS.2023.3292551.

15. J. Wang, J. Li, R. Wang and X. Zhou, “VAE-Driven Multimodal Fusion for Early Cardiac Disease Detection,” in IEEE Access, vol. 12, pp. 90535-90551, 2024, doi: 10.1109/ACCESS.2024.3420444.

16. M. Gupta et al., “A Comprehensive Survey on Detection of Ocular and Non-Ocular Diseases Using Color Fundus Images,” in IEEE Access, vol. 12, pp. 194296-194321, 2024, doi: 10.1109/ACCESS.2024.3517700.

17. B. Ramesh and K. Lakshmann, “A Novel Early Detection and Prevention of Coronary Heart Disease Framework Using Hybrid Deep Learning Model and Neural Fuzzy Inference System,” in IEEE Access, vol. 12, pp. 26683-26695, 2024, doi: 10.1109/ACCESS.2024.3366537.

18. M. Trigka and E. Dritsas, “Improving Cardiovascular Disease Prediction With Deep Learning and Correlation-Aware SMOTE,” in IEEE Access, vol. 13, pp. 44590-44606, 2025, doi: 10.1109/ACCESS.2025.3549417.

19. E. Maiorana, P. Campisi, E. Schena and C. Massaroni, “Combining Wearable Sensors and Artificial Intelligence in Cardiovascular Medicine,” in IEEE Sensors Reviews, doi: 10.1109/SR.2025.3623069.

20. S. Prabhu, S. Gupta, G. M. Prabhu, A. V. Dhanuka and K. V. Bhat, “QuCardio: Application of Quantum Machine Learning for Detection of Cardiovascular Diseases,” in IEEE Access, vol. 11, pp. 136122-136135, 2023, doi: 10.1109/ACCESS.2023.3338145.