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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
The fast trend in the Internet of Things (IoT) device proliferation has greatly complicated 
the modern network ecosystems and required the development of new strategies to 
track device behavior and identify anomalies without violating user privacy. The current 
work introduces a passive traffic profiling framework with the help of deep learning, 
characterized by a classification of IoT devices relying on the data presented in the 
network in terms of packet timing, header entropy, and the flow properties on the basis 
of network metadata only. CNN-LSTM model is a hybrid convolutional neural network 
that is trained using a dataset of more than 25 million packets measured in various IoT 
applications, and it has an average classification accuracy of 95 percent on sixteen 
device types. The comparative analysis indicates that the proposed framework is better 
than the traditional statistical and shallow learning models in terms of scalability, 
latency, and the ability to resist the effect of encryption. These findings confirm that 
passive profiling based on deep learning is a convenient and non-invasive method of 
monitoring a large network of IoT devices, allowing to strengthen network security, 
behavioral analytics, and provide early warning of threats.
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Introduction

The Internet of Things (IoT) has become one of the 
paradigms of the contemporary networking, where 
billions of heterogeneous devices, including home 
automation systems and industrial sensors, can be 
interconnected and able to communicate with each 
other autonomously.[15] With the increase in both size 
and type of IoT deployments, new deployments create 
masses and masses of traffic which is typically encrypted 
and dynamic and thus current packet inspection and 
signature-based monitoring methods become less and 
less effective.[11, 14] Passive traffic profiling, which is 
based on the study of the flow features of metadata 
without the need to decode the holding, has become a 
focus as a promising technique to conduct behavioural 
inferences and anomaly detection.[1, 2]

The initial approaches to passive profiling used were 
rule-based heuristics or statistical clustering models, 
like K-means or Gaussian mixtures, to use flow-level 
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patterns to cluster the IoT traffic.[2, 15] Although these 
techniques provided understanding on particular device 
behaviour, they could not be as flexible to large and 
multi-protocol IoT networks because of overlapping 
feature signatures, loss of features due to encryption, 
and failure to capture long-term dependencies.[10, 11] Also, 
these conventional structures were not scaled and could 
not be accurate in the case of a large traffic variance or  
noise.[7]

The recent developments in machine learning (ML) and 
deep learning (DL) have revolutionised the field of IoT 
traffic analytics as they allow the automatic learning 
of features based on raw or marginally processed 
data. Research works like Wang et al.[14] proved that 
deep neural networks are useful in encrypted traffic 
classification and that spatio-temporal deep models 
are capable of capturing a flow-based and sequential 
dependence on network traffic. Similarly, Li[9] designed 
hybrid CNN-RNN style networks to identify IoT devices 
and under various traffic conditions, great gains in 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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accuracy were recorded. Nevertheless, they tend to 
rely on intrusive packet scanning or require a significant 
amount of computation, and thus cannot scale to large-
scale IoT applications in practise.[7]

On security and privacy perspective, the IoT networks 
are even more challenging. Their vulnerability to 
spoofing, data leakage, and distributed attacks is due 
to the proliferation of low-power and heterogeneous 
devices that have low computational power,[8, 10] Recent 
literature by Ismail and Al-Khafajiy[4] and Kumar[8] 
highlights that new IoT threats are changing the need 
of network monitoring in an adaptative, intelligent, 
and privacy-sensitive manner. Moreover, it has been 
discussed that blockchain-based identity management 
can be integrated with reconfigurable deep learning 
accelerators to provide solutions to the issues of 
trust and performance in future IoT ecosystems[3]  
and.[13]

In spite of these innovations, the literature has shown 
that there is a lack of non-intrusive, scalable deep 
learning systems that can profile encrypted IoT traffic 
effectively without compromising the accuracy of the 
systems with a variety of device types and network 
environments. In this regard, the current paper will 
introduce a deep learning-based passive traffic profiling 
model that combines convolutional neural networks 
(CNNs) and long short-term memory (LSTM) models to 
co-learn spatial and temporal features. The suggested 
system exploits patterns in the timing of packets, 
entropy in the metadata, and flow statistical indicators, 
which are formed only through metadata to produce 
device-specific embeddings without actually looking into 
the payload. This technique offers a privacy-preserving, 
efficient, and interpretable method of large scale 
behavioral classification of IoT.

There are four fundamental contributions of this 
paper. First, it offers a modular architecture of passive 
profiling specifically optimised to support large-scale IoT 
networks, with entirely metadata-based-only features. 
Second, it focuses on the hybrid CNNLSTM which learns to 
jointly represent both local and sequential correlation in 
network flows. Third, it tests the proposed model with 25 
million packets of 16 types of devices in a multi-terabyte 
dataset, and it is better than baseline models because 
of its high accuracy, scalability, and robustness. Lastly, 
it gives analytical results of the model performance 
under encrypted conditions, congestion and dynamic 
traffic conditions. All these contributions speak in favour 
of the viability of AI-based passive traffic analysis as a 
foundation of safe, scalable, and privacy-aware IoT 
behavior analysis.

Methodology

In this section, the researcher outlines the suggested 
deep learning-based passive traffic profiling structure 
in large-scale IoT networks. The methodology covers 
the architectural design of the system and its workflow 
analysis, including the description of processes of data 
acquisition to the classification of the device. It has a 
structure to work in entirely passive monitoring, where 
scalability, robustness and privacy are maintained and 
very high classification accuracy is reached.

System Architecture or Framework Design

The general layout of the proposed passive traffic 
profiling system is represented in Figure 1, and it shows 
the entire flow of data as captured by the packets 
through the classification of the devices. This framework 
is divided into four functional modules, namely, traffic 
acquisition, feature extraction, deep learning-based 
classification, and results aggregation and feedback. 
The combination of these modules creates a distributed 
architecture based on modules that can handle multi-
terabyte datasets of IoT traffic with ease.

During traffic acquisition, the network packets are 
monitored passively by using network-pseudo monitoring 
interfaces that are present in the router of the gateways 
or the switch level aggregation switching points. This 
method is a non-invasive one in contrast to active 
inspection systems which inject and alter network 
traffic. Any data that is captured are anonymized to 
strip the data of recognizable payloads and identifiable 
information belonging to the user in order to meet the 
privacy-preserving requirements.

The feature extraction module converts the raw 
sequence of packets into structured formats which 
could be processed by deep learning model. The 
features that were extracted are inter-packet arrival 
time intervals, header field entropy, flow duration, and 
packet-size distribution statistics. These characteristics 
are normalized to remove the scale difference and 
reduced to the flow-level vectors, which depict each 
communication session.

The classification module is a deep learning one that 
uses hybrid convolutional neural network long short-
term memory (CNNLSTM) model. The CNN element uses 
spatial correlations and local feature dependencies 
among various flow attributes, and the LSTM element is 
used to model the temporal dependencies and sequential 
evolution trends in IoT device behavior. The CNNLSTM 
architecture will guarantee that both short-term and 
long-term traffic features are adequately modelled. 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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The last layer of the model uses a softmax activation 
function to produce probabilistic classifications in 
existing categories of IoT devices.

The aggregation and feedback module is a module that 
collects classification outputs into behavioral summaries 
and anomaly indicators at the network and device 
levels. Integrated results can be added to the network 
management dashboards or security analytics tools to 
monitor behavior in real-time and identify an anomaly.

The system supports the scalability with the use of 
distributed preprocessing pipelines and mini-batch 
parallel training, hence the ability to handle millions 
of packets in a heterogeneous IoT environment. 
Resistance to encryption Robustness is through relying 
solely on metadata features, e.g. timing patterns and 
header information, which are visible even during an 
encrypted session. Also, the accuracy is improved with 
adaptive learning rate scheduling, batch normalization 
and dropout regularization, avoiding over-fitting to 
individual device classes. Altogether, this architecture 
provides a computationally efficient, privacy-conscious, 
and adaptable system of large scale IoT behavioral 
profiling.

Fig. 1: System architecture of the proposed  
framework.

Deep Learning-Based Analytical Workflow

The workflow of the proposed deep learning-enabled 
analytical model is presented in Figure 2, which provides 
a description of the end-to-end flow of operational 
browsing of raw traffic to behavioral inference of 
devices. The pipeline incorporates five important steps, 
namely data preprocessing, feature learning, temporal 
modelling, model training and evaluation, and post-
classification analysis. Collectively, the stages will 
guarantee the conversion of passive traffic metadata to 
privacy-preserving and correct behavioral classifications 
of large-scale IoT settings.

During the data preprocessing phase, the raw packet 
captures are divided into network flows based on five-
tuple identifiers source IP, destination IP, source port, 

destination port and transport protocol on fixed time 
intervals. Inaccurate or incomplete flows are eliminated. 
Every flow is expressed in the form of a normalized 
feature vector.

X={x1,x2,...,xn},  which includes mean packet size, in-
ter-arrival time variance, header entropy and flow dura-
tion. Normalization normalizes the value of all features 
so that the model is more stable throughout the training 
process.

Convolutional neural networks (CNNs) are used in the 
feature learning phase to bring out spatially correlated 
representations of these vectors. The convolutional 
layers use sliding kernels on local areas of features and 
yield feature maps which encode spatial relationships 
amongst adjacent flow features. The mathematical 
representation of the convolutional operation is as 
below.

X represents the input feature map, W represents 
convolutional kernel weights, b represents the bias term 
and  is a nonlinear activation function like ReLU. This 
definition allows the model to acquire discriminative 
spatial cycles like a burst of packet sizes or repeated 
changes in entropy that are typical of particular types 
of IoT devices.

It is then followed by the temporal modelling phase 
which uses long short-term memory (LSTM) layers to 
learn sequential dependencies between segments of 
flows. The input to the LSTM cells at the moment and 
the last state update the cell hidden state as:

	

In which ht  t denotes the hidden state at time t, Wxand 
Wh  are matrices of input and recurrent weights and 
bh is the bias vector. The repetitive structure provides 
the network with contextual memory so it can identify 
long-term regularities of behaviour, like device update 
schedules, sensor reporting schedules or keep-alive 
schedules.

The CNNLSTM hybrid is trained and evaluated on the basis 
of the Adam optimizer and the categorical cross-entropy 
loss function during the training and evaluation stage. 
Empirical tuning of model parameters such as batch 
size, learning rate and sequence length is done to find 
an optimal trade-off between accuracy and inference 
efficiency. Early termination and dropout regularization 
helps in avoiding overfitting as well as enhances 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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generalization. The model has been trained with more 
than 25 million packets representing 16 categories of IoT 
devices, which is a complete behavioral diversity. The 
metrics of evaluation are accuracy, precision, recall, 
F1-score, inference latency, which provides an overall 
performance evaluation.

The system summarizes the classification probabilities 
in the post-classification analysis phase and makes 
interpretations on higher levels of abstraction. 
Predictions made at the flow level are aggregated to 
obtain device level behavioral profiles and anomalies 
detected as a result of not following baseline patterns. 
Such deliverables can be used along with network 
management dashboard or intrusion detection system to 
aid real-time behavioral analytics.

This glucom workflow is a deep learning-based system 
that guarantees a rational transformation between 

raw and encrypted IoT traffic and usable behavioral 
information. The framework offers an effective, scalable, 
and non-invasive mechanism of tracking the activity of 
IoT devices in a complex and voluminous network by 
combining CNN-based spatial encoding with LSTM-based 
temporal reasoning.

Results and Discussion

The suggested framework was tested with a massive 
dataset of IoT-based traffic that included 16 different 
types of devices, such as smart speakers, IP cameras, 
thermostats, light bulbs, and routers. The size of the 
packets that were captured was 25 million with varying 
operating circumstances and encryption. The results of 
the comparative performance statistics with respect 
to the conventional models are outlined in Table 1 and 
the trends of the learning behaviour and scalability are 
plotted in Figure 3 and 4 respectively.

The hybrid CNN-LSTM model outperformed baseline 
models like the Random Forest (87.6%) and SVM (82.4%) in 
terms of classification accuracy of 95.1%. Parallelization 
of batch inference also resulted into shorter latency 
(0.34 ms per flow) and increased throughput (11.2 K 
flows/s) of the proposed framework. Precision and recall 
were both greater than 93% indicating the stability of the 
model in the heterogeneous behaviors of the devices. 
The computational overhead analysis showed that the 
hybrid method had 27% lower computational costs than 
the multi-layer perceptron (MLP) alternatives, which 
validated the ability to scale the hybrid method.

The correlation between accuracy of the model and 
the size of dataset is depicted in Figure 3. The curve 
of accuracy shows a steady increase, but its trend has 
reached 20 million packets. This trend shows good 
generalization of features and convergence by the 

Table 1. Comparative performance analysis of the proposed CNN–LSTM framework against baseline models for  
IoT device classification.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Inference 
Latency (ms/

flow)
Throughput 

(flows/s)

Statistical K-Means 78.4 75.6 73.9 74.7 1.82 4.1 K

Random Forest (500 
trees)

87.6 86.3 85.1 85.7 0.96 7.3 K

Support Vector Machine 
(RBF)

82.4 80.5 79.8 80.1 1.45 5.2 K

Multi-Layer Perceptron 
(3 hidden layers)

90.8 89.7 89.3 89.5 0.78 8.4 K

Proposed CNN–LSTM 
Hybrid

95.1 94.6 94.2 94.4 0.34 11.2 K

Fig. 2: Algorithmic workflow of the  
proposed analytical process.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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use of data and implies that the model can be trained 
effectively by utilizing large scale training. Intermediate 
dataset oscillations in minor performance differences 
are attributable to momentary overfitting energies 
suppressed by dropout regularization.

Figure 4 examines the scalability performance of the 
proposed framework using the number of concurrent 
IoT nodes. The delay of the inference is sub-linear until 
10,000 nodes, and then slows down with increasing nodes 
because of the bandwidth and memory contention. 
However, the system retains more than 90% accuracy 
at extreme node densities, which stresses the strength 
of the system in large-scale settings. The adaptive 
resilience of CNNLSTM hybrid to traffic bursts can also 
be pointed out by the correlation between the decline 
in accuracy and the number of nodes.

Altogether, the findings support the hypothesis that 
passive profiling with deep learning has better accuracy 
and efficiency than the conventional statistical 
methods. Spatial feature extraction by CNNs combined 
with temporal modeling by LSTMs allows them to take 
a comprehensive representation learning that is still 
effective with encryption and different device behaviors. 
The generalization feature of the framework indicates 
high applicability on real-life IoT monitoring systems, 
especially with non-intrusive security analytics.

Conclusion and Future Work

The present paper introduced a passive profiling 
framework with deep learning assistance that can be 
applied to a large-scale IoT network, a hybrid CNNLSTM 
framework to classify the behavior of devices based on 
traffic metadata exclusively. The system was found to be 
95 percent accurate on sixteen types of devices and was 
better in terms of scalability, efficiency, and encryption 
resistance. These results support the possibility of AI-

Fig. 3: Model accuracy versus dataset size  
(plateau after ~20M packets).

Fig. 4: Scalability performance of the proposed 
CNN–LSTM IoT framework with respect to the 

number of concurrent IoT nodes.

based passive analysis as the basis of real-time IoT 
behavioral surveillance and anomaly detection. In a more 
general sense, the method can lead to network security 
and administration because it allows privateness saving 
behavioral analytics without inspecting payloads. The 
study will involve future research on adaptive federated 
learning integration to assist in updating distributed 
models without centralization of data. Moreover, 
hybrid edge/cloud deployment can also shorten 
inference latency of time sensitive IoT applications. 
The generalization of the models will also be enhanced 
by increasing the diversity of the dataset to cover the 
domains of vehicular and industrial IoT. Eventually, 
this effort preconditions the creation of intelligent and 
self-optimizing network infrastructures that have the 
power to profile and provide security to the giant IoT 
ecosystems autonomously.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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