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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Precise positioning of sensor nodes is an important facilitator of context-aware services, 
effective routing, and data interpretation in dense Internet of Things (IoT) sensor 
networks. Nonetheless, the traditional localization algorithms are limiting in dense 
deployment because of signal interference, non-line-of-sight situations and lack of 
scalability. The work includes a detailed comparative analysis of machine learning (ML)-
specific localization algorithms designed to be used in densely populated settings of IoT. 
In particular we test the ability of k-Nearest Neighbors (k-NN), Support Vector Machines 
(SVM), Random Forests (RF) and Deep Neural Networks (DNN) on important measures 
like localization accuracy, computational efficiency, resistance to environmental 
noise and scalability. Both synthetic and real-world datasets based on dense network 
scenarios are explored to mean experimental analyses. Examination of the results 
has shown that DNN models are more accurate because of sensitivity to complicated 
signal-space interactions, and the RF provides an attractive tradeoff of precision versus 
overhead. Instead, SVM presents scalability issues and k-NN is not performing well in 
highly dynamic or noisy environments despite being fast. The findings can be used in 
practice to choose which algorithm to use in order to deploy the algorithm into real-
world IoT systems where the node distribution is dense. Our work adds another piece of 
research to the area of smart positioning solutions and can be used to develop energy 
efficient, scalable, and precise positioning systems to be used in the future IoT devices.
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Introduction

The spontaneous growth of the IoT devices in fields 
like smart cities, industrial automation, environmental 
tracking, and precision agriculture has further 
strengthened the necessity of precise, scalable, 
and energy-efficient strategy of node localization. 
Localization is considerably harder in dense IoT sensor 
regions where node density is high and the available 
infrastructure is limited, and multipath and non-line-
of-sight (NLoS) transmission, signal interference within 
the network, a lack of anchor nodes, and tight energy 
budgets are major challenges.

Machine learning (ML) techniques appear to be used as 
a solution to limited capabilities of classical localization 
methodologies (e.g., RSSI-based trilateration and 
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fingerprinting), because they enable to describe complex, 
nonlinear relationships between feature features and 
the spatial coordinates. To illustrate, Shahbazian et al. [1]  
conduct a broad review of the works concerning IoT 
localization using ML, which also outlines the abilities of 
the latter in coping with the noise and comprehension of 
the issues including the sparsity of data, the complexity 
of the models, the heterogeneity of devices. Along the 
same line, a study published by Maduranga[2] in 2024 
shows the positivity of better localization in IoT systems 
through ensemble ML techniques and preprocessing 
pipelines.

Nevertheless, these advances have been played out in 
either sparse or moderately densely set ups where there 
has been no systematic assessments of ML algorithms 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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through an evaluative approach against a variety of ML 
methods in real world, heavily dense sets ups. Moreover, 
overall evaluations seeking a balance between accuracy, 
computational cost, scalability and resistance to noise 
are scarce.

This paper compares and evaluates the performance of the 
four common application theories of ML-based localization 
algorithms, k-Nearest Neighbors (k NN), Support Vector 
Machines (SVM), Random Forests (RF), and Deep Neural 
Networks (DNN), under dense IoT sensor networks to fill 
these gaps. The construction of experiments is based on 
synthetic and real-world datasets and evaluation of each 
algorithm according to key performance parameters. We 
hope that our findings can inform engineering engineers 
to tactfully choose and implement ML-based localization 
in the next-generation IoT platforms.

Background and Related Work

The traditional IoT sensor network driven localization 
is done using model-driven localization that can be 
grouped into three categories:

1.	Range measurements: These generate estimates 
of distances or inter-node angles based on signal 
measurements including Time of Arrival (ToA), 
Time Difference of Arrival (TDoA), Received signal 
power indicator (RSSI) or Angle of Arrival (AoA). 
They perform perfectly in line-of-sight (LoS) path 
but perform very poor when dense deployments 
are involved as they are multipath-propagation-
prone, signal interference and noise.[1]

2.	Range-free techniques: These are the algorithms 
which are not based on direct distance or angle 
measurements, they: include centroid, DV-
Hop, and APIT. Although low-end and power 
consumption, range-free methods have poor 
spatial resolution and accuracy especially in 
dense or topologically complicated domains.[2]

3.	Fingerprinting-based solutions: Radio mapping 
is performed in an off-line phase based on data 
recorded in the radio environment at previously 
known locations in the fingerprinting-based 
methods. During the online stage, the signal 
observed is compared against the fingerprints 
database. Finger printing is more accurate in 
indoor and densely populated setting but the 
cost implication of finger printing is high in 
memory as well as labor expense in mapping and 
faces decay in performance with the change in 
the environment.[3]

In the previous years, however, machine learning (ML) 
methods have become popular due to their ability 

to capture nonlinear associations and to work with 
noisy observations. Such supervised ML algorithms as 
k-Nearest Neighbors (k-NN), Support Vector Machines 
(SVM), Random Forests (RF), and Deep Neural Networks 
(DNN) have been used on localization tasks with good 
potential.[4, 5] Such models can interpolate based on 
training data and be able to model different propagation 
conditions without explicit physical modeling. But 
majority of the previous works have concentrated on a 
single ML method in ideal or moderately dense network 
conditions. Comprehensive comparative analysis of 
comparative analysis of two or more ML-based algorithms 
in the realistic dense deployment scenario is few. Also, 
trade-offs between localization accuracy, computational 
efficiency, noise robustness and scalability are under-
investigated. It is this discrepancy that is the driving 
force behind the current research, that of benchmarking 
several ML models in dense IoT deployment situations.

System Model and Problem Formulation

We assume a two-dimensional dense Internet of Things (IoT) 
sensor network spread on a pre-determined geographical 
area in our investigation. The two categories of nodes used 
in the network are anchor nodes, positions of which are 
known ahead of time, and unknown sensor ones, whose 
coordinates must be found. The dense deployment means 
that sensor nodes are deployed in a dense spatial pattern 
and thus they are characterized with signal overlap, signal 
interference, and multipaths which are penetrating issues 
that require high quality localization. Figure 1 represents 
an overview of this system model.

The individual sensor nodes within the network will 
collect signal parameters, which can be Received Signal 
Strength Indicator (RSSI) and Channel State Information 
(CSI) or any other useful physical-layer metrics depending 
on signal transmissions on neighbor anchor nodes. These 
signal features are naturally dependent on the spatial 
location of the node thus they are good input to learning 
based localization model.

Suppose let the data set be as:

	 	 (1)
where:

•	 (xi,yi) denotes the true Cartesian coordinates of 
the ith sensor node,

•	 fi∈Rdis a feature vector containing d signal-based 
measurements observed by node i,

•	 N is the total number of labeled data samples 
(collected either through simulation or from a 
pre-characterized environment).
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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The core objective is to learn a mapping function f such 
that:

	 f:fi→(xi,yi )	 (2)

This operation estimates spatial coordinates of a node 
based on only signal characteristics observed. The role 
of f is in practice approximated with various supervised 
machine learning (ML) algorithms: they include 
k-Nearest Neighbors (k-NN), Support Vector Machines 
(SVM), Random Forests (RF), Deep Neural Networks 
(DNN). These models are trained on the labeled dataset 
Dtrain and evaluated on an unseen test set Dtest​ to assess 
generalization performance.

Quantitative performance is assessed in terms of Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), 
and latency of inferences with special attention paid 
to the performance behavior of these metrics in dense 
deployment applications, where spatial resolution and 
ability to tolerate noise is imperative.

Fig. 1. System Model for ML-Based Localization in 
Dense IoT Sensor Networks

The system diagram of machine learning assisted node 
localization is depicted in the figure. Signals features 
(e.g., RSSI, CSI) are propagated by the anchor nodes 
that have known coordinates to unknown nodes. Such 
characteristics act as inputs of a ML model that can learn 
the mapping function f (f) (x, y) to predict the spatial 
locations of the unseen nodes.

Machine Learning Algorithms Evaluated

This paper discusses a proposed study to test the 
capability of four supervised machine learning (ML) 
algorithms in the localization of the nodes in dense 
IoT sensor networks. The different algorithms provide 
uniquely useful properties in terms of modeling of spatial 
relationships based upon signal derived features, with 
some being more complex, accurate, and computationally 

burdensome than others. The chosen models are the 
representatives of the balance between the classical, 
ensemble-based, and deep learning method so that a 
thorough comparison can be made. Figure 2 provides the 
overview of these algorithms and their functions in the 
process of localization.

k-Nearest Neighbors (k-NN)

k-Nearest Neighbors (KNN) is a simple, non-parametric, 
instance based learning, which classifies or predicts a 
target sample based on majority class or mean coordinate 
in the feature space of k nearest neighbors. Under 
localization context, k-NN attempts to estimate the 
nodes counter parts by computating eucilidian distance 
between the observed feature vector and those in the 
training set. Although its simplicity of implementation 
and low training cost, k-NN may shed accuracy to high-
dimensionality or sparse and noisy of training data.

Support Vector Machines (SVM)

The Support Vector Machines are strong types of 
supervised learning systems that build hyperplanes in 
multi-dimensional space to partition the data points 
using to the largest interval of separation. When applied 
in localization, SVM can be applied on regression (SVR) 
whereby it predicts continuous spatial coordinates given 
signal features. SVM has the ability to describe non-
linear relations between input variables and location 
by involving kernel functions including radial basis 
function (RBF). Nevertheless, SVM can be sensitive to 
tuning of the parameter and can prove not to scale 
up when presented with large data as the algorithm is 
computationally complex.

Random Forest (RF)

Random Forest is a number of learning methods in which 
the predictions of a number of decision trees trained on 
subsets of the data are combined. Every tree adds up to 
a vote and average voting is used to decide the ensemble 
decision in regression task. RF has high capacity to 
perform good generalization, does not perform as 
poorly as individual trees in dealing with non-linearity 
and feature noise and is less likely to overfit. The fact 
it is easy to interpret and has moderate training cost 
makes it suitable to the real-time localization conditions 
of the IoT, where feature inputs are diverse and partly 
redundant.

Deep Neural Networks (DNN)

Deep Neural Networks are feedforward neural nets with 
multiple layers, they can learn hierarchies of complex 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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representations as used in input data. DNNs automatically 
learn spatial patterns and are able to generalize on 
noisy or heterogeneous environments during localization 
activities. DNNs are typically constructed out of 
numerous fully interconnected layers consisting of non-
linear activation functions (e.g. ReLU) and are optimized 
through backpropagation and stochastic gradient descent 
(SGD). Although DNNs outperform conventional models 
in accuracy, they require considerable computing power, 
training duration and need of large labeled data-sets, 
aspects that should be factored in implementing DNNs in 
resource limited IoT systems.

Fig. 2. Overview of Machine Learning Algorithms for 
Localization in Dense IoT Sensor Networks

The four machine learning algorithms tested in the 
context of node localization are summarized in the 
flowchart, i.e., k-Nearest Neighbors (k-NN), Support 
Vector Machines (SVM), Random Forest (RF), as well as 
Deep Neural Networks (DNN). Each of the algorithms is 
presented along with its principle of operation and the 
purpose of estimating node positions using the features 
deriving out of signals.

Evaluation of the present four algorithms on the basis 
of localization accuracy, robustness to noise, time 
delay and the ability to scale to such dense deployment 
situations are presented in the following sections. This 
comparative analysis gives ideas about their adaptability 
in real-life use in IoT solutions considering different 
levels of the performance requirements.

Experimental Setup

A full experiment based simulation framework was 
developed in order to simulate realistic dense IoT 
sensor network scenarios to test the performance of 
chosen machine learning algorithms in a controlled 
and repeatable operational profile. Figure 3 is a visual 
representation of the entire setup of the simulation, 

the design, selection of features, tool used and the 
evaluation measures.

Simulation Environment

The spatial field, in which the simulation was conducted, 
is two-dimensional with a size of 100 m x 100 m, which is 
typical of an area of deployment of smart infrastructure 
or industrial Internet of Things. One hundred and fifty 
sensor nodes were placed in the field by using uniform 
random distribution to use a dense deployment setting. 
Out of these, we had 20 percent of nodes which were 
called as anchor nodes and had a known fixed coordinate, 
these were reference point against which localization 
took place. The other 80 percent were converted to 
unknown nodes, positions of which were to be estimated 
via machine learning models.

Feature Set

A sequence of signal-based features were gathered per 
unknown node utilized to train and assess the ML models. 
The feature set contained:

•	 Neighboring anchor nodes gave me Received 
Signal Strength Indicator (RSSI) values,

•	 The topology-aware context would be node 
identifier (ID),

•	 Empirical path loss models that were used to 
estimate distances based on RSSI.

Such characteristics are realistic signal features that can 
be observed in the development of IoT fields, including 
Gaussian noise added to simulate environmental 
volatility and signal distortions.

Tools and Frameworks

Using the following, the simulation environment and the 
implementation of the ML-model were constructed:

•	 Python with library scikit-learn (classical ML: 
k-NN, SVM, RF) and TensorFlow (deep learning or 
neural networks building)

•	 MATLAB used in signal propagation simulation, 
generation of RSSI data it uses stochastic channel 
models.

Datasets to train and test were divided into 80:20 
percentages and 5-fold cross-validation was applied to 
make sure that the model performs well under various 
runs.

Evaluation Metrics

All algorithms were estimated on the following main 
parameters of performance:
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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•	 Localization Accuracy: the localization accuracy 
is measured in meters as a Mean Absolute 
Error (MAE) between estimated and true node 
coordinates,

•	 Runtime: It showcases time taken to inference on 
test set and thus efficiency of the computation,

•	 Noise robustness: The change of performance 
through the noise in the signal and any 
fluctuations, which was evaluated, by adding the 
variable amount of gaussian noise (AWGN) to the 
input features.

Fig. 3. Experimental Setup for ML-Based Localization 
in Dense IoT Sensor Networks

The above diagram presents the experimental set up to 
test the machine learning algorithms to determine the 
node localization. It contains a 100 m x 100 m simulation 
environment with anchor and unknown nodes, feature 
extraction (RSSI, Node ID, distance estimates and 
implementation tools (Python with scikit-learn and 
TensorFlow, MATLAB),) and performance metrics 
(accuracy of localization, time, aspect noise).

Such an experimental framework creates a common 
ground on which to compare ML algorithms against each 
other under controlled comparative settings and gives 
an accurate and replicable performance measurement.

Results and Discussion

The following section outlines the comparative review 
of the four chosen machine learning algorithms, i.e. 
k-Nearest Neighbors (k-NN), Support Vector Machines 
(SVM), Random Forests (RF), and Deep Neural Networks 
(DNN) depending on their performance in operating 
under dense deployment of IoT sensors. The models 

were evaluated over four performance measures that 
include localization accuracy, inference time, signal 
noise resistance, and scaleability. Quantitative findings 
are reported in Table 1 whereas the respective visual 
comparison is reflected in Figure 4 (Localization Accuracy 
using Mean Absolute Error) and Figure 5 (Inference 
Runtime per ML algorithm).

Localization Accuracy

With assessment performance, Deep Neural Networks 
(DNN) demonstrated the best results in localization, 
having a Mean Absolute Error (MAE) of 2.58 meters 
because of fitting intricate, multi-level representations 
of the spatial styles of the signals they learned. The 
performance illustrates effectiveness of deep learning in 
mining latent features in high density noisy environments.

Runtime and Computational Efficiency

k-NN registered the shortest time execution (0.14 
s) because it is non-parametric and training free. 
Nevertheless, it did not perform well with regard to 
accuracy and sensitivity to noise. Conversely, DNNs, as 
the most accurate, had the most inference time (1.34 s) 
because of deep-layer calculations a significant limitation 
to real-time or limited resources deployments.

Robustness to Noise

Both DNN and RF were extremely resistant to noise, 
preserving their accuracy consistent even after applying 
Gaussian noise to the features of RSSI. SVM also fared well 
on moderately noisy settings but they were sensitive to 
parameters tuning and choice of kernel and k-NN, which 
does not allow feature generalization, experienced the 
sharpest loss of performance with noise variance.

Scalability

To test the scalability of the model, nodes density was 
increased and the model response was tracked. k-NN 
performed the scale test well since it was simple, 
however traded-off accuracy. In comparison, SVM 
experienced a significant decline in the runtime and 
the accuracy as the size of the dataset increased and 
demonstrated the lack of scaling potentials. RF and DNN 

Table 1. Performance Comparison of ML-Based Localization Algorithms

Algorithm Mean Absolute Error (m) Runtime (s) Robustness Scalability

k-NN 4.87 0.14 Moderate High

SVM 3.95 0.65 High Low

RF 3.67 0.48 High Moderate

DNN 2.58 1.34 Very High Moderate
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator

Journal of Wireless Sensor Networks and IoT  | Jan - June 202684

offered a fair trade-off of scalability and performance, 
so they could be applicable in large-scale deployment 
with edge/cloud computation assistance.

Summary of Insights

•	 DNN is the best option in cases where the priority 
on accuracy and robustness are the most vital 
and computing facilities are plentiful.

•	 RF is a compromising solution between accuracy, 
speed and noise resistance, which is perfect to 
consider moderately constrained IoT purposes.

•	 SVM can be more used in the small-scale, 
unchangeable networks however not applicable 
in large-scale dynamic systems because it has 
less scalability.

•	 k-NN is also a useful lightweight with low-latency 
applications but is not adaptive with high-density 
networks and noisy networks.

Fig. 4: Comparison of Localization  
Accuracy Across ML Algorithms
(Mean Absolute Error in Meters)

Fig. 5: Inference Runtime Comparison of  
ML Algorithms for  Node Localization(in Seconds)

Conclusion
To highlight the effectiveness of ML-driven localization 
solutions in solving the specific problems of IoT dense 

sensor deployment, this comparative analysis is carried 
out. One of the most accurate localization results 
was reported as Deep Neural Networks (DNN), which 
succeeded in preserving complicated spatial features, 
based on the signal produced inputs. Nonetheless, the 
training/inference overhead make DNNs poorly suited 
to traditional networked infrastructures, lacking the 
availability of intensive computing offloading to an 
edge-assisted or cloud-integrated infrastructure. By 
comparison, Random Forest (RF) presents a strong 
tradeoff between accuracy, resilience, and the 
computational overhead, thus being specially suitable 
when localization needs to be done in real-time and on 
constrained IoT nodes. The ensemble design used by RF 
combines robust generalization along with modest width 
needs even during signal noise and variability.

The presented findings indicate that the use of ML 
algorithm should be correlated with the context of 
deployment and the system limits. DNNs are suited 
in applications where accuracy is of the essence, and 
computational budgets are very high, but RF offers 
a practical solution of scalable and costeffective 
localization in embedded IoT settings.

Future Work

Whereas, the current paper provides an excellent 
estimation of machine learning-based localization 
algorithms in dense IoT surroundings, there are still a 
number of prospects of enhanced research in the field 
that are to be pursued in the future.

The first one is the potential introduction of federated 
learning (FL) into the localization models to provide an 
attractive method of data privacy and the minimization 
of communication overhead. Without revealing the 
raw data, FL will potentially improve the privacy of 
data and scale to mission-critical services or sensitive 
environments that follow a decentralized approach and 
require limited support due to the training performed at 
distributed points on the IoT.

Second, online and gradual learning models, along with 
their development, is crucial to changing environments, 
in which network topology and condition of signal 
propagation can change over time. With such models, 
real-time adaptation and continual learning would be 
made possible, thus less frequent retraining is required 
offline and localization stability to environmental drift 
would be better.

Lastly, in future, hybrid localization systems which 
integrate classic approaches to signal processing 
(e.g. time-of-arrival estimation, triangulation) with 
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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machine learning architectures should be considered 
to capitalize on the advantages that the two distinct 
paradigms offer. These hybrid systems may provide 
better interpretability, better performance with the 
training of small training cases, and generalization in 
the heterogeneous environments.

These future directions, in combination, are intended 
to expand the possibilities of intelligent localization and 
to make it safer, responsive, and scalable to the future 
realm of dense IoT installations.
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