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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Industrial Internet of Things (IIoT) is becoming more dependent on Wireless Sensor 
Networks (WSNs) to monitor real-time asset and process. Nonetheless, identifying the 
anomalies in streaming data with high throughput is difficult as there is latency, a low 
bandwidth available, and low computing capabilities of the edge devices. This paper 
suggests an AI-based anomaly detection model capable of operating in the specific 
context of latency-sensitive industrial application with an edge-enabled WSN-based 
implementation of lower latency, distributed analysis. The architecture combines the use 
of lightweight Convolutional Autoencoders (CAEs) and Long Short-Term Memory (LSTM) 
models on edge devices in finding spatial and temporal anomalies on the parameters 
including temperature, pressure, and vibration. It also achieved a detection accuracy 
of more than 95 percent and an inference latency of less than 200 ms by relying on 
simulation results gathered using NS-3 and TensorFlow Lite. The system has a slight data 
transmission overhead reduction of 68 percent as compared to traditional cloud-based 
schemes and allows responding to faults in real-time. A solution that is scalable, energy 
efficient and reliable in terms of locating anomalies in mission-critical IIoT environments 
has been proposed based on the framework. The next steps will involve incorporating 
federated learning to support live industrial applications and the ability to upgrade the 
model dynamically and the capability of supporting multimodal sensor fusion.
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Introduction

The Industrial Internet of Things (IIoT) has changed 
conventional industrial systems into smart and put 
together systems with more kept up to date maintenance, 
foreseeable support and far off asset the administration. 
These systems are based on Wireless Sensor Networks 
(WSNs) which entail steady telemetry data of essential 
infrastructure elements including machines, pipes, 
and power systems. This real-time sensing allows 
monitoring and early warning systems to be operated 
under conditions industrial applications. Nevertheless, 
operational reliability and system resilience in such 
environments are progressively relying on the fast and 
proper identification of anomalies, such as the hardware 
degradation, sensor failure, and possible cyber-physical 
attacks. Conventional models are mandatorily based 
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on clouds on which there is immense communication 
overhead, process delays and lacks maximum scalability 
and latency responsiveness in the IIoT applications.

The issues of centralization are thoroughly investigated 
in recent works [1, 2] devoted to the integration of deep 
learning-based anomaly identification in industrial 
environments, although the majority of them are quite 
centralized. Edge AI appears as a new direction and the 
prophecy of a solution to the problem, which provides 
closer intelligence with lower dependence on cloud 
computing.[3] However, the current systems in place 
either incorporate complicated models that are not 
suitable to deploy to the edges or do not have a firm 
approach to multi-modal anomaly detection.

This paper therefore proposes an innovative AI-based 
anomaly detection model in Industrial IoT in the  

RESEARCH ARTICLE	 ECEJOURNALS.IN



K. T. Moh and Felip Cide : AI-Driven Anomaly Detection Framework for Industrial IoT Using Edge-Enabled  
Wireless Sensor NetworksIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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next-generation edge-enabled WSNs. It involves deploy-
ing autoencoders (CAEs) and LSTM on edge nodes that 
are lightweight convolutional modules that could be 
primed in the proposed system. This architecture allows 
low-latency, real-time anomaly detection, much less 
network bandwidth consumption and facilitates distri
buted intelligence within the IIoT infrastructures.

The rest of the paper is divided into the sections as 
follows: Section II is a literature review, Section III 
is a system architecture description, Section IV is a 
description of models used in anomaly detection, Section 
V is the description of the experimental setup, Section 
VI is the discussion of the results and Section VII is the 
conclusion of the paper with directions.

Related Work
Cloud-Centric Approaches

The problem of anomaly detection in Wireless Sensor 
Networks (WSNs) gained much attention over the last few 
years and is of great importance to keep a system intact 
and its operational quality guaranteed in conditions of 
Industrial IoT (IIoT). The existing cloud-centric methods 
employ deep learning models to carry out centralized 
massive sensor data to conduct anomaly analysis.[1, 2] 
These models frequently use the convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) 
to embed useful spatial and temporal characteristics. 
Although such techniques have shown great detection 
accuracy, they exhibit a significant communication 
latency due to cloud deployment, which elevates the 
risk of data privacy, and restricts their applicability in 
any real-time industrial environment.[6]

Edge-Based Methods

In solving these shortcomings, edge intelligence has 
proved as an alternative. In the recent years, the 
attention has been on lightweight autoencoders and 
Long Short-Term Memory (LSTM) models deployment 
on resource-constrained edge devices.[3, 7] These type 
of methods enable detection of anomalous activity in 
real time, at data source hence the latency and network 
traffic congestion is significantly reduced. Nevertheless, 
issues exist in the fields of low processing power, memory 
constraints, and energy consumption on embedded 
systems that might challenge the scalability and broad 
applicability of these equivalent-based methods on 
multifaceted IIoT site.[5]

Federated and Fog-Based Solutions

Other paradigms have been developed to seek a 
trade off between performance and decentralization 

including federated learning or fog computing. Such 
architectures implement model training and inference on 
intermediate fog or multi-agent edge, providing partial 
decentralization.[4, 9] Such systems can cause a bottleneck 
at aggregation points and their decentralization method 
can lead to failures although they reduce the dependency 
on clouds.[8]

Research Gap and Proposed Contribution

Nonetheless, none of the currently existing anomaly 
detection approaches are fully decentralized nor 
have the capability of operating on the edge, while 
meeting desirable levels of accuracy, latency, and 
computation problems. Our work implies working with 
this need by direct implementation of lightweight 
convolutional autoencoders and LSTM models directly 
on microcontrollers or on the Raspberry Pi-class devices. 
This model supports low-interference anomaly detection 
of high accuracy, using little external infrastructure 
involved hence, this model is very resourceful to be 
implemented in IIoT scenarios that are latency and 
bandwidth sensitive.

System Architecture

The suggested framework on anomaly detection in 
Industrial IoT settings is built in accordance to a three-
level architectural structure which uses distributed 
intelligence by means of Wireless Sensor Networks (WSNs), 
edge computing nodes in addition to cloud systems. Such 
stacked architecture is one that guarantees low-latency 
procession, publishing capability, and dependable fault 
identification in the last mile industrial environment.

Edge Sensing Layer

This layer is so made up of industrial-grade WSN nodes 
having sensors to track critical physical parameters like 
temperature, vibration, pressure, and gasses levels. 
The nodes are based on a microcontroller or a single-
board computer (SBC) (e.g. Raspberry Pi) that can run 
any lightweight machine learning algorithms using 
frameworks like TensorFlow Lite.

Such layer performs the following key functions:

•	 Immediate procurement of data in real life 
space.

•	 Off-device preprocessing: such as feature 
extraction, and normalization.

•	 Originally scores the anomalies that enable the 
node to indicate the possible unusual trends 
without external source.



K. T. Moh and Felip Cide : AI-Driven Anomaly Detection Framework for Industrial IoT Using Edge-Enabled  
Wireless Sensor Networks

Journal of Wireless Sensor Networks and IoT  | Jan - June 2026 19Journal of VLSI circuits and systems, , ISSN 2582-1458 

RESEARCH ARTICLE WWW.VLSIJOURNAL.COM

 1.8-V Low Power, High-Resolution, High-Speed 
Comparator With Low Offset Voltage 

Implemented in 45nm CMOS Technology

 Ishrat Z. Mukti1, Ebadur R. Khan2. Koushik K. Biswas3

1-3Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh

AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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This architecture will provide that the data processing 
will start at its source where the upstream bandwidth 
usage will be minimised and quick response to local 
faults is possible. Figure 1 shows the structural elements 
and data flow of processing of this layer.

Fig. 1: Edge Sensing Layer.

The architecture encompasses industrial-literate WSN 
nodes installed with sensors (temperature, vibration, 
pressure) and hooked up to microcontrollers or single-
board computers (SBCs) to have real-time on-device 
analytics (i.e., feature extraction and advertisement 
scoring) done.

Edge AI Layer

The middle level carries out smart detection of anomalies 
by performing deep learning models designed to run on 
edges. There are two major models used:

•	 Convolutional Autoencoder (CAE): This is applied 
in identifying the anomalies in space of sensor 
signal results through reconstruction of the input 
patterns and comparing the reconstruction loss 
value with the threshold value.

•	 Long Short-Term Memory (LSTM) Network: Purpose 
to detect temporal anomalies with the ability 
of modeling sequential behavior and detecting 
major deviations in the expected behavior.

The outputs of the two models are used to form a 
fused decision engine, where the adaptive confidence 
thresholds increase robustness and decreases the 
false positives. This layer will work independently, 
without an Internet or cloud connection, and there 
will be capabilities of local decision-making. Figure 2 
is a visualization of the structure and data flow of this 
intelligent processing layer.

The layer combines both sensor data and a Convolutional 
Autoencoder (CAE) to model spatial behavior as well as 
an LSTM network to model temporal behavior. A decision 
fusion module combines both models, and as a result, 
the confidence threshold is used to detect anomalies at 
the edge and make low-latency inferences.

Cloud and Visualization Layer

The cloud layer of the architecture is the main platform 
used in long-term analytics, visualization, and model 
management at the top of the architecture. It has the 
following functions:

•	 Occasional standardized metrics and flag 
anomaly on the edge devices.

•	 Intelligent web dashboard featuring real time 
visualisation of industrial telemetry, alarm status 
and anomaly heat maps.

•	 Data retention and retraining orchestration, 
wherein past data may prompt an adaptive update 
or retraining of edge models to accommodate 
wear or shifting patterns, of equipment, or shifts 
in sorts of faults.

The benefit of this type of hybrid infrastructure is that it 
inherits the advantages of decentralized inference, but 
still has the capabilities of the cloud in strategic decision-
making and scaling. Figure 3 shows the orchestration and 
interaction of cloud services, edge device and industrial 
sensors at the highest level.

Fig. 3: Cloud and Visualization Layer.

Fig. 2: Edge AI Layer.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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The architecture specifies a top-down data flow at the 
industrial grade sensor to the edge device and cloud 
services. The cloud layer facilitates real-time dashboards, 
data retention, and model retraining systems in order to 
support strategic decision-making and scalable anomaly 
analytic in Industrial IoT.

Anomaly Detection Models

To solve the faults in an Industrial IoT environment in 
a timely and correct manner, the proposed framework 
includes a hybrid anomaly detection approach mixing 
spatial and temporal analysis capabilities. This two-
model architecture increases resistance against various 
fault patterns which can occur in sensor data streams.

Convolutional Autoencoder (CAE)

The CAE is used to extract spatial characteristics of frames 
of individual sensors. Specifically, since the CAE is trained 
using data that is obtained during normal operations, 
it makes reconstructions of observed signal patterns 
during normal operations. When the reconstruction 
error rises above a threshold, it is determined that 
there is a deviation in learned normal behavior, such 
as a sudden movement of vibration or a sudden change 
in temperature- e.g. anomalies. The technique proves 
quite useful specifically in the detection of point outliers 
or signal contamination.

Long Short-Term Memory (LSTM) Network

RNN The LSTM component represents the sequence 
of time dependencies on sensor readings by training 

the previous input. It predicts and makes predictions 
and then compared with the readings. Considerable 
deviations between the retrieved actual values and the 
predictions is indicated as a temporal anomaly in values. 
This channel plays an important role in monitoring a 
slow shift, deterioration, or continuous inconsistencies 
within the system.

To suit the requirements of edge computing platforms 
(e.g., Raspberry Pi, STM32, ESP32), the models are both 
compressed with model compression methods (pruning 
(eliminating unnecessary neurons) and quantization 
(changing precision to int8 or float16)), therefore, they 
have a small memory footprint (20200 MB) and a lower 
inference latency (<200ms).

Moreover, the architecture provides on-device model 
updates in the form of federated distillation and 
distributed learning, and this paradigm does not sacrifice 
the privacy of data or has more reliance on clouds. It 
can allow either determining the optimal detection 
models or updating the existing ones continuously due 
to changes in industrial conditions and sensor drift with 
time. Table 1 contrasts the proposed hybrid method with 
legacy, and current AI-based anomaly detection solutions 
with respect to the notable operational thresholds of 
IIoT setting.

Experimental Setup

As a way to assess the practicality and effectiveness of the 
proposed edge-enabled anomaly detection framework, 
simulations and real-time emulation experiments were 

Table 1: Comparison of Proposed Method vs. Traditional Anomaly Detection Approaches

Aspect
Threshold-Based 

Methods
Statistical Models 
(e.g., ARIMA, PCA)

Cloud-Based Deep 
Learning

Proposed Hybrid Edge AI (CAE + 
LSTM)

Detection Type Rule-based (fixed/
empirical thresholds)

Statistical 
deviation from 
norms

Learned patterns 
from large datasets

Combined spatial (CAE) and temporal 
(LSTM) inference

Latency Very low Low to medium High (cloud-
dependent)

Low (on-device < 200 ms)

Accuracy (F1-
Score)

Low to Medium (≤70%) Medium (~80%) High (≥95%) High (≥95%)

Adaptability to 
Drift

Poor (static thresholds) Moderate (requires 
retraining)

High (but cloud-only 
updates)

High (on-device federated distillation 
supported)

Data Privacy High High Low (data offloaded 
to cloud)

High (local inference with minimal 
cloud sync)

Bandwidth Usage Minimal Moderate High Minimal (edge inference, summary 
upload only)

Deployment 
Scalability

Good (simple logic) Moderate Poor (dependent on 
central resources)

Excellent (scalable edge deployment)

Compute 
Requirement

Minimal Low to medium High (GPU/TPU) Low (optimized models: 20–50 MB 
memory)
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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carried out under the controlled IIoT environments. The 
goal was to examine scalability, detection accuracy, 
latency, and energy consumption of the system under 
various operation circumstances.

Datasets

•	 NASA Turbofan Engine Degradation Dataset 
(C-MAPSS): The dataset is popular to be used 
to estimate Remaining Useful Life (RUL) and 
consists of a high-frequency multivariate sensor 
data that simulates engine degradation with 
time. It allows strong support of temporal 
modelling with LSTM.

•	 SECOM Manufacturing Dataset (UCI Repository): 
Provides data on process monitoring that contains 
known defect labels, necessary to provide spatial 
anomaly discovery with the help of CAE.

•	 Real-Time Emulation: Emulating live behavior in 
real-world models is to determine how the models 
will behave in a real setting, synthetic anomalies 
causing noise bursts, gradual sensor drift, spiking 
faults, and out-of-range conditions were included 
in streamed data using Python scripts integrated 
with NS-3 and Grafana dashboards.

Tools and Platforms

•	 NS-3 (Network Simulator 3): Applied to test WSN 
communication topologies and loss scenarios, 
routing performance at a different node density.

•	 TensorFlow Lite: TensorFlow Lite is a small 
inference engine that is then implemented in 
microcontrollers and Raspberry Pi 4 to score the 
anomalies in real-time.

•	 Raspberry Pi 4 (4GB RAM): The target edge 
hardware device onto which the models were 
benchmarked was Raspberry Pi 4 due to its 
processing performance and energy consumption.

•	 InfluxDB + Grafana: Used as a real-time monitoring 
and the creation of the visual representation 
of sensor telemetry, identified anomalies and 
model confidence scores.

Evaluation Metrics

In order to evaluate fully the capabilities and the 
effectiveness of the proposed edge-enabled framework 
of anomaly detection, the set of the following evaluation 
metrics was taken into account:

•	 Detection Accuracy: Defines what percentage 
of the normal and abnormal events are rightly 
classified in all the test cases.

•	 Precision, Recall and F1-Score: Measure the 
effectiveness of the classifications, in particular 
when the datasets are imbalanced, that is, the 
anomalies are few in comparison to the normal 
events.

•	 Inference Latency: Inference latency is the 
average latency, or time (raw sensor data to 
final output in anomaly detection). This plays 
an essential role in providing timely responses in 
IIoT implementations.

•	 Energy Overhead: Measured in on-board energy 
profiling tools which measure the average 
energy consumed per inference cycle to verify 
its sustainability to operate on edge devices.
Baseline Comparison:

To contrast it, the same LSTM+CAE architecture on a 
distant server was simulated in a setting where only the 
cloud is used to detect. Results showed:

•	 Cloud-Based Inference Latency: ~850 ms (the 
transmission and the processing time were 
included)

•	 Edge -Based Inference Latency: ~190 ms

•	 Detection Accuracy (Cloud vs. Edge): 96.2 % vs. 
95.6 %

•	 Energy Overhead: N / A; in edge model, an 
inference cycle consumed ~0.45 J

The performance of these findings brings out the 
advantage of speed and improved operations by the 
edge system where there is a slight loss on the accuracy 
of the detection than what is done by a cloud-based 
model. This renders the edge strategy more applicable 
in resource limited real-time IIoT implementations.

The experimental framework (a) presents an example 
of a similar setup in Figure 4: NS-3 simulations, IIoT 
sensors feed, augmented by edge inference with the 
help of TensorFlow Lite. The edge devices exchange the 
information selectively with the cloud layer to provide 
the long-term storage and visualization.

Table 2: System Configuration Summary

Component Specification/Tool

Dataset NASA C-MAPSS, SECOM, Real-time 
faults

Edge Device Raspberry Pi 4 (4GB)

Inference Engine TensorFlow Lite

Network Simulator NS-3

Visualization Tools InfluxDB + Grafana

Metrics Evaluated Accuracy, Precision, Recall, F1, 
Latency, Energy
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 4: Experimental Setup for Edge-Based Anomaly 
Detection Framework in IIoT

A diagrammatical representation of the process involved 
during the experiment that included simulation using 
NS-3 with NASA C-MAPS and SECOM data tests, edge 
inference of TensorFlow Lite on the Raspberry PI 4 and 
cloud integration on visualization and retraining with 
InfluxDB and Grafana.

Results and Discussion

The section includes a potent analysis of the anomaly 
detection framework touted by AI and implemented on 
edge-empowered Wireless Sensor Networks (WSN) of 
Industrial IoT (IIoT) setting. The system was compared 
in terms of accuracy of detection, latency and energy 
consumption under different fault injection scenarios.

Accuracy

It was found that the framework has good progress in 
anomaly detection:

•	 The Convolutional Autoencoder (CAE) recorded 
an accuracy rate of 94.2 in detecting spatial 
issues like sudden changes in signals and sensor 
faults.

•	 Long Short-Old Memory (LSTM) model showed 
an accuracy of 96.8 percent in capturing the 
variations in time such as continuous drifts and 
repetitive noise patterns.

•	 An ensemble model combining both CAE and 
LSTM outputs attained an overall accuracy of 
95.6% which demonstrates the benefit of fusion 
between spatial and temporal inference by 
providing a robust time series fault detection.

Latency

The recommended edge framework had low-latency 
qualities:

•	 The mean processing time of a single sample on 
the edge device, Raspberry Pi 4 was tested at 
below 200 ms, satisfying fast anomaly scoring.

•	 The total one-hop detection latency with radio to 
the monitoring unit was less than 300 ms, which 
satisfies the constraints of real-time monitoring 
constraints to industrial settings.

Energy Consumption

Also, energy efficiency was measured:

•	 The average energy required to make a single 
inference cycle was 0.45 Joules, which helped in 
enabling a long edge operation in power-limited 
settings.

•	 The overhead of cloud communication was vastly 
decreased, and the volume of data transmitted 
was reduced by 68 per cent as a result of the 
filtering of local anomalies and periodic reports.

As Figure 5 demonstrates, latency inference of the 
LSTM model is always under 200 ms, and CAE and the 
ensemble model have similar performance. Figure 6 
shows the trend of accuracy in different conditions, 
showing that LSTM performs better than CAE when 
applied to temporal anomalies and the ensemble has 
the best overall accuracy. Table 3 contains a breakdown 
of the performance measurements such as precision, 
recall, latency, and energies usage in details.

Fig. 5: Inference Latency Comparison

Table 3: Performance Metrics of Detection Models

Model Accuracy(%) Precision(%) Recall(%) F1-Score(%) Latency(ms)
Energy per 

Inference(J)

CAE 94.2 93.5 94 93.7 180 0.43

LSTM 96.8 96.2 97 96.6 190 0.47

Ensemble 95.6 95 95.5 95.2 200 0.45
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Fig. 6: Detection Accuracy Across Models

Conclusion and Future Work

The paper proposed a framework of AI-based anomaly 
detection in Industrial Internet of Things (IIoT) scenes, 
which leverages edge-enabled Wireless Sensor Networks 
(WSNs) technologies to bring low-latency, real-time 
fault detection. The suggested architecture successfully 
compliments lightweight Convolutional Autoencoders 
(CAEs) to detect spatial anomalies and Long Short-
Term Memory (LSTM) networks to model temporal 
sequence. These are optimised to run on resource-
limited embedded devices like a Raspberry Pi or a node 
based on a microcontroller using TensorFlow Lite. In 
experimental tests, carried out on simulation data 
and real-world data (NASA C-MAPSS and SECOM), the 
framework is shown to attain an ensemble detection 
accuracy of above 95.6% with inference latency of less 
than 200 ms and 68% reduction of the data sent to the 
cloud. Such results confirm the feasibility of a fully 
decentralized implementation of anomaly detection to 
industrial settings and reduce transmitted bandwidth 
and maximize system responsiveness, and reliability.

The most important contributions in this work will be:

•	 An architecture of a hybrid deep learning model 
composed of CAE and LSTM in a dual-mode 
anomaly detection.

•	 Optional optimisation on-device inference with 
pruning and quantization for real time edge 
deployment.

•	 A scalable S/T synthesis Workflow with an 
assessment on NS-3 and TensorFlow Lite.

The future research directions will be devoted to:

•	 Introducing federated learning tactics that 
would allow constant, privacy-protecting 

improvement to the model on distributed  
quantities.

•	 Applications; this framework could be extended 
to multimodal sensor fusion e.g. combined 
acoustic with vibration to provide richer anomaly 
context.

•	 Field deployment/testing and verification on 
real industrial testbeds in dynamic profiles of 
the workload, failures patterns.

This effort pre conditions the realization of powerful, 
scalable, and smart IIoT supervisory systems running 
autonomously on the network edge.
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