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ABSTRACT

Industrial Internet of Things (lloT) is becoming more dependent on Wireless Sensor
Networks (WSNs) to monitor real-time asset and process. Nonetheless, identifying the
anomalies in streaming data with high throughput is difficult as there is latency, a low
bandwidth available, and low computing capabilities of the edge devices. This paper
suggests an Al-based anomaly detection model capable of operating in the specific
context of latency-sensitive industrial application with an edge-enabled WSN-based
implementation of lower latency, distributed analysis. The architecture combines the use
of lightweight Convolutional Autoencoders (CAEs) and Long Short-Term Memory (LSTM)
models on edge devices in finding spatial and temporal anomalies on the parameters
including temperature, pressure, and vibration. It also achieved a detection accuracy
of more than 95 percent and an inference latency of less than 200 ms by relying on
simulation results gathered using NS-3 and TensorFlow Lite. The system has a slight data
transmission overhead reduction of 68 percent as compared to traditional cloud-based
schemes and allows responding to faults in real-time. A solution that is scalable, energy
efficient and reliable in terms of locating anomalies in mission-critical IloT environments
has been proposed based on the framework. The next steps will involve incorporating
federated learning to support live industrial applications and the ability to upgrade the
model dynamically and the capability of supporting multimodal sensor fusion.
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INTRODUCTION

The Industrial Internet of Things (lloT) has changed
conventional industrial systems into smart and put
together systems with more kept up to date maintenance,
foreseeable support and far off asset the administration.
These systems are based on Wireless Sensor Networks
(WSNs) which entail steady telemetry data of essential
infrastructure elements including machines, pipes,
and power systems. This real-time sensing allows
monitoring and early warning systems to be operated
under conditions industrial applications. Nevertheless,
operational reliability and system resilience in such
environments are progressively relying on the fast and
proper identification of anomalies, such as the hardware
degradation, sensor failure, and possible cyber-physical
attacks. Conventional models are mandatorily based
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on clouds on which there is immense communication
overhead, process delays and lacks maximum scalability
and latency responsiveness in the lloT applications.

The issues of centralization are thoroughly investigated
in recent works [ 2 devoted to the integration of deep
learning-based anomaly identification in industrial
environments, although the majority of them are quite
centralized. Edge Al appears as a new direction and the
prophecy of a solution to the problem, which provides
closer intelligence with lower dependence on cloud
computing.’®! However, the current systems in place
either incorporate complicated models that are not
suitable to deploy to the edges or do not have a firm
approach to multi-modal anomaly detection.

This paper therefore proposes an innovative Al-based
anomaly detection model in Industrial loT in the
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next-generation edge-enabled WSNs. It involves deploy-
ing autoencoders (CAEs) and LSTM on edge nodes that
are lightweight convolutional modules that could be
primed in the proposed system. This architecture allows
low-latency, real-time anomaly detection, much less
network bandwidth consumption and facilitates distri-
buted intelligence within the lloT infrastructures.

The rest of the paper is divided into the sections as
follows: Section Il is a literature review, Section llI
is a system architecture description, Section IV is a
description of models used in anomaly detection, Section
V is the description of the experimental setup, Section
VI is the discussion of the results and Section VIl is the
conclusion of the paper with directions.

RELATED WORK
Cloud-Centric Approaches

The problem of anomaly detection in Wireless Sensor
Networks (WSNs) gained much attention over the last few
years and is of great importance to keep a system intact
and its operational quality guaranteed in conditions of
Industrial 10T (lloT). The existing cloud-centric methods
employ deep learning models to carry out centralized
massive sensor data to conduct anomaly analysis.[" 2
These models frequently use the convolutional neural
networks (CNNs) and recurrent neural networks (RNNs)
to embed useful spatial and temporal characteristics.
Although such techniques have shown great detection
accuracy, they exhibit a significant communication
latency due to cloud deployment, which elevates the
risk of data privacy, and restricts their applicability in
any real-time industrial environment.!¢!

Edge-Based Methods

In solving these shortcomings, edge intelligence has
proved as an alternative. In the recent years, the
attention has been on lightweight autoencoders and
Long Short-Term Memory (LSTM) models deployment
on resource-constrained edge devices.l> 71 These type
of methods enable detection of anomalous activity in
real time, at data source hence the latency and network
traffic congestion is significantly reduced. Nevertheless,
issues exist in the fields of low processing power, memory
constraints, and energy consumption on embedded
systems that might challenge the scalability and broad
applicability of these equivalent-based methods on
multifaceted lloT site.!

Federated and Fog-Based Solutions

Other paradigms have been developed to seek a
trade off between performance and decentralization

34 .

including federated learning or fog computing. Such
architectures implement model training and inference on
intermediate fog or multi-agent edge, providing partial
decentralization.™ * Such systems can cause a bottleneck
at aggregation points and their decentralization method
can lead to failures although they reduce the dependency
on clouds.®

Research Gap and Proposed Contribution

Nonetheless, none of the currently existing anomaly
detection approaches are fully decentralized nor
have the capability of operating on the edge, while
meeting desirable levels of accuracy, latency, and
computation problems. Our work implies working with
this need by direct implementation of lightweight
convolutional autoencoders and LSTM models directly
on microcontrollers or on the Raspberry Pi-class devices.
This model supports low-interference anomaly detection
of high accuracy, using little external infrastructure
involved hence, this model is very resourceful to be
implemented in lloT scenarios that are latency and
bandwidth sensitive.

SYSTEM ARCHITECTURE

The suggested framework on anomaly detection in
Industrial loT settings is built in accordance to a three-
level architectural structure which uses distributed
intelligence by means of Wireless Sensor Networks (WSNs),
edge computing nodes in addition to cloud systems. Such
stacked architecture is one that guarantees low-latency
procession, publishing capability, and dependable fault
identification in the last mile industrial environment.

Edge Sensing Layer

This layer is so made up of industrial-grade WSN nodes
having sensors to track critical physical parameters like
temperature, vibration, pressure, and gasses levels.
The nodes are based on a microcontroller or a single-
board computer (SBC) (e.g. Raspberry Pi) that can run
any lightweight machine learning algorithms using
frameworks like TensorFlow Lite.

Such layer performs the following key functions:

* Immediate procurement of data in real life
space.

o Off-device preprocessing: such as feature

extraction, and normalization.

« Originally scores the anomalies that enable the
node to indicate the possible unusual trends
without external source.
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This architecture will provide that the data processing
will start at its source where the upstream bandwidth
usage will be minimised and quick response to local
faults is possible. Figure 1 shows the structural elements
and data flow of processing of this layer.
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Fig. 1: Edge Sensing Layer.

The architecture encompasses industrial-literate WSN
nodes installed with sensors (temperature, vibration,
pressure) and hooked up to microcontrollers or single-
board computers (SBCs) to have real-time on-device
analytics (i.e., feature extraction and advertisement
scoring) done.

Edge Al Layer

The middle level carries out smart detection of anomalies
by performing deep learning models designed to run on
edges. There are two major models used:

» Convolutional Autoencoder (CAE): This is applied
in identifying the anomalies in space of sensor
signal results through reconstruction of the input
patterns and comparing the reconstruction loss
value with the threshold value.

e LongShort-Term Memory (LSTM) Network: Purpose
to detect temporal anomalies with the ability
of modeling sequential behavior and detecting
major deviations in the expected behavior.

The outputs of the two models are used to form a
fused decision engine, where the adaptive confidence
thresholds increase robustness and decreases the
false positives. This layer will work independently,
without an Internet or cloud connection, and there
will be capabilities of local decision-making. Figure 2
is a visualization of the structure and data flow of this
intelligent processing layer.

The layer combines both sensor data and a Convolutional
Autoencoder (CAE) to model spatial behavior as well as
an LSTM network to model temporal behavior. A decision
fusion module combines both models, and as a result,
the confidence threshold is used to detect anomalies at
the edge and make low-latency inferences.
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Fig. 2: Edge Al Layer.

Cloud and Visualization Layer

The cloud layer of the architecture is the main platform
used in long-term analytics, visualization, and model
management at the top of the architecture. It has the
following functions:

e Occasional standardized metrics
anomaly on the edge devices.

and flag

« Intelligent web dashboard featuring real time
visualisation of industrial telemetry, alarm status
and anomaly heat maps.

- Data retention and retraining orchestration,
wherein past data may prompt an adaptive update
or retraining of edge models to accommodate
wear or shifting patterns, of equipment, or shifts
in sorts of faults.

The benefit of this type of hybrid infrastructure is that it
inherits the advantages of decentralized inference, but
still has the capabilities of the cloud in strategic decision-
making and scaling. Figure 3 shows the orchestration and
interaction of cloud services, edge device and industrial
sensors at the highest level.
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Fig. 3: Cloud and Visualization Layer.
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The architecture specifies a top-down data flow at the
industrial grade sensor to the edge device and cloud
services. The cloud layer facilitates real-time dashboards,
data retention, and model retraining systems in order to
support strategic decision-making and scalable anomaly
analytic in Industrial loT.

Anomaly Detection Models

To solve the faults in an Industrial loT environment in
a timely and correct manner, the proposed framework
includes a hybrid anomaly detection approach mixing
spatial and temporal analysis capabilities. This two-
model architecture increases resistance against various
fault patterns which can occur in sensor data streams.

Convolutional Autoencoder (CAE)

The CAEisused to extract spatial characteristics of frames
of individual sensors. Specifically, since the CAE is trained
using data that is obtained during normal operations,
it makes reconstructions of observed signal patterns
during normal operations. When the reconstruction
error rises above a threshold, it is determined that
there is a deviation in learned normal behavior, such
as a sudden movement of vibration or a sudden change
in temperature- e.g. anomalies. The technique proves
quite useful specifically in the detection of point outliers
or signal contamination.

Long Short-Term Memory (LSTM) Network

RNN The LSTM component represents the sequence
of time dependencies on sensor readings by training

the previous input. It predicts and makes predictions
and then compared with the readings. Considerable
deviations between the retrieved actual values and the
predictions is indicated as a temporal anomaly in values.
This channel plays an important role in monitoring a
slow shift, deterioration, or continuous inconsistencies
within the system.

To suit the requirements of edge computing platforms
(e.g., Raspberry Pi, STM32, ESP32), the models are both
compressed with model compression methods (pruning
(eliminating unnecessary neurons) and quantization
(changing precision to int8 or float16)), therefore, they
have a small memory footprint (20200 MB) and a lower
inference latency (<200ms).

Moreover, the architecture provides on-device model
updates in the form of federated distillation and
distributed learning, and this paradigm does not sacrifice
the privacy of data or has more reliance on clouds. It
can allow either determining the optimal detection
models or updating the existing ones continuously due
to changes in industrial conditions and sensor drift with
time. Table 1 contrasts the proposed hybrid method with
legacy, and current Al-based anomaly detection solutions
with respect to the notable operational thresholds of
lloT setting.

EXPERIMENTAL SETUP

As away to assess the practicality and effectiveness of the
proposed edge-enabled anomaly detection framework,
simulations and real-time emulation experiments were

Table 1: Comparison of Proposed Method vs. Traditional Anomaly Detection Approaches

Threshold-Based

Statistical Models

Cloud-Based Deep
Learning

Proposed Hybrid Edge Al (CAE +
LSTM)

Aspect Methods (e.g., ARIMA, PCA)
Detection Type Rule-based (fixed/ Statistical
empirical thresholds) deviation from
norms

Learned patterns
from large datasets

Combined spatial (CAE) and temporal
(LSTM) inference

Latency Very low Low to medium

High (cloud-
dependent)

Low (on-device < 200 ms)

Accuracy (F1-
Score)

Low to Medium (<70%) Medium (~80%)

High (295%) High (>95%)

Adaptability to Poor (static thresholds)

Moderate (requires

High (but cloud-only | High (on-device federated distillation

Drift retraining) updates) supported)
Data Privacy High High Low (data offloaded | High (local inference with minimal
to cloud) cloud sync)
Bandwidth Usage | Minimal Moderate High Minimal (edge inference, summary
upload only)
Deployment Good (simple logic) Moderate Poor (dependent on | Excellent (scalable edge deployment)
Scalability central resources)
Compute Minimal Low to medium High (GPU/TPU) Low (optimized models: 20-50 MB

Requirement

memory)

% —
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carried out under the controlled lloT environments. The
goal was to examine scalability, detection accuracy,
latency, and energy consumption of the system under
various operation circumstances.

Datasets

« NASA Turbofan Engine Degradation Dataset
(C-MAPSS): The dataset is popular to be used
to estimate Remaining Useful Life (RUL) and
consists of a high-frequency multivariate sensor
data that simulates engine degradation with
time. It allows strong support of temporal
modelling with LSTM.

+ SECOM Manufacturing Dataset (UCI Repository):
Provides data on process monitoring that contains
known defect labels, necessary to provide spatial
anomaly discovery with the help of CAE.

¢ Real-Time Emulation: Emulating live behavior in
real-world models is to determine how the models
will behave in a real setting, synthetic anomalies
causing noise bursts, gradual sensor drift, spiking
faults, and out-of-range conditions were included
in streamed data using Python scripts integrated
with NS-3 and Grafana dashboards.

Tools and Platforms

« NS-3 (Network Simulator 3): Applied to test WSN
communication topologies and loss scenarios,
routing performance at a different node density.

o TensorFlow Lite: TensorFlow Lite is a small
inference engine that is then implemented in
microcontrollers and Raspberry Pi 4 to score the
anomalies in real-time.

o Raspberry Pi 4 (4GB RAM): The target edge
hardware device onto which the models were
benchmarked was Raspberry Pi 4 due to its
processing performance and energy consumption.

¢ InfluxDB + Grafana: Used as areal-time monitoring
and the creation of the visual representation
of sensor telemetry, identified anomalies and
model confidence scores.

Evaluation Metrics

In order to evaluate fully the capabilities and the
effectiveness of the proposed edge-enabled framework
of anomaly detection, the set of the following evaluation
metrics was taken into account:

o Detection Accuracy: Defines what percentage
of the normal and abnormal events are rightly
classified in all the test cases.
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e Precision, Recall and F1-Score: Measure the
effectiveness of the classifications, in particular
when the datasets are imbalanced, that is, the
anomalies are few in comparison to the normal
events.

« Inference Latency: Inference latency is the
average latency, or time (raw sensor data to
final output in anomaly detection). This plays
an essential role in providing timely responses in
lloT implementations.

« Energy Overhead: Measured in on-board energy
profiling tools which measure the average
energy consumed per inference cycle to verify
its sustainability to operate on edge devices.
Baseline Comparison:

To contrast it, the same LSTM+CAE architecture on a
distant server was simulated in a setting where only the
cloud is used to detect. Results showed:

e Cloud-Based Inference Latency: ~850 ms (the
transmission and the processing time were
included)

« Edge -Based Inference Latency: ~190 ms

o Detection Accuracy (Cloud vs. Edge): 96.2 % vs.
95.6 %

e Energy Overhead: N / A; in edge model, an
inference cycle consumed ~0.45 J

The performance of these findings brings out the
advantage of speed and improved operations by the
edge system where there is a slight loss on the accuracy
of the detection than what is done by a cloud-based
model. This renders the edge strategy more applicable
in resource limited real-time lloT implementations.

The experimental framework (a) presents an example
of a similar setup in Figure 4: NS-3 simulations, lloT
sensors feed, augmented by edge inference with the
help of TensorFlow Lite. The edge devices exchange the
information selectively with the cloud layer to provide
the long-term storage and visualization.

Table 2: System Configuration Summary

Component Specification/Tool
Dataset NASA C-MAPSS, SECOM, Real-time
faults
Edge Device Raspberry Pi 4 (4GB)

Inference Engine TensorFlow Lite
Network Simulator NS-3

Visualization Tools

InfluxDB + Grafana

Metrics Evaluated Accuracy, Precision, Recall, F1,

Latency, Energy
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Fig. 4: Experimental Setup for Edge-Based Anomaly
Detection Framework in lloT

A diagrammatical representation of the process involved
during the experiment that included simulation using
NS-3 with NASA C-MAPS and SECOM data tests, edge
inference of TensorFlow Lite on the Raspberry Pl 4 and
cloud integration on visualization and retraining with
InfluxDB and Grafana.

RESULTS AND DISCUSSION

The section includes a potent analysis of the anomaly
detection framework touted by Al and implemented on
edge-empowered Wireless Sensor Networks (WSN) of
Industrial loT (lloT) setting. The system was compared
in terms of accuracy of detection, latency and energy
consumption under different fault injection scenarios.

Accuracy

It was found that the framework has good progress in
anomaly detection:

« The Convolutional Autoencoder (CAE) recorded
an accuracy rate of 94.2 in detecting spatial
issues like sudden changes in signals and sensor
faults.

e Long Short-Old Memory (LSTM) model showed
an accuracy of 96.8 percent in capturing the
variations in time such as continuous drifts and
repetitive noise patterns.

*« An ensemble model combining both CAE and
LSTM outputs attained an overall accuracy of
95.6% which demonstrates the benefit of fusion
between spatial and temporal inference by
providing a robust time series fault detection.

Latency

The recommended edge framework had low-latency
qualities:

« The mean processing time of a single sample on
the edge device, Raspberry Pi 4 was tested at
below 200 ms, satisfying fast anomaly scoring.

« The total one-hop detection latency with radio to
the monitoring unit was less than 300 ms, which
satisfies the constraints of real-time monitoring
constraints to industrial settings.

Energy Consumption

Also, energy efficiency was measured:

« The average energy required to make a single
inference cycle was 0.45 Joules, which helped in
enabling a long edge operation in power-limited
settings.

+ The overhead of cloud communication was vastly
decreased, and the volume of data transmitted
was reduced by 68 per cent as a result of the
filtering of local anomalies and periodic reports.

As Figure 5 demonstrates, latency inference of the
LSTM model is always under 200 ms, and CAE and the
ensemble model have similar performance. Figure 6
shows the trend of accuracy in different conditions,
showing that LSTM performs better than CAE when
applied to temporal anomalies and the ensemble has
the best overall accuracy. Table 3 contains a breakdown
of the performance measurements such as precision,
recall, latency, and energies usage in details.

200

Latency (ms)
= = = =
w ~ o N v ~N
o v o w o w

N
v

=)

CAE LST™M
Detection Model

Ensemble

Fig. 5: Inference Latency Comparison

Table 3: Performance Metrics of Detection Models

Energy per

Model Accuracy(%) Precision(%) Recall(%) F1-Score(%) Latency(ms) Inference(J)
CAE 94.2 93.5 94 93.7 180 0.43
LSTM 96.8 96.2 97 96.6 190 0.47
Ensemble 95.6 95 95.5 95.2 200 0.45
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Fig. 6: Detection Accuracy Across Models

CONCLUSION AND FUTURE WORK

The paper proposed a framework of Al-based anomaly
detection in Industrial Internet of Things (lloT) scenes,
which leverages edge-enabled Wireless Sensor Networks
(WSNs) technologies to bring low-latency, real-time
fault detection. The suggested architecture successfully
compliments lightweight Convolutional Autoencoders
(CAEs) to detect spatial anomalies and Long Short-
Term Memory (LSTM) networks to model temporal
sequence. These are optimised to run on resource-
limited embedded devices like a Raspberry Pi or a node
based on a microcontroller using TensorFlow Lite. In
experimental tests, carried out on simulation data
and real-world data (NASA C-MAPSS and SECOM), the
framework is shown to attain an ensemble detection
accuracy of above 95.6% with inference latency of less
than 200 ms and 68% reduction of the data sent to the
cloud. Such results confirm the feasibility of a fully
decentralized implementation of anomaly detection to
industrial settings and reduce transmitted bandwidth
and maximize system responsiveness, and reliability.

The most important contributions in this work will be:

e An architecture of a hybrid deep learning model
composed of CAE and LSTM in a dual-mode
anomaly detection.

« Optional optimisation on-device inference with
pruning and quantization for real time edge
deployment.

« A scalable S/T synthesis Workflow with an
assessment on NS-3 and TensorFlow Lite.

The future research directions will be devoted to:

e Introducing federated learning tactics that
would allow constant, privacy-protecting
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improvement to the model on distributed
quantities.

« Applications; this framework could be extended
to multimodal sensor fusion e.g. combined
acoustic with vibration to provide richer anomaly
context.

» Field deployment/testing and verification on
real industrial testbeds in dynamic profiles of
the workload, failures patterns.

This effort pre conditions the realization of powerful,
scalable, and smart lloT supervisory systems running
autonomously on the network edge.
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