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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
The massive implementation of Internet of Things (IoT) devices and Wireless Sensor 
Networks (WSNs) has allowed data sensing and monitoring to be ubiquitous in various 
domains of human operation that are of critical nature including smart cities, industrial 
automation, healthcare, and environmental surveillance. Nonetheless, due to the 
high degree of dispersion of these ecosystems, and their scarce presence of both 
computational and energy capacities, it is very problematic to guarantee security and 
the real-time capability of detecting anomalies. Conventional cloud-based analytic 
schemes are usually characterized by a large latency, bandwidth bottleneck, and a 
threat to the privacy of data, which makes them inappropriate in occasions when the 
IoT-WSN application has time constraints and is resource-limited. To circumvent such 
limitations, this paper captures a fog-assisted anomaly detection system that can exploit 
hybrid deep learning systems by using both Convolutional Neural Networks (CNNs) which 
capture spatial feature wiring and Long Short-Term Memory (LSTM) networks that capture 
temporal sequence learning. The proposed system, due to the ability to leverage the 
computing power at fog nodes, which are located near the sensor layers, enables local 
entities to process the data on a localized basis, thereby greatly decreasing the need 
to communicate continuously with one of the clouds. Such architecture does not only 
increase the speed of detection but also decreases the amount of energy consumed by 
the IoT end devices. The performance of the model is compared to benchmark datasets, 
like SWaT, and UNSW-NB15, and in synthetic WSN settings with anomalies that have been 
injected. Demonstrated experimental data shows high accuracy of detection through 
the detection error of 98.3%, zero error false positive of 1.1%, and a decrease in the data 
latency by 63 percent in relation to traditional cloud-only mechanisms. The framework 
also keeps a minor memory and energy impact that can fit to be implemented in real 
world fog environments. On the whole, the present research highlights the capabilities 
of fog-aided edge intelligence to support the reliability, scalability, and responsiveness 
levels of the anomaly detection mechanisms of IoT-WSN structures in ways that will help 
it to develop secure, context-aware, and efficient smart systems.
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Introduction

The advent and the swift growth of the Internet of 
Things (IoT) and Wireless Sensor Networks (WSNs) have 
essentially altered how scholars exercise oversight and 
control of physical spaces. These are the technologies 
of the future intelligent infrastructures that allow 
perceiving unbounded continuous sensing along with 
automatic decision making, and real time actuation in 
a wide range of areas including industrial automation, 
healthcare monitoring, smart transportation, agriculture, 
and environmental surveillance. Many low energy sensor 
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nodes in these systems are placed to gather and relay 
data through wireless paths to centralized or distributed 
processing systems where analysis and decision-making 
operations are performed.

In spite of their possibilities, IoT-WSN ecosystems 
appear to have some critical issues, especially regarding 
the data security, fault tolerance, and anomaly 
detection. These systems are susceptible to numerous 
anomalies due to their decentralized architecture and 
heterogeneous characteristics as well as hardware 
faults, signal degradations, nodes breakdowns, 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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environmental interferences, and malicious attacks 
like spoofing, interferences, or injection of bogus 
information. Sound anomaly detection mechanisms are 
thus necessary to guarantee reliability of the system, 
continuity of operations as well as ensure the safety 
of the user. Nevertheless, the majority of anomaly 
detection solutions currently offered are associated 
with a big problem in the way of extreme dependence 
of cloud computing infrastructure that creates a high 
level of latency caused by information transmission 
latency, energy waste because of extensive wireless 
communication, and a threat to privacy because the 
data location is centralized and substantial.

To counter these shortcomings, fog computing has been 
offered as an effective godsend by the creation of a 
middle Computational layer between cloud and the 
sensor nodes. Nodes that bring the fog closer to the data 
sources: fog nodes allow localized processing, storage, 
and control of data, which allow faster and context-
sensitive data analytics. Load balancing or offloading 
compute-intensive anomaly detection activities to the 
fog nodes leads to the potential reduction in network 
congestion, latency, and energy consumption and the 
improvement of responsiveness, especially in those 
cases when decisions need to be made in real time.

Fig. 1: Fog-Assisted Anomaly Detection Framework in 
IoT-WSN Environments

Simultaneously, pattern recognition, including 
anomaly detection has been paradigm-shifted with 
the development of deep learning within complex and 
dynamically changing contexts. Algorithms like the 
Convolutional Neural Networks (CNNs) and the Long 
Short-Term Memory (LSTM) networks have been found 
really successful in representing the spatial and temporal 
dependency structure in the multivariate sensor 
observations. Although these models are powerful, 
their resource requirements also render them hard to 
bring directly to low-power sensor nodes. Their use at 
the fog nodes, however, affords an exciting prospect in 

realization of intelligent, low-latency anomaly detection 
at network edge.

In this paper, a new fog-based anomaly detection 
framework is proposed, which incorporates a combina-
tion-based deep learning model; that is, CNN and LSTM, 
which are used to detect anomalies in the IoT-WSN set-
ting. This system is proposed that parallels detection 
precision, latency, and energy power consumption using 
the hierarchy of computing capabilities of fog design. 
The effectiveness of the suggested framework is validat-
ed with the support of massive experiments and bench-
mark datasets and synthetic sensor scenarios that over-
show better performance of conventional cloud-centric 
models. Incorporating edge intelligence with the latest 
deep learning methodologies, the study provides a con-
tribution to develop resilient, scalable and energy con-
scious IoT-WSN ecosystems.

Related Work

The internet of Things (IoT) and Wireless Sensor Networks 
(WSNs) are some of the areas that have had a lot of 
development in recent years especially with regards 
to smart anomaly detection. Single-person anomaly 
detection detects anomalous behaviour in sensor data 
and is used frequently to determine faults, attacks, or 
malfunctions in the system. This paper presents many 
researches having utilised machine learning (ML) and 
deep learning (DL) models to detect any anomalous 
behaviour, mostly indicating faults, attacks, or 
malfunctions within the system. Conventional machine 
learning methods like support vector machines (SVMs), 
k-nearest neighbor (k-NN) and random forests have 
been frequently used but they are usually not sufficient 
to train on the complexities of the spatio-temporal 
dependencies associated with multivariate time-series 
data generated due to the IoT-WSN systems.

ML algorithms, especially Convolutional Neural 
Networks ( CNNS ) and Long Short-Term Memory (LSTMs) 
networks have proven to have incredible prospects in 
improving accuracy of anomaly detection in resourceful 
environments. CNNs are best suited to deal with spatial 
feature extractions and have been used with sensor-
arrays and with time series representations where raw 
signals have been converted into structured inputs 
matrices.[1] In the meantime, LSTM networks that have 
the attribute of representing long-range relationships 
in sequential data have been an effective resource in 
temporal anomaly identification issues in network traffic, 
sensor logs and predictive maintenance processes.[2]  
But the majority of such implementations have 
been cloud-based, and that caused major delays in 
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comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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communications, higher power needs, and privacy flaws.

In order to alleviate the problem, fog computing has 
also been a paradigm that decentralizes computation 
by creating an intermediate nodes of fog, thus bringing 
them closer to the source of data. Fog-assisted data 
aggregation, localized decisions, and workload balancing 
studies[3] and4] have also been proposed. However, 
little is known about the incorporation of the hybrid-
CNN-LSTM models in real-time anomaly detection in 
fog-based infrastructures. Researchers in some of the 
early works, such as that of Zhang et al. [5], showed a 
CNN building a fog-edge pipeline but without temporal 
analysis, and researchers studying only lightweight LSTM 
models having limited contextual awareness in space.

Second, most of the available studies have applied 
synthetic or simplified data sets and therefore have little 
to no implications in real-life deployments of IoT-WSN. 
There exists also a visible lacuna in the literature in 
terms of deployment of deep learning model at the fog 
level in terms of energy profiling, latency benchmarking 
and resource trade-offs. As such, an extensive, low-
latency, and energy-efficient anomaly detection system 
with a combination of hybrid CNN-LSTM models into a 
fog-enabled framework is needed and lacking.

System Architecture
IoT-WSN Node Layer

The conventions of the IoT-WSN node layer are the basic 
sensing fabric of the given anomaly detection system, 
which is a distributed configuration of heterogeneous 
assorted sensor nodes implanted within the object focus. 
Various types of sensing units are found in these nodes 
such as environmental sensors (temperature, humidity, 
air quality), motion detectors (PIR, accelerometers), 
and optional gas sensors (CO, CO2, CH4) dependent 
upon the monitoring application. The nodes must be 
able to run at low power, and with low computational 
capacity such that energy efficiency and optimization 
of the communication must be considered important. 
The nodes use low-power wireless communication, e.g. 
LoRa, Zigbee, or Bluetooth Low Energy (BLE) depending 
on the deployment specification such as range, data 
rate and topology to facilitate smooth flow of data. 
They enable multi-hop or a mesh protocol in which the 
nodes send through the closest fog access point without 
an excessive load of latency and power consumption. 
Since sensor nodes have a limited resource, real-time 
processing of raw data is performed on the on-board to 
minimize the volume of raw data and to post-process 
data quality before the data are sent ahead. Among 
these are sampling using intervals at predetermined 

intervals, low-pass filtering to remove noise, and 
outliers, normalization to a consistent scale, and feature 
extraction (e.g. statistical summaries or variation of a 
signal). This kind preprocess not only saves bandwidth 
but also makes sure that the data arriving to fog 
layer is clean, compressed and ready to undergo the 
high levels analysis. The IoT-WSN node tier therefore 
becomes important in providing reliable, efficient and 
scalable sensing with lightweight aspect that long-term 
autonomous operation entails in real-world deployment.

Fig. 2: Architecture of the IoT-WSN Node Layer with 
Integrated Preprocessing and Communication to Fog 

Gateway

Fog Layer (Edge Intelligence)

The fog layer acts as intermediate computing layer 
between IoT-WSN nodes which have limited domain to 
perform computating and centralized cloud infrastructure 
that will provide local intelligence, responsiveness and 
optimal resource usage. The kernel of this layer is 
the announced CNN-LSTM deep learning combination 
that is tactically placed on fog nodes to recognize the 
necessary anomaly detection with high sensitivity and 
low-latency. The Convolutional Neural Network (CNN) 
element is in charged with deriving spatial patterns and 
correlations among multivariate sensor measurements, 
or simply detecting local inconsistency and structural 
abnormalities. Parallelly, the Long Short-Term Memory 
(LSTM) network identifies temporal relationships and 
dynamic data trends so that the system may identify 
multifaceted time-series anomalies like a gradual 
system degradation or synchronized assists. In order to 
guarantee effective implementation in Fog world where 
the number of computational and energy is in itself still 
limited, a Resource-Aware Task Scheduler is integrated. 
This scheduler determines the processing work to be 
assigned dynamically depending on the existing resource 
availability and where possible, prioritize the processing 
work in the form of anomaly classification and push out 
the non-urgent operations in other fog nodes. As well, a 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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smart Adaptive Data Aggregator module welds incoming 
sensor streams and removes redundancy, and pre-
processes aggregated data to enhance inference quality 
and minimize the dimensionality of model inputs. Such 
aggregation is also critical when it comes to bandwidth 
optimization as raw or deviant data sets are limited to 
finer or unusual data sets that will be passed to the cloud 
tier to undergo long-term retention or further analysis. 
En masse, the fog layer will turn edge devices into semi-
autonomous intelligent agents, which will allow quick 
decision-making, anomaly detection in context, and 
less reliance on the cloud-based processing, all with the 
target of preserving privacy of data, eliminating high 
communication overhead, and increasing the scale of 
large-scale IoT-WSNs.

Fig. 3: Internal Architecture of the Fog Layer for 
CNN-LSTM-Based Anomaly Detection

Cloud Layer

The cloud layer forms the highest level of the suggested 
framework and acts as the central handling and analytics 
zone that will give the framework computational 
elasticity, long-term archiving of information, and 
systemwide keenness. A major part of this task is to 
archive historical data, to store enormous volumes of 
sensor data (both raw data, e.g., on inputs, and tagged 
records of anomalies) safely so that it can be analyzed 
retrospectively, to provide audit records, and to 
ensure compliance with data governance policies. This 
versioning system acts as the source of accumulating 
knowledge of unending learning and theory improving. 
Model retraining is also done in the cloud layer where 
the computation resources are virtually unlimited and 
they will occasionally update the CNN-LSTM hybrid 
models with the new accumulated data trends, the 
new dynamic patterns in the environment as well as 
the emergent patterns of anomalies. The retraining on 

real-world data keeps the models with a high detection 
accuracy, as well as adapting to the changing threats, 
or changing seasons, or even changes in sensor behavior 
due to hardware drift. After the re-training process, the 
produced optimized model weights should be securely 
yet bandwidth-efficiently returned to the fog nodes to 
support the smooth edge-enabled processing. It also has 
a system wide analytics dashboard that is deployed in 
the cloud layer and provides real-time visualization and 
control surfaces to the administrators and operators. 
This dashboard will give an overall performance data, 
anomaly detection statistics, energy consumption 
levels, and network health data of the complete IoT-WSN 
implementation. It allows a high-level decision making 
process, operational control, and implementation of 
policies. Notably, where the fog layer carries out timely 
detection activities, the cloud layer guarantees that 
long-term analysis, history-based relation, and predictive 
maintenance decisions will be delivered globally. The 
complementary cooperation between cloud and fog 
guarantees balance between the comprehensiveness 
and responsiveness in the management of large-scale, 
intelligent systems of IoT-WSN.

Fig. 4: Functional Architecture of the Cloud Layer in 
Fog-Assisted IoT-WSN Systems
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nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

5

Methodology
Dataset

So as to prove the relevance of the proposed fog-assisted 
anomaly detection framework, both real-world and 
synthetically generated datasets were utilized in order 
to cover the various and changing behavior of IoT-WSN 
setup in both normal and anomalous states. In particular, 
two main benchmark datasets were used, Secure Water 
Treatment (SWaT) dataset and the UNSW-NB15 one. The 
dataset is based on a reduced representative operating 
water treatment plant, and consists of time-series 
related to sensors and actuators at various points in 
the process of the plant operation, the SWaT dataset. 
It comprises different physical process parameters like 
the flow, tank-level as well as pH, conductivity, and 
the state of the valve. The given dataset is specifically 
targeted at the anomaly detection because it provides 
the annotated cyber-physical attacks that represent 
the real-life intrusions such as command injection, 
data manipulation, and DoS (Denial of Service) attacks. 
The second data is the UNSW-NB15 which is a synthetic 
network traffic data that is frequently employed in 
testing intrusion detection systems. It already has an 
arsenal of good as well as malicious traffic samples, which 
include reconnaissance, backdoors, exploits and generic 
attacks, and is deployed to capture the communication 
layer of WSN-based IoT networks.

Besides these publicly available datasets, a specialized 
simulated WSN scene was created in order to determine 
the behavior of the system given application-specific 
flavors of anomalies and scenarios. The controlled 
introduction of synthetic anomalies such as node failure, 
in which sensors cease responding or provide only constant 
values; packet drop, simulating some loss of periodic 
communications connectivity as would be expected in 
congestion or interference; and data tampering (sensor 

values are updated maliciously and may be treated like 
a spoof or replay attack). Such controlled situations are 
important when testing the capability of the hybrid CNN-
LSTM model in separating typical operating variation and 
actual anomalies. In combination, those three dataset 
types fully cover and adequately test the framework 
in a mixture of deployment environments and threat 
environments in the real world.

Preprocessing

So as to minimize the volume of poor input to the 
deep learning models, and to improve the accuracy 
of them, a stringent preprocessing chain was done on 
the source sensor data and network traffic data prior 
to them being provided to the CNN-LSTM structure. 
This was followed by two steps normalization where 
the input features were scaled to the standard range 
of [0,1] or features were centered at zero mean with 
unit variance, based on the distribution of a particular 
feature. It is imperative in minimizing dominance of 
features with higher numerical spaces and improving 
the model convergence rates throughout the training 
process. After the normalization, the segmentation of 
time windows was accomplished in order to convert the 
continuous stream of data into fixed size windows which 
would overlap or be non-overlapping. The windows were 
a view-port into the system at discrete points in time 
so each window provided both transient data along 
with temporal dependencies. Such a method of framing 
is important because it allows the LSTM networks to 
capture the sequences of the trends over several time 
steps.

In every window segmented, feature extraction 
occurred to obtain a meaningful presentation of the 
sensor signals and the traffic communication. Statistical 
and signal based features had been calculated such as 
mean, variance, standard deviation, entropy, Skewness, 

Table 1: Overview of Datasets Used for Anomaly Detection in IoT-WSN FrameworkC

Dataset Type Source/Domain
Features 
Included Anomalies Covered Purpose in Study

SWaT Real-world Water treatment 
system

pH, flow, 
valve state, 
tank level, 
conductivity

DoS, command 
injection, data 
manipulation

Cyber-physical attack detection

UNSW-
NB15

Synthetic Network traffic 
simulation

TCP/IP traffic 
logs, protocol 
flags, flow 
metadata

Reconnaissance, 
exploits, backdoors, 
generic malware

Network-layer anomaly detection

Custom 
WSN Sim

Simulated IoT-WSN testbed Sensor readings, 
timestamps, 
metadata

Node failure, packet 
drop, data tampering 
(spoofing, replay)

Application-specific fault injection 
testing
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator

Journal of Wireless Sensor Networks and IoT | Jan - June 20266

kurtosis, and signal variation rate. Such characteristics 
detect temporal changes and variations which can bring 
uncertain variations like sensor drifts, sharp changes, 
or fabricated readings. Also, Maximum-minimum 
difference, zero-crossing rate and signal energy metrics 
were computed to provide better representation of the 
spatial features to CNN. Categorical or event-based 
data (e.g. actuator states, protocol flags) were one-hot 
encoded and their frequencies were counted so that their 
interpretation could be retained. This is a multivariate 
and structured feature matrix, which is fed as the input 
of the hybrid deep learning model. In general, the 
preprocessing phase is a crucial component, minimizing 
the noise, identifying relevance of trends, and providing 
that input information becomes not only enriched with 
insight-providing material but also rationally organized 
to be analyzed in real-time environment at the fog level.

Fig. 5: Preprocessing Pipeline for CNN-LSTM-Based 
Anomaly Detection in IoT-WSN Data

Design of the Model

The essence of the suggested framework on anomaly 
detection is a combination of a hybrid deep learning 
model constituting Convolutional Neural Networks (CNNs) 
and Long Short-Term Memory (LSTM) in an environment 
where the networks embrace the best of each other and 
are fused in a final after layer. The architecture proposed 

is configured to manage both spatial and temporal 
complexity of multivariate time-series data produced by 
the IoT-WSN systems, to detect anomalies in real-time 
and with high accuracy at the layer of the fog.

CNN Block

CNN block is the initial element of the hybrid 
architecture and it is meant to mainly capture the 
spatial correlation and the localized patterns on 
the multivariate input feature matrix. The input of 
each window, which is generated as a 2D matrix of 
rows denoting the time steps and columns denoting 
the sensors characteristics, is used through several 
layers of convolutions with filters of different sizes to 
capture both short-range and expansion association 
effects amid sensors. These layers do 1-D or 2-D 
convolutions (depending on the design) and ReLU 
activation functions to introduce non-linearity. They 
are done by pooling layers, e.g., max-pooling or 
average-pooling, to down sample feature maps, get 
lower dimensionality and yield dominant patterns 
maintained with respect to important spatial elements. 
Dropout layers and Batch normalization are also 
introduced to speed up the training process as well 
as avoid overfitting. The CNN outputs are then sent to 
LSTM block to capture the temporal correlations. This 
spatial encoding assists this model to learn the way 
various signals that originate at sensors interact during 
normal and anomalous operation conditions.

LSTM Block

After the CNN, LSTM block is used to learn the occurrence 
of temporal dependencies along with the sequence 
irregularities in time-series data. The networks are 
especially good at learning long-term temporal trends, 
because of their gated nature, incorporating an input 
gate, output gate, and forget gate. Flattened sequence of 
spatial features that the CNN has provided is reshaped and 
given to layers of stacked LSTMs made of various LSTMs. 
Such units operate on the data step by step, however 
they remember the past observation, and can detect 
abrupt and gradual changes in the system behaviour. 
This is important in the identification of anomaly like 
slowly growing faults, multi-point coordinated attacks, 
or random node failures. The sequence of vectors 
represents the representation of the temporal behavior of 
the system during the entire observation window across 
which predictions are made, produced by LSTM layers and 
given to the fusion layer where the decision is made.

Fusion Layer

The last element in the hybrid model is the fusion layer, 
where it makes a combination of the spatial-temporal 
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This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
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consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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representations learned in the CNN and LSTM blocks 
and does the final anomaly classification. The layer 
is usually made up of one or more fully connected 
(dense) layers that dimensionality-reduce the LSTM 
output and does feature integration. Softmax activation 
function is then used in the output layer to have a 
probabilistic classification of the binary (normal vs. 
anomaly) or the multiclass labels (e.g. normal, fault, 
attack type 1, attack type 2, etc.), according to the 
application scenario. As the training objective, cross-
entropy loss is applied, and optimization of the models 
is performed with the help of backpropagation through 
time (BPTT). In the process of inference, the model will 
produce probabilities of whether a set input window is 
anomalous or not, and this is provided to either trigger 
alert or trigger mitigation efforts at the fog node. The 
fusion layer guarantees mapping of high-level learned 
features to understandable predictions of the anomalies 
efficiently.

Fig. 6: Hybrid CNN-LSTM Model Architecture for 
Anomaly Detection in IoT-WSN Data

Results and Discussion
The practical proof of the developed fog-assisted 
anomaly detection framework that is incorporated with 
a CNN-LSTM hybrid deep learning model underlines its 
performance superiority to traditional cloud-based 
options. The hybrid model proposed to employ the fog 
showed a similarity analysis with the parameters of a 
baseline LSTM-only model that used a centralized cloud 
server. The outcomes provide an obvious benefit on the 
fog-based approach in terms of accuracy, responsiveness 
and energy efficiency. The CNN-LSTM model using the 
fog understanding had an accuracy rate of 98.3% in 
detection as opposed to the 93.6 percentage of the 
LSTM-only model using the cloud. This significant boost 
can be mainly attributed to the combination of both 
spatial and temporal pattern recognition with the help 
of convolutional and recurrents layers, respectively. 
Moreover, due to the proximity to the source, the fog 
node minimizes the possible data losses, noise, and 
delays of the long-range transmission to the cloud, which 
enhances reliability of the predictions.

More importantly, the false positive error rate (FPR) 
was reduced to a large extent of 1.1 percent in the fog-
enabled model compared to 4.7 per cent in the cloud-
based framework. The enhanced Accuracy, will minimize 
any false alarms, which may have been a key aspect in 
an operational setting where a false alarm may cause 
wastage of resources or even cause the desensitization 
of a real risk. Another notable observation has to do with 
detection latency where it takes the fog-based system 
only 125 milliseconds to respond and this is in sharp 
contrast with the 342 milliseconds seen in the cloud 
configuration. Such a low latency is especially vital in 
cases of mission-critical applications like industrial 
automation, smart grid security and emergency response 
systems where a delay in anomaly detection may create 
safety hazards or damages of equipment. It was also 
shown that the energy per message has improved 
significantly corresponding to 3.2 mJ in the fog and 
8.5 mJ in the cloud-based model. This efficiency has 
been mainly ascribed to the lower overhead costs of 
transmission of data and local inference modeling within 
fog nodes that allows sustainable deployment within IoT 
environments subject to battery constraints and power 
consumption.

The fact that the fog-assisted architecture will perform 
better is not only a matter of quantitative performance 
improvement but it is also part of the tactical dimensions. 
The system is automatically a more resilient, scalable, 
and privacy-preserving system because the anomaly 
detection is decentralized. Local processing of the data at 
the fog level decreases the cloud-based data processing 
reliance mitigating the bandwidth limitation, reducing 
the attack surface, and increasing the pace of responding 
to localized threats more quickly. There are however 
some challenges that have to be overcome to be adopted 
into practice. Security in the fog node is important 
since the data can be corrupted or inappropriately 
labeled due to compromised edge devices. It needs 
dynamic load balancing and the mechanisms to allocate 
resources in order to avoid computation bottleneck 
in either the setting with varying traffic or nodes that 
have failed. Also, the re-training and adaptation of the 
model at the cloud level should be in-line with edge 
deployments, so that the CNN-LSTM models are not weak 
to new unseen threats. As future work, it is desirable 
to consider federated or continuous learning schemata 
to accommodate distributed training without sacrificing 
privacy and spiking up the communication costs. In 
general, the discussion and the results confirm that the 
scope of the proposed fog-based hybrid deep learning 
framework has a realistic, efficient, and future-oriented 
approach to real-time anomaly detection in the IoT-WSN 
ecosystems.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 7: Performance Comparison of Fog-Based CNN-
LSTM vs Cloud-Based LSTM-Only Model

Table 2: Quantitative Performance Comparison between 
Fog-Based CNN-LSTM and Cloud-Based LSTM-Only Models

Metric
Fog-Based 
CNN-LSTM

Cloud-Based 
LSTM-Only

Detection Accuracy (%) 98.3 93.6

False Positive Rate (%) 1.1 4.7

Detection Latency (ms) 125 342

Energy Consumption (mJ/msg) 3.2 8.5

Conclusion

The study proposes an efficient fog-based anomaly 
detection methodology incorporating the advantages 
of Convolutional Neural Networks (CNNs) and Long 
Short-Term Memory (LSTM) networks in order to make 
real-time, accurate, and low-cost threat detection 
in an IoT-WSN setting. With the hybrid deep learning 
model implemented strategically in the fog layer, the 
system can greatly decrease detecting latency and 
power consumption as well as preserve the high value 
of detection accuracy and minimal false positive rate. 
The proposed architectural change in anomaly detection 
mechanisms through cloud to edge-based intelligent 
processing does not only increase responsiveness and 
scalability in the anomaly detection mechanism in such 
a way that it resolves considerable challenges in the 
network congestion and data privacy. The experimental 
findings, confirmed on a benchmark data and a simulated 
sensor environment, show clearly the benefits of the 
suggested solution both in resources consumption and 
in terms of actual feasibility. Moreover, the fact that the 
framework has been realized in a modular way enables it 
to fit other domains where it may be implemented, such as 
industrial surveillance, smart cities, and environmental 
sensing. Although the implementation that the paper 

currently proposes has a solid basis, further research 
will discuss ways of integrating federated learning 
to implement decentralized model updates without 
violating data confidentiality as well as expanding the 
system to include support of heterogeneous sensor 
types and context-aware intelligence, and mobility-
tolerant systems. The improvements will also increase 
the resilience of the system to allow it to act in highly 
dynamic and large-scale IoT applications. On the whole, 
the proposed framework can be regarded as a scalable 
and foresighted step towards augmenting of intelligence 
at the edge of the IoT-WSN string with an eye on secure, 
autonomous, and real-time anomaly detection in the 
smart environment of the next generation.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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