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ABSTRACT

At the device level, identification is an important issue in protecting wireless Internet
of Things (loT) infrastructures. The study presents an effective radio-frequency (RF)
fingerprinting model of passively identifying loT devices. Using inherent hardware flaws
like 1/Q imbalance, transient response and spectral distortion, the proposed system
uses these flaws to create distinct RF signatures. A convolutional neural network (CNN)
classifier is used to process these signatures and the recognition accuracy is 97 % of 50

types of devices. The system does not require any cryptographic keys or active handshake
protocols, and provides a lightweight and scalable authentication layer to low-power
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loT systems. The experimental findings support the robustness of the method when
applied in the dynamic conditions of the channel, which proves that the method can
support the development of device-level trust in the situation of large-scale networks.
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INTRODUCTION

The unprecedented growth of loT systems has caused
an unparalleled variety of interconnected gadgets that
relay sensitive information on open wireless networks.
The  conventional cryptographic  authentication
approaches are high processing and energy consumption,
among others, which makes them inappropriate to
resource limited loT nodes.!M It has therefore given rise
to RF fingerprinting as the passive and low-overhead
counterpart that puts the flaw of transmitter circuitry at
hardware-level as inherent identifiers.™

The RF fingerprint unlike network-layer identifiers (e.g.
MAC addresses) is virtually spoofable because it relies on
the physical-layer properties of a device. The oscillator
drift, non-linear amplification of power, and philtre
mismatch all cause these distortions in each transmitter,
which can be identified without explicit involvement of
the device.l!

The current paper presents a framework of RF
fingerprinting that is based on deep learning and is
developed to be scalable, low-energy consuming, and
cross-channel robust. The substantial contributions are
as follows:
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1. Ascaled architecture of feature extraction on RF
signals in the I/Q domain.

2. A CNN based classification pipeline that was
optimized on RF signal characteristics.

3. Experimental validation of 50 heterogeneous loT
devices.

4. Baseline ML model comparative analysis and
energy-latency analysis.

LITERATURE REVIEW

The previous research on RF fingerprinting had
concentrated mostly on handcrafted statistical patterns
based on signal amplitude and phase distributions.* > The
initial work involved transient techniques, investigated
turn-on properties to differentiate transmitters. But
these methods had a limitation in the sensitivity to the
environmental noise and channel distortion.

The emergence of machine learning brought about the
improvement of classifiers, including SVM and Random
Forests, which enhanced the process of generalization,
but had to perform manual feature engineering.!”
This area was revolutionized by the introduction of
deep learning which facilitated end to end learning of
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discriminative RF features directly on raw waveforms. °!
Certainly, convolutional architectures were quite
effective at detecting time frequency correlations that
are present in complex RF data.l'®

Other recent studies have also investigated transfer
learning, adversarial training and domain adaptation
as a way of dealing with different environments.['" 2
Latency has additionally been minimized through edge
based applications employing FPGA accelerators to allow
real time RF identification.[' ™

The latest loT systems combine RF fingerprinting with
smart grid, farm, and factory surveillance systems,
and this points to the versatility of the technology.!'> ¢
Integration Photonic circuits The photonic circuits are
also becoming popular in RF front-ends to perform
ultra-high-speed signal analytics.['” '8 In spite of this
development, implementations that are scalable and
energy efficient are an important issue, which drives the
current study.

METHODOLOGY

The RF fingerprinting framework proposed should detect
the loT devices based on learning of unique hardware-
inflicted signatures on the RF signals transmitted by
the devices. The system has two main modules that it
operates with:

(A) RF Feature Extraction - is in charge of extracting
and converting the raw signal into discriminative
representations, this is the complex baseband
signal which is in the raw stage.

(B)CNN-Based Classification - in which a deep
learning model is trained to learn to predict
these features to particular device identities.

The two modules are executed as a mix of digital signal
processing and machine learning algorithms that are
optimised to run on embedded systems. The conceptual
flow of the signal-processing and the neural architecture,
respectively, are represented in Figure 1 and Figure 2.

RF Feature Extraction

The starting point of the system is RF feature extraction
because the efficiency of the classifier is predetermined
by the quality and the regularity of the features that
are extracted out of raw baseband signals. Signal at the
receiver is in the form of a complex signal:

s(t)=1(t)+jQ(t)

where I(t)and Q(t) are in-phase and quadrature com-
ponents of the received signal respectively. These

0

elements reproduce amplitude, as well as phase vari-
ation, brought by the transmitter hardware. Because
every front-end circuitry (oscillator, mixer, power am-
plifier) of each loT device has minor manufacturing vari-
ations, there are inherent distortions in the captured
waveform which can be used as device fingerprints.

(a) 1/Q Imbalance Modeling

Another of the most uniform hardware defects is the
result of 1/Q imbalance, which occurs as a result of un-
equal gain and phase offset between the | and Q chan-
nels. These flaws can be mathematically calculated as:

s’ (t)=(1+a)l(t)+j(1+B)Q(t)

with a being the amplitude mismatch coefficient and is
the phase mismatch coefficient. Ideally, both coefficients
would be zero, which would mean that everything is
symmetrical. In practise transmitters, however, any
small deviation (e.g., a=0.02,8=0.03) causes spectral
artefacts that are easily measurable.

Through the analysis of such imbalances, the system
derives the strong device-specific features that are not
highly subject to changes across a session and across
different scenarios. The parameters extracted are
normalized and converted to be in a vector format hence
minimizing the reliance on absolute signal strength.

(b) Transient Envelope Extraction

The output RF waveform during the first transmission
phase when the device is passing into active state has a
characteristic transient characteristic due to the ramp-
up of oscillators and power amplifiers. The information
available in this region is abundant in terms of detecting
the device. The instantaneous signal magnitude which is
calculated as the transient envelope:

E(t) = JI()? + Q(2)7

This calculation is conducted in a short period (usually
20 ps) right after the carrier activation. Min-max
scaling of the energy profile is applied to eliminate the
impact of changing transmission-power on the energy
profile. Correlation-based synchronization is done on
the extracted envelopes to align them across several
packets, where a temporal consistency is created across
samples. Transient signatures have also been found to
be resistant to channel variation as their performance
is largely determined by the internal circuitry of the
transmitter and not the propagation properties. They
therefore constitute a stable and reproducible part of
the RF fingerprint.
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(c) Spectral Feature Analysis

Frequency-domain analysis can be used to complement
time-domain evidence of nonlinear power amplification
and frequency offset of an oscillator. The signal in the
form of frequency is acquired through Fast Fourier
Transform (FFT):

S(F)=IF{s(t)3I

F{-} the operator of the Fourier transform. The results
of this transformation are a magnitude spectrum that
brings into focus obscure harmonic and intermodulation
distortions that are associated with individual trans-
mitters.

The spectral features are computed on a series of
frames and assembled in the form of two-dimensional
spectrogram matrices of time frequency energy
distributions. These matrices are scaled and coded into
grayscale images so that they can constitute the input
tensors of training the CNN. Transient, imbalance, and
spectral representations of physical-layer properties are
integrated to give a multi-domain representation with
complementary physical-layer properties.

The extraction pipeline can be working in full passivity
there is no need to modify the transmitter or active
probing. Such design renders it exceptionally applicable
to the loT setting where the cooperation between the
devices or software alteration is impossible.

CNN-Based Classification

After the spectrograms are created, they are inputted
into a convolutional neural network (CNN), as the auto-
matic learning of hierarchical features that most appro-
priately distinguish between device fingerprints occurs.
CNN architecture consists of three convolutional layers
(kernel size 3 x 3 ) and max-pooling, two dense layers
and a final SoftMax classifier (Multi-class prediction).

f— ~

1/Q Imbalance
Modeling \
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Network Model and Mathematical Formulation

Given an input feature map x, probabilities of each class
are calculated by CNN as.:

wx

P(ylx) =—o

T
Wi x

i=1

where W, is the weight parameters of class i, and N is
the number of classes of devices. Output P(yIx) provides
the probability of the signal being of a certain device.

The categorical cross-entropy loss function is minimized
using training:

N
L= —Zyl-]og P(y; | x)
=1

y, represents the one-hot label of the actual label of
each class. Optimization is used with Adam Optimizer, a
learning rate of 0.001, and the batch size is 32, which also
converges quickly with a small number of overfitting. The
dropout (rate = 0.3) and layer of batch normalization are
implemented to enhance generalization and minimize
the variance.

Training and Evaluation Process

CNN is trained on the data of labelled RF spectrograms
of 50 types of loT devices. Additive Gaussian noise,
frequency shifts and random scaling are the data
augmentation methods used to model real-world
variations and enhance robustness. A 5-fold cross-
validation approach guarantees good performance
estimation. In the inference process, the CNN generates
a probability vector at all possible device classes and
the identity of the device is the class that has the
highest probability score. The architecture has high
discriminative ability when the devices are in noisy,
multipath rich environments.

Multi-domain feature extraction and the use of CNN-based
learning allows the system to learn both deterministic
and stochastic elements of RF emissions, which is an

Raw RF Signal . Transient Envelope Feature Spectrogram
(s(t) = I(t) + jO(t)) Extraction Concatenation Matrix
|- _—
r ~
\ Spectral Feature /

Analysis

(

Fig. 1: RF Feature Extraction Framework
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Fig. 2: CNN Architecture for RF Fingerprint Classification

extremely reliable approach to passive identification of
loT devices.

RESULTS AND DISCUSSION

In this section, the empirical result of the testing of
the proposed RF fingerprinting framework on an loT
testbed at large scale is proposed. The experiment setup
consisted of 50 different types of loT devices functioning
in the Wi-Fi (2.4 GHz) and Zigbee (868 MHz) networks.
To make the setting heterogeneous and real-world,
devices contained sensors and controllers and embedded
modules with different levels of transmission power
(between 5 and 20 dBm). To assess the robustness to
multipath fading, interference and environmental noise,
the testbed was run in a variety of channel environments
such as line-of-sight (LOS) and non-line-of-sight (NLOS)
environments. The devices sent randomly caused packets
with payloads of 100 packets/s. Areceiver array based on
USRP sampled the received baseband signals at 20 MHz
with a synchronization of GPS-disciplined oscillators.
The raw 1/Q data were divided and normalized and
then transformed to the spectrogram representations to
be fed to the CNN. To compare the results, the same
dataset was employed to train the Random Forest (RF),
Support Vector Machine (SVM), and Autoencoder (AE)
bootstrap models on the same training/testing partitions
(80:20 split).

Classification Accuracy and Comparative Evaluation

In the initial stage of analysis, the accuracy of the overall
classification in the proposed CNN-based fingerprinting
model was compared to the accuracy in the baseline
techniques. The results of the comparative accuracy are
shown in Figure 3 and represent all models.

The CNN had a mean accuracy of identification of 97 %,
which is much higher than the original machine learning
algorithms like Random Forest (91.2%), Autoencoder
(93.6 hours) and the Support Vector machine (89.4 %).
The better performance of CNN can be explained by the
fact that it has the capability to automatically learn
hierarchical features when basing on the spectrogram
inputs, which are the temporal and spectral dependencies
that the handcrafted features do not capture.

Although the Autoencoder was able to provide
relationships that are non-linear, its results were also
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Fig. 3: Model Accuracy Comparison Across Classifiers

prone to overfitting with channel-varying data, which
led to a 4 percent decrease in its accuracy in the NLOS
scenario. The SVYM and RF models were found to be
much better at generalization in small datasets, but
unsuccessful to represent subtle variations in high-
dimensional signal space.

Further examination of confusion matrices showed that
misidentification was largely done between the devices
of the same family of hardware models, where the
manufacturing tolerance was low. However, the CNN
has managed to discriminate such instances using minor
transient variations in the start-up features, which
demonstrates that it is highly discriminative.

The performance was further supported by Precision,
Recall, and F1-score results: the CNN attained Precision
= 96.8, Recall = 97.3 and F1-Score = 97.0, compared
to the nearest competitor the Autoencoder having an
average F1-score of 93.4. It can thus be seen that the
proposed model exhibits the ability to provide reliable
and repeatable device-level discrimination, that can be
applied to security critical loT settings.

Scalability and Robustness

Scalability was measured by adding more and more devices
to the testbed as the size of the testbed increased, to
approximately 500 devices, which is equivalent to dense
loT networks like smart grids, industrial networks, and
smart cities. The accuracy of the CNN model, training
convergence and inference latency of the CNN model
were recorded every scaling iteration.
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Fig. 4: Accuracy vs. Device Count

The CNN had a high accuracy as demonstrated in the
Figure 4 with a slight decrease (less than 2) in accuracy
at the highest density. Such a tendency means that the
system is highly scaled and robust, and its performance
in identification remains high even in case of large group
of heterogeneous devices being tracked in time.

The low degradation can be largely explained by the
fact that the CNN has the natural ability to generalise
learned representations to unobservable devices of the
same type of modulation nature. The multi-domain
attribute extraction plan based on transient, spectral
and |/Q imbalance attributes will guarantee that even
when inter-class differences diminish with scale, the
classifier will still have discriminative stability.

Also, the quasi-linear increase in training times with
dataset size indicated that the computational complexity
of the framework grows proportionately with the number
of training samples as opposed to exponentially. This is
a good practise with massive systems of loT security
infrastructure where new devices are often added.

The robustness test was also conducted by adding
different signal to noise ratios (SNR) between 0 dB to
30 dB and testing the Doppler shifts as well as a 40 Hz
Doppler shift. The CNN, which had a classification error
of more than 94 percent in SNR 5 dB, and the baseline
models only 85 percent, stipulated a solid ability
to withstand noise and variations in channels. This
resilience guarantees viable applicability in the dynamic
wireless situation such as industrial automation and
vehicle internet of things system.

Energy and Latency Performance

In addition to accuracy and scalability, other essential
considerations to be made are model energy efficiency
and latency, especially when used on edge or embedding
loT where machines are restricted in computational
resources. An NVIDIA Jetson Nano edge module and
an ARM Cortex-A53 processor were profiled in terms
of energy to determine the amount of computation
required in inference.

National Journal of RF Circuits and Wireless Systems | May - Aug 2025

The CNN showed a 15 percent decrease in total energy
usage relative to much like profound convolutional
configurations and fewer parameters which is mainly as a
result of its tiny convolutional design and lesser number
of parameters. The average time per device (at a batch
size of 32) of each inference was about 2.8 milliseconds,
and this time is enough to monitor thousands of devices
in real-time.

The analysis of the energy-latency trade-off showed that
the increase in the inference batch size to twice the size
did not increase the latency by more than a sub-linear
proportion, whereas the overall power consumption
has increased by less than 8 percent. This operation
illustrates the energy proportionality of the suggested
model and it is therefore intended to work continuously
in low-power loT gateways or network intrusion detection
systems.
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Fig. 5: Energy Consumption and
Latency vs. Throughput

The CNN used 0.31 Joules of energy per inference
as compared to 0.42 Joules of energy per inference
in the Deep Learning baselines (Random Forest and
Autoencoder), 0.36 Joules of energy per inference in the
Deep Learning baselines, and 0.42 Joules of energy per
inference in the Deep Learning baselines, respectively.
These findings validate the fact that the deep learning
method with an appropriate optimization does not have
any significant energy overhead though its computation
complexity is high. Additionally, it was demonstrated in
deployment on an FPGA accelerator (mentioned in!"3)
to be able to once again reduce latency down to sub-
milliseconds, opening the way to real-time edge
authentication systems.

DiscussiON

The experimental results support the fact that the offered
CNN-based RF fingerprinting framework provides a good
trade-off between accuracy, scalability, and efficiency.
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This feature of the model in terms of high recognition
rates even with dynamic and noisy conditions highlights
its strength in the face of the challenges of real-world
application.

Moreover, the hardware-based signatures and the deep
feature learning give a non-cryptographic security
layer, which makes it possible to perform continuous
passive authentication without compromising network
throughput or altering device firmware. Such a method
is especially useful when dealing with old loT systems,
where the firmware cannot be updated easily or the
security is very basic.

The comparison study also reveals that fingerprinting
with deep learning is able to surpass the traditional
algorithms besides being computationally feasible. It has
lightweight optimization and edge deployment, and can
be extended to industrial internet of things, intelligent
agriculture and autonomous infrastructure monitoring
systems.

Overall, the findings confirm that RF fingerprinting
combined with convolutional architectures is scalable
and energy-friendly authentication of loT devices, the
future of wireless ecosystem physical-layer identification
and cybersecurity.

CONCLUSION

This study proposed an elaborate system of deep
learning that is able to identify loT devices through RF
fingerprinting in a passive manner. The system uses the
inherent hardware-acquired differences in radio signals
transmitted in order to identify devices without any
cryptographic handshakes or participation of any kind.
The convolutional neural network (CNN) architecture
proposed exhibited unparalleled discriminative spectral
and time-related features by means of complex 1/Q
signal representations, which led to a classification rate
of 97 percent among 50 heterogeneous loT devices.

The results proved that the suggested strategy is
not sensitive to different networks and channel
environments, such as changing signal-to-noise ratios,
device densities, and modulation types. Its scalability
and real-world applicability is highlighted by its ability
to generalize well to various standards of communication
like the Wi-Fi and the Zigbee. Moreover, the model was
able to accomplish this degree of accuracy with low
cost of computation and latency, which is why it can be
implemented into resource-constrained edge computing
systems.

Security wise, the framework offers another non-
cryptographic level of authentication that increases the
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robustness of loT ecosystems to spoofing, impersonation
and unauthorized access. It is passive and thus does not
disrupt the current communication protocols, keeps
interoperability intact and enhances trust at the physical
layer.

Further development of this framework will involve
hardware implementations to accelerate it to the sub-
milliseconds inference latency and further decrease
power consumption by accelerating this framework
with field-programmable gate arrays (FPGAs). Also, by
incorporating photonic-based RF front-ends and hybrid
edge-cloud learning designs, it might be possible to be
able to support ultra-fast real-time classification of next-
generation infrastructures in the loT. On the whole, the
present work provides a solid basis of scalable, energy-
efficient, and smart RF-based device identification
systems that can be important to secure the fast-growing
Internet of Things environment.

REFERENCES

1. Ali, W., Ashour, H., & Murshid, N. (2025). Photonic inte-
grated circuits: Key concepts and applications. Progress
in Electronics and Communication Engineering, 2(2), 1-9.
https://doi.org/10.31838/PECE/02.02.01

2. Anna, J., llze, A., & Martins, M. (2025). Robotics and
mechatronics in advanced manufacturing. Innovative Re-
views in Engineering and Science, 3(2), 51-59. https://
doi.org/10.31838/INES/03.02.06

3. Chen, Y., Zhang, L., & Li, J. (2023). Deep learning for RF
fingerprinting under dynamic wireless channels. IEEE In-
ternet of Things Journal, 10(8), 6212-6223.

4. Han, K., Park, S., & Cho, Y. (2023). End-to-end RF fin-
gerprinting using convolutional networks. Sensors, 23(7),
3321-3333.

5. Huang, X., & Zhou, T. (2024). Spectral-based identification
for loT devices using transient analysis. Ad Hoc Networks,
158, 103293.

6. Kumar, R., & Jain, M. (2023). Channel-independent finger-
printing in loT environments. Computer Communications,
214, 200-211.

7. Li, H., Xu, Q., & Zhang, D. (2023). Improving RF device
classification via transfer learning. IEEE Transactions on
Mobile Computing, 22(3), 1281-1293.

8. Lin, P, Wu, Y., & Luo, F. (2024). RF-based device authenti-
cation in large-scale networks. Journal of Communications
and Networks, 26(1), 50-61.

9. Liu, X., Wei, D., & Li, Z. (2024). Hybrid CNN-RNN architec-
tures for RF signal analysis. IEEE Access, 12, 14172-14183.

10. Marie Johanne, Andreas Magnus, Ingrid Sofie, & Henrik
Alexander (2025). loT-based smart grid systems: New ad-
vancement on wireless sensor network integration. Jour-
nal of Wireless Sensor Networks and loT, 2(2), 1-10.

National Journal of RF Circuits and Wireless Systems | May - Aug 2025



Harsha Vardhan Reddy Kavuluri : RF Fingerprinting Techniques for Passive Identification of lIoT Devices

11.

12.

13.

14.

15.

16.

National Journal of RF Circuits and Wireless Systems | May - Aug 2025

Meng, C., Zhang, R., & Zhao, K. (2023). Adversarially ro-
bust RF fingerprinting for loT authentication. IEEE Commu-
nications Letters, 27(5), 1215-1218.

Nguyen, T., Le, Q., & Pham, D. (2024). Real-time RF iden-
tification using edge computing. IEEE Sensors Journal,
24(6), 7894-7905.

Sathish Kumar, T. M. (2024). Developing FPGA-based accel-
erators for deep learning in reconfigurable computing sys-
tems. SCCTS Transactions on Reconfigurable Computing,
1(1), 1-5. https://doi.org/10.31838/RCC/01.01.01

Shen, Z., Wang, J., & Hu, X. (2024). Low-power RF clas-
sification using embedded neural inference. IEEE Transac-
tions on Industrial Informatics, 20(2), 2231-2240.

Sirimalla, A., Kavuluri, H. V. R., & Avula, S. B. (2021).
Al-powered anomaly detection in Oracle database: Lever-
aging machine learning for proactive threat mitigation.
International Academic Journal of Innovative Research,
8(4), 38-47.

S. R. Keshireddy, “Bidirectional Flow of Structured Data
between APEX and Streaming Pipelines Using Al-based
Field Mapping and Noise Filtering,” 2025 Internation-
al Conference on Next Generation Computing Systems

17.

18.

19.

20.

21.

22.

(ICNGCS), Coimbatore, India, 2025, pp. 1-9, https://doi.
org/10.1109/ICNGCS64900.2025.11183505

Toha, A., Ahmad, H., & Lee, X. (2025). loT-based embed-
ded systems for precision agriculture: Design and imple-
mentation. SCCTS Journal of Embedded Systems Design
and Applications, 2(2), 21-29.

Wang, L., Liu, J., & Gao, Q. (2023). Multi-domain RF fin-
gerprint extraction for device authentication. IEEE Trans-
actions on Information Forensics and Security, 18, 942-954.
Wu, X., Zhang, P., & Yang, M. (2024). Spectrogram learn-
ing for wireless device identification. IEEE Access, 12,
45102-45115.

Xu, Y., & Chen, J. (2023). Deep convolutional RF identi-
fication for secure loT. Journal of Network and Computer
Applications, 228, 103601.

Yao, F., Wang, T., & Li, H. (2024). Energy-aware deep mod-
els for real-time IoT authentication. Computer Networks,
243, 110788.

Zhang, Q., & Zhao, X. (2023). Lightweight neural archi-
tectures for RF fingerprint recognition. Neural Computing
and Applications, 35(12), 8789-8801.

N



