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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.

Author’s e-mail: ishratzahanmukti16@gmail.com, ebad.eee.cuet@gmail.com, kou-
shikkumarbiswas13@gmail.com

How to cite this article:  Mukti IZ, Khan ER, Biswas KK. 1.8-V Low Power, High-Res-
olution, High-Speed Comparator With Low Offset Voltage Implemented in 
45nm CMOS Technology. Journal of VLSI Circuits and System Vol. 6, No. 1, 2024 (pp. 
19-24).

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 6, No. 1, 2024 (pp. 19-24) 

IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
At the device level, identification is an important issue in protecting wireless Internet 
of Things (IoT) infrastructures. The study presents an effective radio-frequency (RF) 
fingerprinting model of passively identifying IoT devices. Using inherent hardware flaws 
like I/Q imbalance, transient response and spectral distortion, the proposed system 
uses these flaws to create distinct RF signatures. A convolutional neural network (CNN) 
classifier is used to process these signatures and the recognition accuracy is 97 % of 50 
types of devices. The system does not require any cryptographic keys or active handshake 
protocols, and provides a lightweight and scalable authentication layer to low-power 
IoT systems. The experimental findings support the robustness of the method when 
applied in the dynamic conditions of the channel, which proves that the method can 
support the development of device-level trust in the situation of large-scale networks.
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Introduction

The unprecedented growth of IoT systems has caused 
an unparalleled variety of interconnected gadgets that 
relay sensitive information on open wireless networks. 
The conventional cryptographic authentication 
approaches are high processing and energy consumption, 
among others, which makes them inappropriate to 
resource limited IoT nodes.[1] It has therefore given rise 
to RF fingerprinting as the passive and low-overhead 
counterpart that puts the flaw of transmitter circuitry at 
hardware-level as inherent identifiers.[2]

The RF fingerprint unlike network-layer identifiers (e.g. 
MAC addresses) is virtually spoofable because it relies on 
the physical-layer properties of a device. The oscillator 
drift, non-linear amplification of power, and philtre 
mismatch all cause these distortions in each transmitter, 
which can be identified without explicit involvement of 
the device.[3]

The current paper presents a framework of RF 
fingerprinting that is based on deep learning and is 
developed to be scalable, low-energy consuming, and 
cross-channel robust. The substantial contributions are 
as follows:
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1.	 A scaled architecture of feature extraction on RF 
signals in the I/Q domain.

2.	 A CNN based classification pipeline that was 
optimized on RF signal characteristics.

3.	 Experimental validation of 50 heterogeneous IoT 
devices.

4.	 Baseline ML model comparative analysis and 
energy-latency analysis.

Literature Review

The previous research on RF fingerprinting had 
concentrated mostly on handcrafted statistical patterns 
based on signal amplitude and phase distributions.[4, 5]  The 
initial work involved transient techniques, investigated 
turn-on properties to differentiate transmitters.[6] But 
these methods had a limitation in the sensitivity to the 
environmental noise and channel distortion.

The emergence of machine learning brought about the 
improvement of classifiers, including SVM and Random 
Forests, which enhanced the process of generalization, 
but had to perform manual feature engineering.[7] 
This area was revolutionized by the introduction of 
deep learning which facilitated end to end learning of 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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discriminative RF features directly on raw waveforms.[8, 9]  
Certainly, convolutional architectures were quite 
effective at detecting time frequency correlations that 
are present in complex RF data.[10]

Other recent studies have also investigated transfer 
learning, adversarial training and domain adaptation 
as a way of dealing with different environments.[11, 12] 
Latency has additionally been minimized through edge 
based applications employing FPGA accelerators to allow 
real time RF identification.[13, 14]

The latest IoT systems combine RF fingerprinting with 
smart grid, farm, and factory surveillance systems, 
and this points to the versatility of the technology.[15, 16]  
Integration Photonic circuits The photonic circuits are 
also becoming popular in RF front-ends to perform 
ultra-high-speed signal analytics.[17, 18] In spite of this 
development, implementations that are scalable and 
energy efficient are an important issue, which drives the 
current study.

Methodology

The RF fingerprinting framework proposed should detect 
the IoT devices based on learning of unique hardware-
inflicted signatures on the RF signals transmitted by 
the devices. The system has two main modules that it 
operates with:

(A) RF Feature Extraction - is in charge of extracting 
and converting the raw signal into discriminative 
representations, this is the complex baseband 
signal which is in the raw stage.

(B)	CNN-Based Classification - in which a deep 
learning model is trained to learn to predict 
these features to particular device identities.

The two modules are executed as a mix of digital signal 
processing and machine learning algorithms that are 
optimised to run on embedded systems. The conceptual 
flow of the signal-processing and the neural architecture, 
respectively, are represented in Figure 1 and Figure 2.

RF Feature Extraction

The starting point of the system is RF feature extraction 
because the efficiency of the classifier is predetermined 
by the quality and the regularity of the features that 
are extracted out of raw baseband signals. Signal at the 
receiver is in the form of a complex signal:

s(t)=I(t)+jQ(t)

where I(t)and Q(t) are in-phase and quadrature com-
ponents of the received signal respectively. These  

elements reproduce amplitude, as well as phase vari-
ation, brought by the transmitter hardware. Because 
every front-end circuitry (oscillator, mixer, power am-
plifier) of each IoT device has minor manufacturing vari-
ations, there are inherent distortions in the captured 
waveform which can be used as device fingerprints.

(a) I/Q Imbalance Modeling

Another of the most uniform hardware defects is the 
result of I/Q imbalance, which occurs as a result of un-
equal gain and phase offset between the I and Q chan-
nels. These flaws can be mathematically calculated as:

s’ (t)=(1+α)I(t)+j(1+β)Q(t)

with α being the amplitude mismatch coefficient and  is 
the phase mismatch coefficient. Ideally, both coefficients 
would be zero, which would mean that everything is 
symmetrical. In practise transmitters, however, any 
small deviation (e.g., α=0.02,β=0.03) causes spectral 
artefacts that are easily measurable.

Through the analysis of such imbalances, the system 
derives the strong device-specific features that are not 
highly subject to changes across a session and across 
different scenarios. The parameters extracted are 
normalized and converted to be in a vector format hence 
minimizing the reliance on absolute signal strength.

(b) Transient Envelope Extraction

The output RF waveform during the first transmission 
phase when the device is passing into active state has a 
characteristic transient characteristic due to the ramp-
up of oscillators and power amplifiers. The information 
available in this region is abundant in terms of detecting 
the device. The instantaneous signal magnitude which is 
calculated as the transient envelope:

This calculation is conducted in a short period (usually 
20 µs) right after the carrier activation. Min-max 
scaling of the energy profile is applied to eliminate the 
impact of changing transmission-power on the energy 
profile. Correlation-based synchronization is done on 
the extracted envelopes to align them across several 
packets, where a temporal consistency is created across 
samples. Transient signatures have also been found to 
be resistant to channel variation as their performance 
is largely determined by the internal circuitry of the 
transmitter and not the propagation properties. They 
therefore constitute a stable and reproducible part of 
the RF fingerprint.
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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(c) Spectral Feature Analysis

Frequency-domain analysis can be used to complement 
time-domain evidence of nonlinear power amplification 
and frequency offset of an oscillator. The signal in the 
form of frequency is acquired through Fast Fourier 
Transform (FFT):

S(f)=∣F{s(t)}∣

F{⋅}  the operator of the Fourier transform. The results 
of this transformation are a magnitude spectrum that 
brings into focus obscure harmonic and intermodulation 
distortions that are associated with individual trans
mitters.

The spectral features are computed on a series of 
frames and assembled in the form of two-dimensional 
spectrogram matrices of time frequency energy 
distributions. These matrices are scaled and coded into 
grayscale images so that they can constitute the input 
tensors of training the CNN. Transient, imbalance, and 
spectral representations of physical-layer properties are 
integrated to give a multi-domain representation with 
complementary physical-layer properties.

The extraction pipeline can be working in full passivity 
there is no need to modify the transmitter or active 
probing. Such design renders it exceptionally applicable 
to the IoT setting where the cooperation between the 
devices or software alteration is impossible.

CNN-Based Classification

After the spectrograms are created, they are inputted 
into a convolutional neural network (CNN), as the auto-
matic learning of hierarchical features that most appro-
priately distinguish between device fingerprints occurs. 
CNN architecture consists of three convolutional layers 
(kernel size 3 x 3 ) and max-pooling, two dense layers 
and a final SoftMax classifier (Multi-class prediction).

Network Model and Mathematical Formulation

Given an input feature map x, probabilities of each class 
are calculated by CNN as.:

where Wi  is the weight parameters of class i, and N is 
the number of classes of devices. Output P(y∣x)  provides 
the probability of the signal being of a certain device.

The categorical cross-entropy loss function is minimized 
using training:

yi  represents the one-hot label of the actual label of 
each class. Optimization is used with Adam Optimizer, a 
learning rate of 0.001, and the batch size is 32, which also 
converges quickly with a small number of overfitting. The 
dropout (rate = 0.3) and layer of batch normalization are 
implemented to enhance generalization and minimize 
the variance.

Training and Evaluation Process

CNN is trained on the data of labelled RF spectrograms 
of 50 types of IoT devices. Additive Gaussian noise, 
frequency shifts and random scaling are the data 
augmentation methods used to model real-world 
variations and enhance robustness. A 5-fold cross-
validation approach guarantees good performance 
estimation. In the inference process, the CNN generates 
a probability vector at all possible device classes and 
the identity of the device is the class that has the 
highest probability score. The architecture has high 
discriminative ability when the devices are in noisy, 
multipath rich environments.

Multi-domain feature extraction and the use of CNN-based 
learning allows the system to learn both deterministic 
and stochastic elements of RF emissions, which is an 

Fig. 1: RF Feature Extraction Framework
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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extremely reliable approach to passive identification of 
IoT devices.

Results and Discussion

In this section, the empirical result of the testing of 
the proposed RF fingerprinting framework on an IoT 
testbed at large scale is proposed. The experiment setup 
consisted of 50 different types of IoT devices functioning 
in the Wi-Fi (2.4 GHz) and Zigbee (868 MHz) networks. 
To make the setting heterogeneous and real-world, 
devices contained sensors and controllers and embedded 
modules with different levels of transmission power 
(between 5 and 20 dBm). To assess the robustness to 
multipath fading, interference and environmental noise, 
the testbed was run in a variety of channel environments 
such as line-of-sight (LOS) and non-line-of-sight (NLOS) 
environments. The devices sent randomly caused packets 
with payloads of 100 packets/s. A receiver array based on 
USRP sampled the received baseband signals at 20 MHz 
with a synchronization of GPS-disciplined oscillators. 
The raw I/Q data were divided and normalized and 
then transformed to the spectrogram representations to 
be fed to the CNN. To compare the results, the same 
dataset was employed to train the Random Forest (RF), 
Support Vector Machine (SVM), and Autoencoder (AE) 
bootstrap models on the same training/testing partitions 
(80:20 split).

Classification Accuracy and Comparative Evaluation

In the initial stage of analysis, the accuracy of the overall 
classification in the proposed CNN-based fingerprinting 
model was compared to the accuracy in the baseline 
techniques. The results of the comparative accuracy are 
shown in Figure 3 and represent all models.

The CNN had a mean accuracy of identification of 97 %, 
which is much higher than the original machine learning 
algorithms like Random Forest (91.2%), Autoencoder 
(93.6 hours) and the Support Vector machine (89.4 %). 
The better performance of CNN can be explained by the 
fact that it has the capability to automatically learn 
hierarchical features when basing on the spectrogram 
inputs, which are the temporal and spectral dependencies 
that the handcrafted features do not capture.

Although the Autoencoder was able to provide 
relationships that are non-linear, its results were also 

prone to overfitting with channel-varying data, which 
led to a 4 percent decrease in its accuracy in the NLOS 
scenario. The SVM and RF models were found to be 
much better at generalization in small datasets, but 
unsuccessful to represent subtle variations in high-
dimensional signal space.

Further examination of confusion matrices showed that 
misidentification was largely done between the devices 
of the same family of hardware models, where the 
manufacturing tolerance was low. However, the CNN 
has managed to discriminate such instances using minor 
transient variations in the start-up features, which 
demonstrates that it is highly discriminative.

The performance was further supported by Precision, 
Recall, and F1-score results: the CNN attained Precision 
= 96.8, Recall = 97.3 and F1-Score = 97.0, compared 
to the nearest competitor the Autoencoder having an 
average F1-score of 93.4. It can thus be seen that the 
proposed model exhibits the ability to provide reliable 
and repeatable device-level discrimination, that can be 
applied to security critical IoT settings.

Scalability and Robustness

Scalability was measured by adding more and more devices 
to the testbed as the size of the testbed increased, to 
approximately 500 devices, which is equivalent to dense 
IoT networks like smart grids, industrial networks, and 
smart cities. The accuracy of the CNN model, training 
convergence and inference latency of the CNN model 
were recorded every scaling iteration.

Fig. 2: CNN Architecture for RF Fingerprint Classification

 
Fig. 3: Model Accuracy Comparison Across Classifiers 
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This paper presents the design of a comparator with low power, low offset voltage, 
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technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Fig. 4: Accuracy vs. Device Count 

The CNN had a high accuracy as demonstrated in the 
Figure 4 with a slight decrease (less than 2) in accuracy 
at the highest density. Such a tendency means that the 
system is highly scaled and robust, and its performance 
in identification remains high even in case of large group 
of heterogeneous devices being tracked in time.

The low degradation can be largely explained by the 
fact that the CNN has the natural ability to generalise 
learned representations to unobservable devices of the 
same type of modulation nature. The multi-domain 
attribute extraction plan based on transient, spectral 
and I/Q imbalance attributes will guarantee that even 
when inter-class differences diminish with scale, the 
classifier will still have discriminative stability.

Also, the quasi-linear increase in training times with 
dataset size indicated that the computational complexity 
of the framework grows proportionately with the number 
of training samples as opposed to exponentially. This is 
a good practise with massive systems of IoT security 
infrastructure where new devices are often added.

The robustness test was also conducted by adding 
different signal to noise ratios (SNR) between 0 dB to 
30 dB and testing the Doppler shifts as well as a 40 Hz 
Doppler shift. The CNN, which had a classification error 
of more than 94 percent in SNR 5 dB, and the baseline 
models only 85 percent, stipulated a solid ability 
to withstand noise and variations in channels. This 
resilience guarantees viable applicability in the dynamic 
wireless situation such as industrial automation and 
vehicle internet of things system.

Energy and Latency Performance

In addition to accuracy and scalability, other essential 
considerations to be made are model energy efficiency 
and latency, especially when used on edge or embedding 
IoT where machines are restricted in computational 
resources. An NVIDIA Jetson Nano edge module and 
an ARM Cortex-A53 processor were profiled in terms 
of energy to determine the amount of computation 
required in inference.

The CNN showed a 15 percent decrease in total energy 
usage relative to much like profound convolutional 
configurations and fewer parameters which is mainly as a 
result of its tiny convolutional design and lesser number 
of parameters. The average time per device (at a batch 
size of 32) of each inference was about 2.8 milliseconds, 
and this time is enough to monitor thousands of devices 
in real-time.

The analysis of the energy-latency trade-off showed that 
the increase in the inference batch size to twice the size 
did not increase the latency by more than a sub-linear 
proportion, whereas the overall power consumption 
has increased by less than 8 percent. This operation 
illustrates the energy proportionality of the suggested 
model and it is therefore intended to work continuously 
in low-power IoT gateways or network intrusion detection 
systems.

Fig. 5: Energy Consumption and  
Latency vs. Throughput

The CNN used 0.31 Joules of energy per inference 
as compared to 0.42 Joules of energy per inference 
in the Deep Learning baselines (Random Forest and 
Autoencoder), 0.36 Joules of energy per inference in the 
Deep Learning baselines, and 0.42 Joules of energy per 
inference in the Deep Learning baselines, respectively. 
These findings validate the fact that the deep learning 
method with an appropriate optimization does not have 
any significant energy overhead though its computation 
complexity is high. Additionally, it was demonstrated in 
deployment on an FPGA accelerator (mentioned in[13])  
to be able to once again reduce latency down to sub-
milliseconds, opening the way to real-time edge 
authentication systems.

Discussion

The experimental results support the fact that the offered 
CNN-based RF fingerprinting framework provides a good 
trade-off between accuracy, scalability, and efficiency. 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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This feature of the model in terms of high recognition 
rates even with dynamic and noisy conditions highlights 
its strength in the face of the challenges of real-world 
application.

Moreover, the hardware-based signatures and the deep 
feature learning give a non-cryptographic security 
layer, which makes it possible to perform continuous 
passive authentication without compromising network 
throughput or altering device firmware. Such a method 
is especially useful when dealing with old IoT systems, 
where the firmware cannot be updated easily or the 
security is very basic.

The comparison study also reveals that fingerprinting 
with deep learning is able to surpass the traditional 
algorithms besides being computationally feasible. It has 
lightweight optimization and edge deployment, and can 
be extended to industrial internet of things, intelligent 
agriculture and autonomous infrastructure monitoring 
systems.

Overall, the findings confirm that RF fingerprinting 
combined with convolutional architectures is scalable 
and energy-friendly authentication of IoT devices, the 
future of wireless ecosystem physical-layer identification 
and cybersecurity.

Conclusion

This study proposed an elaborate system of deep 
learning that is able to identify IoT devices through RF 
fingerprinting in a passive manner. The system uses the 
inherent hardware-acquired differences in radio signals 
transmitted in order to identify devices without any 
cryptographic handshakes or participation of any kind. 
The convolutional neural network (CNN) architecture 
proposed exhibited unparalleled discriminative spectral 
and time-related features by means of complex I/Q 
signal representations, which led to a classification rate 
of 97 percent among 50 heterogeneous IoT devices.

The results proved that the suggested strategy is 
not sensitive to different networks and channel 
environments, such as changing signal-to-noise ratios, 
device densities, and modulation types. Its scalability 
and real-world applicability is highlighted by its ability 
to generalize well to various standards of communication 
like the Wi-Fi and the Zigbee. Moreover, the model was 
able to accomplish this degree of accuracy with low 
cost of computation and latency, which is why it can be 
implemented into resource-constrained edge computing 
systems.

Security wise, the framework offers another non-
cryptographic level of authentication that increases the 

robustness of IoT ecosystems to spoofing, impersonation 
and unauthorized access. It is passive and thus does not 
disrupt the current communication protocols, keeps 
interoperability intact and enhances trust at the physical 
layer.

Further development of this framework will involve 
hardware implementations to accelerate it to the sub-
milliseconds inference latency and further decrease 
power consumption by accelerating this framework 
with field-programmable gate arrays (FPGAs). Also, by 
incorporating photonic-based RF front-ends and hybrid 
edge–cloud learning designs, it might be possible to be 
able to support ultra-fast real-time classification of next-
generation infrastructures in the IoT. On the whole, the 
present work provides a solid basis of scalable, energy-
efficient, and smart RF-based device identification 
systems that can be important to secure the fast-growing 
Internet of Things environment.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
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