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ABSTRACT

Abnormal network behaviour is a fundamental problem to Quality of Service (QoS) and
operational stability in the contemporary communication infrastructure, especially in
the context of Software-Defined Networking (SDN) and 5G. This paper introduces an
Adaptive Probing-Based Anomaly Detection Framework (APADF) which uses real-time
network stability indicators and performance fluctuation as adaptive probe timing
parameters. It is an active measurement framework that integrates such active
measurement methods as latency, round-trip time (RTT) variance, jitter, and throughput
analysis with hybrid machine learning algorithms to classify anomalies intelligently and
context-sensitively.

In comparison with the conventional fixed-interval surveillance systems, proposed
adaptive mechanism uses feedback-related control to streamline the probe scheduling,
such that when anomalies occur in a transient way, the proposed mechanism is
responsive, and when the situation is stable, the mechanism consumes less bandwidth.
Based on Gaussian Mixture Models (GMM) to perform unsupervised clustering and
Random Forest (RF) to perform supervised classification, the Analytics Core facilitates
correct differentiation between transient congestion, ongoing disruptions, and attack-
related disruptions.

Experimental analysis of both emulated SDN testbeds and experimental WAN Llink show
that APADF can detect with 93 percent, false positives are reduced by 30 percent and
has a measurement overhead of less than 1 percent of link capacity. The results provide
a confirmation of the ability of the framework to operate with a high level of precision,
low overhead network monitoring, yet also provides scalability with interoperability
with the existing SDN controllers and edge-based network. On the whole, APADF offers
proactive, performance-sensitive and self-scheduling monitoring paradigm, which is
adapted to the dynamism of next-generation communication networks.
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INTRODUCTION

The need to support the growing requirements of both
latency-sensitive and bandwidth-intensive applications
is driving the use of software-defined and programmable
communication infrastructures in the modern
communication networks.[ > "1 Quality of Service (QoS)
together with operational security is a very significant
issue in such environments. The traditional fixed-
interval monitoring systems cannot effectively monitor

g

the transient abnormalities thus causing the overhead of
the measurements as well as time lag in detection.? >

Active measurement and performance analytics meth-
ods are useful to understand the behaviour of the end-
to-end networks in a real-time by monitoring the end-to-
end network in terms of its latency, packet loss, jitter,
and throughput.® '8 Nonetheless, the static probing
strategies are either over-saturation of the network in
the stable states or underperformance on the changes
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in the dynamics. In response to this, adaptive probing
is a dynamic control that modulates the rate of mea-
surement according to the fluctuations of performance
observed to achieve a trade-off between accuracy and
efficiency .12 6.8

The machine learning (ML) and statistical inference
models have also enhanced the capability to identify
abnormalities by learning normal behavioural patterns
and differentiate them with abnormal trends.* 6 8 13
These smart measurement systems may be used
in conjunction with software-defined networking
(SDN) control systems to instantiate preemptive
reconfiguration and automated fault recovery with little
human operations.[ ' 13, 14

The adaptive monitoring has become even more
important in the environment of 5G and edge-enabled
networks. Scaling self-optimising monitoring frameworks
and massive connectivity of devices as well as a wide
range of service-level agreements demand high-speed
data streams, high-speed connexions with devices,
and large scale.l" " 200 Moreover, recent modulation
strategies and reconfigurable computation models have
increased the rate of data throughput and processing
loads intensifying the necessity of real-time anomaly
detection and performance guarantees.[ 12 201

The study has suggested a probing-based anomaly
detecting system that is adaptive to the integration
of both active metrics of measurement and statistical
learning models. The framework is smart enough to
adjust the probing intervals and correlate responses, to
determine abnormal traffic behaviour with an extreme
level of accuracy. Both simulation and empirical analysis
indicate that its effectiveness is high in terms of reducing
false-positives and also faster detection latency,
which makes it effective in proactive QoS control and
automated fault diagnostics in SDN- and 5G-enabled
networks.2 3 11, 14,19

RELATED WORKS

The first network measurement standards such as OWAMP
and TWAMP developed baseline approaches to delay and
loss measurement in IP networks.! '® These mechanisms
formed the foundation of other benchmarking
methodologies like RFC 2544 which defined repeatability
of tests and interoperability across network equipment.t
Although successful, the traditional solutions are based
on fixed probing schedules that are not efficient in the
case of varying traffic conditions.

To tackle these constraints, adaptive monitoring
methods were developed and dynamically adjusting
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the probing intensity was done based on statistical
measures such as round trip time (RTT) variance,
loss bursts, and throughput variations.® This is used
to minimize the redundant measurement traffic and
increase the detection of short-lived anomalies. The
recent works have harmonised adaptive probing and
ML-based classifiers like the Random Forests, support
vectors machines (SVM) and Gaussian mixtures models
to differentiate between the fluctuation caused by
congestion and actual fault situations.® & '

In SDN environments, the control plane and data plane
programmability offers the unparalleled flexibility with
regard to measurement and control integration.[ ' 13,14
Visibility and rerouting of flows using ONOS and OpenFlow
allows centralised visibility and allows rerouting flows
dynamically based on feedback and as part of a QoS
assurance. On the same note, emulation systems like
Mininet help in quick experimentation and verification
of adaptive measurement policies in varied network
topology.!"!

The field of cybersecurity and anomaly research has
developed concurrently, with the focus on identifying
both volumetric and stealthy threats that resemble
the dynamics of normal traffic.['® ' The understand-
ing has affected the structure of proactive and perfor-
mance-conscious anomaly detectors which could work
even in adversarial scenarios. At the same time, the loT
and edge computing paradigm have spurred the devel-
opment of scalable data aggregation and distributed
analytics, which minimized monitoring latency and con-
sumption .['7: 1]

At the hardware/physical level, innovation in
modulation schemes and 3D-IC has pushed the limits
of data transmission and processing, required to be
more observable and adaptively managed.!”> '» 2 Taken
together, these papers show that adaptive active
measurement, ML-based inference, and SDN/edge
orchestration as a combination is a promising way to
come up with resilient and efficient network monitoring
configurations.[" [7-91, [11-19]

METHODOLOGY
Framework Architecture

Adaptive Probing-Based Anomaly Detection Framework
(APADF) is developed as a flexible framework capable of
bringing together adaptive probing on the network with
machine learning-based analytics to make intelligent
predictions of anomalies and their visualization. As
shown in Figure 1, the architecture has four main
modules Adaptive Controller, Measurement Engine,
Analytics Core and Visualisation Dashboard. The modules
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can use RESTful APIs to communicate and are therefore
interoperable with Software-Defined Networking (SDN)
controllers, Network Function Virtualization (NFV)
platforms, and external orchestration system.

The system has the Adaptive Controller as the control
logic. It actively corrects the probing frequency based
on the statistical feedback mechanisms bearing on the
historical data of network performance. The controller
operates by adding a probing interval to the sampling
density when the round-trip time (RTT) variance or the
packet delay variation or the jitter goes above predefined
thresholds. On the other hand, when networks are
stable, it optimises the probing period with the aim of
reducing measurement overhead. This is an optimising
feedback mechanism that is highly sensitive to transient
network behaviour while resource is used optimally.

The subsystem of the framework that provides the
collection of data is the Measurement Engine. It positions
both ICMP and TCP based probes along several networked
paths to record the key performance indicators (KPlIs)
such as latency, packet loss, jitter and throughput.
These probes are run in parallel threads to guarantee
the time coordination between the segments, and the
time co-ordination is executed using, Network Time
Protocol (NTP). The raw measurement data undergoes
pre-processing, it is filtered, normalised and formatted
and then sent to the analytics layer.

At the analytical level, the Analytics Core combines a
hybrid machine learning model that consists of Gaussian
Mixture Models (GMM) to unsupervised cluster and
supervised anomaly classification using Random Forest
(RF). The GMM finds concealed patterns in unlabeled
data, and allows latent clusters of behaviour which could
depict emerging or dynamic anomalies to be discovered.
Meanwhile, the Random Forest classifier uses labelled
data to give high accuracy anomaly labelling as well as
strong generalisation results. Combining these models
produces an adaptive decision boundary that is able to
distinguish normal congestion and abnormal network
events.

The Visualisation Dashboard is used to monitor,
diagnose, and alert in a real-time environment. It
includes animated graphs that show the trend of latency,
frequency of the probe, distribution of packets lost, and
anomalies. Moreover, the dashboard has customizable
KPl summaries, threshold setup, and interactive drill-
downs of root-cause analysis. The visualisation layer is
constructed based on a modular front-end architecture
to either be deployed in either a centralised SDN
controller, distributed edge node or on a virtualized
platform.
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Fig. 1: Adaptive Probing-Based Anomaly Detection
Framework Architecture

Experimental Configuration

In order to test the performance, and scalability of APADF,
there were extensive experiments that were carried
out on a hybrid test environment that incorporated
software-defined networking (SDN) testbed and a wide
area network (WAN) environment. Mininet was used to
simulate the SDN environment, whereby six OpenFlow
switches and twelve host nodes were set to be controlled
by an ONOS controller (version 2.7). ONOS platform
allowed the real-time topology discovery and dynamic
flow rules installation to aid adaptive probe routing.

Individual probing agents were launched in separate
containers of Docker using Ubuntu 22.04 LTS, and
recurring lightweight experimentation and confirmation.
The time of all the containers was synchronised using NTP
to ensure that time was accurate across the distributed
measurement points.

iperf3 and tc-netem tools were used to introduce traffic
variability which simulated various conditions of the
network like congestion, fluctuation in latency, and
packet loss. The adaptive interval mechanism was set
with the range of 1-30 seconds adjusting dynamically
in accordance with the real-time network stability
indicators.

Machine learning module was trained and tested on a
dataset of 20000 labelled samples including normal
and anomalous traffic states. This data was divided
into training (70) and testing (30) to test the predictive
accuracy and generalisation performance. Accuracy,
precision, recall, F1-score, ROC-AUC and bandwidth
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Table 1: Experimental Configuration Parameters for Adaptive Probing Framework

Parameter Description

Value / Tool Used

Network Environment

SDN (Mininet) and WAN hybrid topology

Hybrid setup

Controller Platform

SDN control and orchestration engine

ONOS (Version 2.7)

Probing Protocols Active probing protocols

ICMP and TCP (dual-mode)

Adaptive Interval Range

Dynamic probe frequency adjustment window

1-30 seconds

ML Models Hybrid analytics classifier

GMM + Random Forest

Dataset Size Training + testing samples

20,000 total

Accuracy Metrics Evaluation indicators

F1-Score / ROC-AUC

Bandwidth Overhead

Measurement impact on link utilization <1%

overhead were the major evaluation measures.
Bandwidth overheads were kept below 1 percent of link
capacity and there was minimal interference with the
operating traffic. Table 1 summarizes the configuration
parameters of the experiment setup.

Such methodology provides a universal evaluation pipe-
line, which consists of adaptive control, active measure-
ment, hybrid analytics, and visual feedback. The hybrid
test environment and intensive statistical analysis are
what guarantee that the outcome can be reliably related
to the framework in terms of balancing the detection
and operational efficiency across the dynamic network
environment.

RESULTS AND DISCUSSION

To determine how responsive, accurate and efficient the
Adaptive Probing-Based Anomaly Detection Framework
(APADF) performs to different conditions of the network,
performance evaluation of the model was conducted.
The experiments were done between adaptive probing
and traditional fixed-interval monitoring to measure the
improvements in the detection of anomaly and precision
in measurements.

Latency Dynamics and Temporal Responsiveness

Figure 2 shows that latency was stable at 35-45 ms in
the normal operating conditions which showed that the
network was stable. But, with anomalies ( i.e. traffic
congestion bursts and scenarios where the DDoS attack
was simulated ) up to 80 ms of latency were observed.
It is these spikes that caused the adaptive controller
to adjust dynamically the probing interval in real time
which allowed the framework to capture transient
variations with little delay.

This form of adaptation led to a 27 percent increase
in the temporal detection precision over fixed probing
periods. The feedback loop minimized the detection
delay between receipt of an anomaly and the system
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Fig. 2: Latency Variation during Normal and
Anomalous Conditions

reaction and the framework was capable of rapidly
changing its probing cadence in response to network
volatility that it was observing. This responsiveness is
valuable especially in low latency and mission critical
systems, where provision of early anomaly detection
will avoid the propagating performance degradation and
service level breaches.

Correlation Analysis of Jitter and Packet Loss

In a further effort to streamline the validity of analysis
in APADF, a correlation analysis was also carried out
between jitter variance and packet loss rate as shown
in Figure 3. The Pearson correlation coefficient (r) was
always greater than 0.84 which is a strong positive
relation as expected in congestion-driven behaviour
when the network was in normal conditions. However,
the correlation was very much weaker during anomaly
injection where the coefficients became less than 0.5.

This statistical deviation was used to provide a
distinguishing characteristic to the machine learning
(ML) classifier that enabled it to distinguish benign
congestion incident and an irregular condition like DDoS
activity or link instability. Consequently, the hybrid
GMM-Random Forest analytics module minimized false
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Fig. 3: Correlation between Jitter
Variance and Packet Loss

positives by about 30 percent of the static monitoring
systems. The better separability of traffic states
increased the interpretability of the classifier, which
allowed more accurate and context-dependent anomaly
labelling.

Quantitative Evaluation of Detection and Efficiency
Metrics

In the table below (Table 2), a summary of the evaluation
metrics is given and the key performance indicators
(KPIs) of the proposed framework are consolidated. The
APADF had a total detection accuracy of 93%, a precision
of 90% and a recall of 94 % indicating equal performance
of classification.

Moreover, the framework had a bandwidth overhead of
less than 0.9% which affirmed that it could run in a non-
intrusive mode even at the high-probability of probing.
The deviation margin of the latency measures was not
exceeded by more than three ms, which is an indicator
of temporal consistency in active probes. The effect
of the adaptive mechanism on responsiveness was also
quite remarkable and the anomaly detection timing
was improved by 27 % as compared to fixed-interval
techniques.

Table 2: Performance Evaluation Metrics for APADF

Metric Value
Detection Accuracy 93%
False Positive Reduction 30%

Average Bandwidth Overhead |0.9%
Latency Measurement Stability | +£3 ms deviation

Temporal Detection Improve- | +27%
ment

The above results prove the fact that adaptive probing
can be used to obtain close-to-optimal precision in

%

measurements and also limit the unnecessary work on
the network considerably. Combining feedback-based
control with hybrid analytics guarantees the consistency
of the high-confidence anomaly detection of a wide
range of network dynamics.

The Network Insights and theL Spatial Anomaly
Distribution.

Figure 4 shows the spatial distribution of the identified
anomalies on the SDN topology. It was noted that the
density of anomalies was the most concentrated in
the core nodes and control-plane aggregation points
where traffic volume and flow concurrency was most
concentrated. These areas were linked to bottlenecks
that cause temporary throughput reduction and high
jitter variance. On the contrary, edge nodes had reduced
cases of anomalies, which were mainly short bursts in
latency caused by bursts in probes or route updates.
This distribution justifies the sensitivity of the model
to topology-dependent performance changes, and
it proves the idea that APADF is not only sensitive to
detecting anomalies but also localizing the origin of the
anomaly in the network in real time. This kind of spatial
insight is priceless to root-cause analysis, because it
allows network operators to plan ahead to mitigate its
consequences.

DiscussION

In general, the analysis findings prove the hypothesis
that adaptive probing combined with hybrid analytics
yield significant responsiveness and precision gains
over traditional monitoring systems. The self-tuning
behaviour of the framework minimises redundancy in
steady network states and still allows the framework to
react quickly in anomalies.

= =
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Fig. 4: Spatial Anomaly Distribution across
Network Nodes
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The hybrid GMM -Random Forest model is an effective
model that can integrate unsupervised clustering and
supervised classification to produce correct anomaly
boundaries in mixed traffic conditions. Moreover, APADF
is lightweight and consumes less than one percent of
bandwidth, which allows it to be deployed at scale in a
distributed mode in 5G, edge, and SDN-based networks.

Overall, APADF provides a paradigm of low overhead, high
accuracy monitoring that does not only uncover anomalies
but also provides context to them in real time. The
modularity of the framework enables its straightforward
adaptation to current telemetry pipelines and provides
an opportunity to have autonomous network assurance
and self-optimising 5G/edge ecosystems.

CONCLUSION

This paper, introduced a modular architectural design
named Adaptive Probing-Based Anomaly Detection
Framework (APADF), which offers better performance-
aware network management with an adaptive and
intelligent monitor. The framework provides the optimal
response/efficiency by dynamically changing probing
intervals in response to real-time network volatility.

It has been experimentally proven that APADF achieves
a detection rate of up to 93%, a false positive rate of
almost 30, and a bandwidth overhead of less than 1,
indicating APADF can operate with high-fidelity and low-
overhead observability. These features render it highly
applicable to its implementation in 5G, SDN and edge
computing environments.

One of the greatest strengths of the framework is that it
combines adaptive control and machine learning-based
analytics. When used together, Gaussian Mixture Models
(GMM) and Random Forest (RF) classifiers can be used
to accurately differentiate between the instance of
temporary congestion and that of permanent anomaly,
resulting in a fast detection, correct classification and
implementation of corrective measures.

Hardware-accelerated software implementations With
the current work being done to better align the framework
with modern communication and embedded system
infrastructures, future work will look into hardware-
accelerated implementations on programmable network
interface controllers (NICs) and field-programmable gate
arrays (FPGAs). Placing the adaptive probe logic on the
edge layer will minimise latency, improve local decision
making and leverage the available on-device telemetry
to provide real-time diagnostics.

Moreover, additions such as reinforcement learning,
federated analytics, and edge-based inference will
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make distributed intelligence possible and bring APADF
to the next stage of a self-healing and self-optimising
monitoring ecosystem. Summarily, the framework
provides a solid base of next generation intelligent
network assurance to accommodate the reliability,
scaling, as well as the performance requirements of the
developing communication landscapes.
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