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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
The following paper presents the design of a spiking neural network (SNN) based 
neuromorphic signal processing system that can be used in low power embedded 
smart sensors to perform real time detection of audio events. In this regard, the aim 
is to overcome the shortcomings of traditional deep learning frameworks that are both 
computationally heavy and demanding in terms of power consumption such that they are 
incompatible with battery-run or energy-limited edge devices. Citing the performance 
of biological neural systems, the presented framework should utilize event-driven 
SNNs executed on neuromorphic platforms to identify notable acoustic situations 
(like alarms, speech commands and ambient environmental sounds). The architecture 
envisages audio preprocessing part, audio spike encoding, and spike temporally contrast 
encoding or Poisson encoding, and a multi-layer core SNN trained by surrogate gradient 
descent. The model is tuned to run on an Intel Loihi and ARM Cortex-M7 microcontroller. 
The standard datasets were used to assess the performance, such as Google Speech 
Commands, ESC-10 and UrbanSound8K. Using the experimental results, it can be proven 
that the SNN-based model has up to 92.7% correct classification accuracy, using < 5mW 
power with a latency below 20 milliseconds. SNN approach is equivalent in accuracy to 
conventional CNN baselines in many cases with much lower energy consumption. Results 
confirm the prospect of SNNs at ultra-low-power, real-time signal processing in future 
generation edge-AI acoustic systems. The research directions will look at hardware-
aware training and learning that can be used to improve on adaptability and scalability 
of embedded smart sensing systems.
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Introduction

The wide growth of Internet of Things (IoT) and edge-
AI systems and smart sensors, in particular, a situation 
where they communicate the signals with each other, has 
increased the urgency of implementing fast-processing, 
low-power signal processing, particularly use cases where 
audio signals are used, and as such, use cases such as 
smart home assistant devices, surveillance systems, and 
monitoring industrial safety alarms. Whilst conventional 
deep neural networks (DNNs) are useful, classification 
applications, they are computationally expensive and 
therefore energy-consuming, and therefore require more 
challenges intended to support battery-powered or energy-
constrained embedded systems. The lack of energy efficient 
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intelligence at the edge makes it important to find new 
strategies that would trade-off accuracy and responsiveness 
with the power spend. Neuromorphic computing as an 
event-driven, asynchronous manner, which is modeled 
on the weakly-synchronous dynamics of biological neural 
circuits, holds forth the potential of a solution. Essentially, 
through discrete spikes, Spiking Neural Networks (SNNs) 
are very sparse and operate with low latency, making 
them suitable to limited resource settings. Although they 
have the potential, most of the current research involves 
simulated data or offline inference and not deployment-
ready SNN architectures to deploy on embedded devices.

In combating this, the current work suggests a 
neuromorphic architecture that employs SNNs to achieve 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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efficient and precision detection of acuity events. The 
effectiveness of the system is tested with benchmark 
audio data sets and the parameters are tuned with 
the installation of the system upon Intel Loihi and 
ARM Cortex-M7 processors to validate its feasibility in 
practice.

Related Work

Audio event detection (AED) has been a popular Area 
of interest with Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs) since they are 
more efficient to model temporal and spectral audio 
signal patterns. CNNs ensure a high performance when 
it comes to the extraction of local features on mel-
spectrograms whereas RNNs provide time dependency. 
Each of these models has attained the state of art 
performance on multiple AED benchmarks, such as 
Google Speech Commands and UrbanSound8K. Yet, they 
are computationally and memory-intensive to a great 
extent, which makes their application on the low-power 
embedded systems very undesirable. In dealing with 
these limitations, recent designs suggested lightweight 
CNN versions, quantized neural networks, and pruning 
methods to minimize inference latency and memory-
consumption constraints. Such solutions would be 
moderate but, nevertheless, still employ synchronous, 
frame-based computation and otherwise cannot provide 
the always-on energy-efficiency necessary in edge 
applications.

They have been replaced in many cases with Spiking 
Neural Networks (SNNs), which is a biologically inspired 
solution, and which provide an event-driven processing 
scheme and sparse activations, ideal to real-time 
neuromorphic devices. Based on previous research, prior 
researchers have shown the applicability of SNNs to the 
keyword spotting and environmental sound classification 
tasks and that SNNs can comparatively perform as 
well as ANN baselines. Nevertheless, the majority of 
commercial SNN implementations are still confined 
either to simulation systems, or cannot run in real-time, 
or cannot be published on any commercial neuromorphic 
or microcontroller platform.

System Architecture

The flex architecture is a modernized approach, 
which allows real-time, low-power auditory ancient 
development in embedded platforms taking advantage 
of the sparse and asynchronous properties of spiking 
artificial systems (SNNs). There are four main functional 
modules that make up the system, which is optimized to 
energy-efficient processing and neuromorphic hardware 
compatibility:

Audio Front-End

At this phase, the preprocessing and feature extraction 
of the signals are managed. The audio signals received 
are divided into small frames through windowing process 
i.e. Hamming or Hann windows. The frames are then 
converted to frequency-domain representations by 
mel-spectrograms representation, or the spike-based 
auditory features by using biologically-realistic auditory 
front-ends. This step will make sure that the temporal 
structure and the spectral attributes of audio input can 
be kept intact by the system.

Encoding Layer

Continuous-valued audio features must then be translated 
to spike trains; often by temporal contrast encoding 
(which spots temporal change) or Poisson encoding 
(which encodes amplitude with spike probabilities). 
It is a layer that mediates between traditional audio 
representations and event-driven spiking computation 
and allows such data processing to be asynchronous.

SNN Core

The multi-layer SNN consists of synaptic connections 
and spiking neurons in the central processing unit whose 
learning are bio-inspired. The network may be trained 
by non-differentiable spike functions, e.g. by a surrogate 
gradient descent that approximates the gradient of 
the loss function or by unsupervised learning rules, 
such as spike-timing-dependent plasticity (STDP). An 
architecture usually involves one or more hidden Layers 
used to extract features over time and space.

Output Layer

The last layer combines the spiking activity and has 
a classification process depending on the firing rate, 
temporal patterning or other spike-based decision 
processes. Output is related to fixed classes of audio 
events (e.g. speech command, alarm, dog bark). The 
logic is lightweight and meets the edge computing 
constraints as it allows real-time inference on a tight 
power budget.

Cumulatively, this makes a powerful pipeline that 
translates raw acoustic input into event-driven 
representations of neural activity in a form that can 
be used to accurately and in low-latency classify 
automatically monotonous audio stream information, 
especially by always-on audio sensing on embedded 
intelligence-augmented smart sensors.

Figure 1 presents the functional flow of the suggested 
neuromorphic audio event detection system. It shows 
the pipeline of processing stages of the audio signal 
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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input and spike encoding, a spiking neural network (SNN) 
core and end-event classification that are optimized to 
run in an embedded, low-power environment.

Fig. 1: Block Diagram of the Neuromorphic  
Audio Event Detection System Using Spiking  

Neural Networks

Figure 1. SNN-based neuromorphic system architecture 
diagram that can be syn summarized as block diagram 
of neuromorphic architect that can be used to do real 
time audio event detection. The system consists of audio 
front-end, spike encoding layer and multi-layer SNN core 
and the output classification module is compatible to 
low-power embedded systems.

Deployment and Optimization

Table 1 illustrates a comparative system analysis of 
deployment metrics on Intel Loihi and ARM Cortex-M7, 
whereas Figure 2 demonstrates important performance 
variation in the dimensions of latency of inference time, 
power consumption, and model size. In order to confirm 
the practical applicability of the proposed SNN-based 
audio event detection framework, the framework is 
implemented on two prototyping embedded computing 
devices: the Intel Loihi neuromorphic processor and 
on an ARM Cortex-M7 microcontroller unit (MCU). The 
platforms are a pair of the extreme end of the edge-AL 
continuum: neuromorphic hardware dedicated to event-
driven tasks and unoptimized low-power microcontrollers 
you might provide with an edge of your smart sensors.

Hardware Platforms

•	 Intel Loihi is chosen because it supports spiking 
by design, the relatively low power envelope  

(<5 mW typical) and has internal routing, 
plasticity, and adaptation mechanisms.

•	 ARM Cortex-M7 MCU is selected as a baseline, 
to show the portability of the proposed SNN 
model on to conventional edge processors that 
have limited memory fixed and computational 
bandwidth.

Quantization and Model Compression

Post-training quantization techniques are applied in 
converting all the model weights as well as activations 
in between in 8-bit integer representation. This saves 
a lot of memory space and also makes the inference 
more efficient, and the accuracy is also not lost. The 
model is flash memory- and SRAM-constrained opti-
mized microcontrollers.

Energy Optimization and Inference Latency

The problem of latency is overcome by the spike rate 
regularization that controls the spikes generated during 
inference. Also, optimization methods are used to 
remove superfluous synaptic links through its sparsity 
control processes and offer faster computation with 
economical dynamic power consumption. Further energy 
profiling is done based on realistic use-case conditions 
(e.g., continuous audio feature at 16 kHz), where sub-
20 ms inference times and ultra-low power consumption 
are corroborated and appropriate to always-on sensing.

This benchmarking on two platforms guarantees that the 
suggested architecture is neuromorphic-friendly and/or 
deployable on an MCU, making it usable on a wide range 
of real-life edge-powered acoustic-based monitoring 
scenarios.

Figure 2. Bar graph of comparison of inference latency, 
power consumption, and model size of Intel Loihi and 
ARM Cortex-M7 inference platforms when using SNN-
based audio event detection system.

Table 1: Loihi vs. Cortex-M7 Deployment Metrics

Metric Intel Loihi ARM Cortex-M7

Processor Type Neuromorphic Chip General-Purpose MCU

Architecture Asynchronous Event-Driven Synchronous Processor

SNN Support Native Support Emulated via software

Quantization 8-bit (native + quantized) 8-bit (post-training)

Inference Latency <15 ms <20 ms

Power Consumption <5 mW ~12 mW

Model Size (8-bit) ~80 KB ~100 KB

Use Case Suitability Optimized for real-time neuromorphic 
computing

Suitable for battery-operated embedded 
sensors
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Experimental Results

In order to test the performance of the proposed SNN-
based neuromorphic audio event detection system 
comprehensive experiments were conducted on 
several datasets, hardware platforms and performance 
measures.

Datasets

The system has been benchmarked against three 
publicly well known datasets, these being subsets of the 
following datasets:

•	 Google Speech Commands (GSC) to identify a 
keyword,

•	 ESC-10 to recognize environmental sound.

•	 UrbanSound8K to classify acoustic scenes in a 
city.

All data were pre-processed to 40-ms representation 
non-overlapping audio frames, encapsulated with 
Poisson and temporal contrast spike-encoding methods. 
To obtain robustness, standard train-test splitting as 
well as data augmentation (e.g., background noise, gain 
variation) was used.

Classification Accuracy

It was found that the SNN model had a highest 
classification accuracy of 92.7% as compared to 94.1% 
with a baseline model featuring the same feature inputs 
as the SNN model but a 1D CNN model in its place. The 
SNN methodology also produced high relative accuracy 
whilst causing a 20x decrease in power usage during 
inference compared to the method, though showing 
lower absolute accuracy when compared to it.

Latency Power Efficiency

The SNN implementation would have an inference 
latency of between 13 ms and 20 ms, depending on the 
complexity of the audio and on the degree of spiking 

activity. It used far less than 5 mW on Intel Loihi and 
some 12 mW on ARM Cortex-M7, proving suitable on 
resource-limited embedded devices with always-on 
sensing needs.

Ablation Study

There was an ablation analysis conducted to determine 
the input of spike encoding in terms of classification 
performance. Removing the spike-based encoding rule 
and feeding raw mel-spectrogram features directly 
gave a decrease in accuracy of ~8 % which highlights 
the importance of biologically inspired encoding in 
increasing network discriminability.

All of these results confirm the conclusion that SNN-based 
architectures, operated with spike-optimized encoding 
in low-power hardware, yield a very competitive solution 
to real-time audio event detection on edge devices.

When training and testing the model, as shown in Figure 
3, the proposed SNN model performs competitively in 
terms of classification accuracy compared to a reference 
CNN model but is orders of magnitude more power-
efficient and faster to be deployed at a time and place 
(latency). Namely, the SNN outperforms conventional 
systems by 20 times in the energy consumption level and 
reduces processing time, a crucial feature in the case of 
embedded, always-on audio applications.

Table 2 shows key performance parameters such as 
accuracy, latency and power consumption of the 
proposed strategy, which is clearly effective in resource-
limited scenarios.

Table 2: Model Performance Comparison: CNN vs SNN

Model Accuracy (%)

Power 
Consumption 

(mW)
Inference 

Latency (ms)

CNN 
(Baseline)

94.1 100 25

SNN 
(Proposed)

92.7 5 17

Fig. 3(a): Classification accuracy comparison between 
CNN and SNN models.

Fig. 2: Performance comparison of Intel Loihi and 
ARM Cortex-M7
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Fig. 3(b): Power consumption comparison showing 
the SNN’s superior energy efficiency.

Fig. 3(c): Inference latency comparison indicating 
faster response time for the SNN.

Conclusion and Future Work

The proposed work is the neuromorphic verification of 
spiking neural network (SNN) to real-time audio event 
detection in low power embedded systems. The proposed 
strategy tackles the serious issues of latency, energy 
consumption and inference on the device inherent in 
traditional deep learning networks (DNNs) through a 
combination of using event-driven computation inspired 
by neuroscience and the computationally efficient use 
of sparse activations. Comprehensively validated on 
benchmark audio datasets and deployed to two antipodal 
hardware platforms; Intel Loihi and ARM Cortex-M7, the 
model is shown to have a high level of accuracy (92.7%), 
extremely low power consumption (<5mW) and a low-
latency response (<20ms) justifying acceptability to the 
resource-limited environment.

The important contributions of the study are:

•	 Design of a spike-encoded audio processing 
pipeline that can be used in an embedded 
neuromorphic inference.

•	 Use of real-time SNN applications to neuromorphic 
and general-purpose microcontroller.

•	 A detailed performance analysis where much 
power and latency boost have been achieved 
compared to classical CNN models.

Such findings verify that neuromorphic computing 
represented by SNNs can provide scalable and efficient 
acoustic event detection with next-gen applications of 
edge-AI.

Future studies will be done to examine:

•	 Adaptive, lifelong inference mechanisms on-line 
(e.g. spike-timing-dependent plasticity)

•	 Multiple-source data fusion (e.g. audio fused 
with or with the vision or with the vibration),

And hardware-conscious training methods to design time 
optimize SNNs architectures during training.
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