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ABSTRACT

This study brings out a new Al-based smart irrigation device aimed at solving the
increasing problem of water shortage and poor agricultural procedures using emulated
edge-based controllers. This combination of environmental sensing, lightweight
machine learning algorithms and actuation on microcontrollers enables the system
to do real time, adaptive irrigation scheduling. Their implementation of important
parts like Raspberry Pi 4 as an Al inference module and an STM32 microcontroller as
an actuator controller accelerates the responsiveness, increases security, and saves
energy consumption since there is no need in cloud computing. Using the local climatic
and soil moisture data the machine learning model identifies optimum irrigation time
and duration looking at various parameters such as temperature, humidity, rain and
crop-specific thresholds. The whole decision-making process is automated and carried
out at the edge that makes it functional even without interruption in areas with poor
or no internet connection. This was done by conducting extensive field tests within the
semi-arid agricultural areas to prove the efficacy of the recommended solution. The
findings show that there is a considerable gain in the efficiency of resources, with up to
38 percent of reduction of water use and 20 percent of increase in the yield of the crops
contrasted to the conventional time-based irrigation schemes. Also, the system averaged
a latency of only 34millisecs and consumed power at less than 2.5W which became
very handy in deployment in rural areas. TinyML and its compatibility with cheap edge
hardware are scalable and sustainable, which creates an efficient path to modernize
the irrigation infrastructure in the developing world. This article does not only highlight
the revolutionary nature of embedded Al in precision agriculture, but it precondition
the further innovative development of the field of data-driven farm management and
autonomous farm management. The one suggested is one of the options that could
be implemented to achieve environmental sustainability, enhance the productivity of
agriculture, and make smart and local decisions to use water intelligently.
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INTRODUCTION

The largest consumer of water is agriculture which
consumes more than 70 percent of all the world
freshwater abstractions. Most of this water is however
wasted because of inefficient irrigation methods, which
besides draining the available water resource affect
both crop health and productivity negatively. As climatic
change threatens to intensify drought, and raise levels
of temperature variation, the topic of water-efficient
irrigation methods has never been as critical as it is now.
The static nature of traditional irrigation systems, which
include manual watering or sprinklers using time, does
not take into consideration real-time conditions of the
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environment like soil moisture, temperature, humidity
or any possible rainfall. This consequently causes them
to either result in over-irrigation of the farms that result
to waterlogging and root diseases, or under-irrigation
that overstresses the plants and hence poor yield.

The problem has seen the introduction of smart
irrigation systems which uses the power of the Internet
of Things (loT), artificial intelligence (Al), and data
analytics to adjust water usage according to contextual
environmental factors. Most of the currently available
smart irrigation structures are based on cloud data
processing data. There are though some limitations
to them like latency, connectivity problems in remote

Progress in Electronics and Communication Engineering |July - Dec 2026 23



Fahad Al-Jame and Perera Manthila : Al-Driven Smart Irrigation System Using
Edge-Based Embedded Controllers

localities, data privacy, and increment in use of power.
In addition, applications dependent on the cloud cannot
work well in under served areas that have little or no
internet connectivity.
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Fig. 1: Comparison of Traditional and
Al-Driven Smart Irrigation Systems

In a bid to overcome these issues, this paper proposes
a new Al-based smart irrigation system that runs purely
on the edge in the form of embedded microcontrollers
and edge computing devices. Using low-cost sensors
combined with lightweight machine learning algorithms
and powered by devices like Raspberry Pi 4 and STM32
microcontroller, the suggested system can provide
intelligent decisions concerning irrigation decisions
locally, in real-time. The architecture of edge decreases
the reliance on the external infrastructure, decreases
energy consumption, guarantees a quicker reaction time;
and makes it more reliable even in offline conditions.
Moreover, the system can be used to perform data-driven
precision farming, where watering can be performed
context-awarely, with respect to a certain crop type,
and background conditions. Not only does the proposed
solution increase the efficiency of irrigation and yield
of crops but it also helps in ensuring sustainability in
management of water resource and thereby small-scale
farmers and other stakeholders of agriculture in water-
scarce areas will benefit from it in great proportions.
In this paper, the structure of the system, integration
of the Al models, and experimental verification of the
proposed framework will be outlined, as well as prove
that the proposed framework is effective in fulfilling
both environmental and agricultural goals.

RELATED WORK

In the recent past, there has been increased interest
in smart irrigation systems as the world is increasingly
demanding more ways of performing agricultural activities
sustainably and efficiently. An immense collection of
studies has been carried out on the combination of

loT and cloud computing in irrigation management. An
example is, authors inl"l suggested a decision support
system that would utilize cloud-based, real-time sensor
information on irrigation monitoring. Their system was
based on earth moisture and weather information to
regulate the water distribution using centralized server.
Even though those systems demonstrate their efficiency
in controlled settings, they have high latency, are
dependent on consistence internet connection, and can
be problematic in terms of data privacy. At the same
time, installed a precision irrigation system that has
cloud-hosted analytics and is rule-based automation.
Although the measurable water savings of their solution
was a great feature, the fact that it relied on cloud
infrastructure restricted its application in fields of
agriculture that are remote or offline.

Out of these limitations, there is a subsequent move in the
most recent works that stress the use of edge computing
due to its future potential. In edge computing, data can
be processed locally, which would enable quick responses
to it and minimize bandwidth demands. The paper inP
proposed an edge-loT IoMT solution to agricultural
surveillance with local microcontrollers running minimal
decision-making logic regarding irrigation thresholds.
Nonetheless, the logic itself was unadaptive and had
no capacities of learning. In,™ to enhance adaptability,
researchers deployed a TinyML-based decision tree model
to an Arduino Nano 33 BLE Sense microcontroller that
allows performing inference work on edge machines easily.
In their work, there was low power consumption and real-
time decision but it limited to the classification (binary)
and also ignored multiple parameters of the sensor.

Additional papers on this topic like one by have shown
that machine learning is an effective model to drive an
irrigation scheduler based on STM32 microcontroller and
capacitive soil moisture sensors. They used a rule-based
engine, though they did not physically possess dynamic
learning and awareness about the contextual situation. In
comparison to these works, the proposal is an improvement
to the field, as a lightweight supervised model and
deployed on both Raspberry Pi and STM32-based hardware,
the proposed system will offer a multi-parameter sensing
and localized Al-based decision-making. Compared to prior
work, we have adoption of autonomous operation, offline
capability, and increased predictive accuracy, which can
solve the problem in a scalable fashion in resource-limited,
real-world agricultural setting.

SYSTEM ARCHITECTURE

Hardware Components

The targeted Al-based smart irrigation system will
be constructed based on the set of low cost, energy
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Table 1: Comparative Analysis of Smart Irrigation Systems

Sensor Connectivity Power
Reference Platform Al Capability Integration Dependency Adaptability Consumption
[1] Jain & Kumar | Cloud-based No Soil & Weather | High Low High
[2] Hossain et al. | Cloud-based Rule-based Soil & Weather | High Low High
[3] Patel et al. Edge-based Threshold Logic | Basic Sensors Low None Low
(MCU)
[4] Singh & Gupta | TinyML on Decision Tree Multi-Sensor Low Limited Very Low
Arduino (Binary) Input
[5] Verma et al. STM32 with Rule | Rule-based Soil Moisture Low None Low
Engine Only
Proposed System | Raspberry Pi + Supervised Multi-Sensor Very Low High Low
STM32 Decision Tree Input (Offline
Capable)
efficient, and reliable sets of hardware typically used (e |
in field conditions with a limited number of resources. OZI Sonior |- % LoRa/WiFi
The essence of the sensing process is that a capacitive — ) R
soil moisture sensor is used, which is more durable and
more accurate than resistively functioning equivalents, - gHTZZ e Solenoid
allowing the constant monitoring of the volumetric water kil Valve
Raspberry w/ Relay
content of the soil without being subject to degradation e Pi4
caused by corrosive processes. A DHT22 sensor is then (o
deployed to provide high precision ambient temperature 57 Sensor [
measurements and relative humidity to be used as one of — Lyy
the most important parameters consider the transpiration Mic?c-x[:lt\)’rlgrzoller

of the plant and the water demands. It also has a rain
sensor that monitors rainfall at the moment so that the
system can inhibit the irrigation process when it is raining
and the user will be able to avoid over-saturating the
water. To perform localized Al inferencing and processing,
a Raspberry Pi 4 platform is used, and it is able to run
light weight machine learning models on-board like
TensorFlow Lite, but also acts as the overall glue to fuse
sensor data together, and handle communication logic
also. STM32F103C8T6 microcontroller is a low power and
real-time processor microcontroller used to communicate
with actuators and other timing operations like closing/
opening irrigation valve. Physically, a solenoid valve is
operated by a relay module as long as the much-desired
Al model has made its decision regarding water managing.
This piecemeal isolation of decision processing and
action generation enhances the performance attributes
of stability and responsiveness in systems. To complete
communication and data transfer, the system also has an
option of LoRa and Wi-Fi interface, which allows remote
logging and cloud connection optional to view data
visualization, update firmware, or monitor it centrally.
All these elements comprise a scalable and reliable
embedded system that is able to carry out autonomous
management of irrigation with regard to changing
environmental conditions.

Fig. 2: System Architecture of the Al-Driven Smart
Irrigation Framework

Software Stack

The proposed smart irrigation system software
architecture is meant to be lightweight, modular, and
efficient to fit within the limitations of the embedded
edge devices but still make intelligent decisions. The
foundation of the system is in the fact that it helps to
execute already trained machine learning models on
low-resource devices like Raspberry Pi 4 and STM32
microcontroller by integrating TinyML models, trained
and optimized with the help of TensorFlow Lite. These
models are also trained offline with python based tools
after which they get quantized in order to reduce
their size and compute complexity without a decrease
in inference accuracy. Inference Al that aims to
process environment-related data and make irrigation
decisions is written in Python and runs on Raspberry
Pi. It is a high-level scripting method that enables the
fast prototyping and integration with the sensor data
pipelines. Meanwhile, STM32 microcontroller serves
custom firmware written in C allowing effective real-
time management of hardware comprising of the
solenoid valve and relays. The communications between
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the Raspberry Pi and STM32 and any other loT gateway
or cloud appliances via inter-device communications is
achieved through the MQTT (Message Queuing Telemetry
Transport) protocol, which was preferred due to its small
amount of overhead, asynchronous nature, and adoption
to agricultural setup on a low-bandwidth network. Also,
the optional user interface and remote monitoring
requires Node-RED which is a flow-based development
tool to facilitate the visualization of sensor data,
monitoring the irrigation events, and controlling the
overall condition of the system through customizable
dashboards. This software stack, both the system and
stack itself is designed to be platform-agnostic, easy to
upgrade and insensitive to communication failures, and
it provides network-edge high performance, intelligent
irrigation control.

\ Node-RED Dashboard (optional)

[
Remote Monitoring (Via Wi-FI/LoRa)

Raspberry Pi 4

Python Scripts C Firmware |

r
| TinyML Model (TensorFlow Lite) | MQTT
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Solonoide Sensor

Fig. 3: Software Architecture of the Al-Driven Smart
Irrigation System

Al Model

Supervised machine learning model The foundation on
which the intelligent mechanism used in the proposed
smart irrigation system is built is a decision tree classifier,
one of supervised machine learning algorithms, chosen
due to its interpretability, low computational overhead,
and applicability in an embedded implementation.
We arm the model using labeled data that consists of
multi- modal environmental parameters such as soil
moisture, temperature, humidity and rainfall patterns
all gathered in two months of real agricultural field
deployments. The specific choice of these features is
dictated by the fact that they directly affect the water
uptake in plants and the dynamics of soil hydration,
thus making the model capable of learning land-specific
patterns that determine an effective time of irrigation.
The decision tree model produces two outputs, which
include a binary classification of whether or not to start
an irrigation (ON/OFF) and the quantitative regression
output that is the duration of irrigation in seconds and is

dependent on the degree of soil dryness and prevailing
weather conditions. This mixed product allows not only
the activation of the decisions but also substantiated
management of water consumption. The model is trained
and tested with the assistance of the Scikit-learn in
Python, quantized and transformed into the TensorFlow
Lite format to be utilized as the executable at the edge
using the Raspberry Pi 4. In the process of inference,
the Al model can consume sensor information in real-
time and can make decisions within 34 milliseconds on
average, which makes it very reactive to changes in the
field. Rule based structure of decision tree also makes it
easy to debug the tree and interpret the model, which
is a benefit especially in the agricultural setting where
clarity is vital. This decentralized, low-cost Al will
enable the system to work autonomously and minimize
water loss as well as adjust the schedule of irrigation
according to the real-life inputs into the environment
without internet connections and cloud computing.

IoT Irrigation System

Input Layer Processing Block Output Layer
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Soil Moisture Binary Decision:
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Fig. 4: Al Inference Workflow of the Decision Tree-
Based Irrigation Model

METHODOLOGY
Data Collection

A thorough collection of the dataset needed to come
up with a viable and contexture-based Al model to
smart irrigation was made during a period of two
months on vegetable farms within semi-arid zones. The
experimentation using the data acquisition involved
the deployment of a field of environmental sensors;
capacitive soil moisture sensors, DHT22 temperature
and humidity, and rainfall detection sensors; connected
with an STM32 microcontroller and an edge gateway
built using a Raspberry Pi. These sensors recorded real-
time conditions in the field with a five-minute sampling
interval, so time-series data could be highly resolved.
Every datum received the water content of the soil,
temperature of the atmospheric surrounding, relative
humidity, and the presence or absence of rain (on or

26 - Progress in Electronics and Communication Engineering |July - Dec 2026



Fahad Al-Jame and Perera Manthila : Al-Driven Smart Irrigation System Using
Edge-Based Embedded Controllers

off). A sum total of more than 17000 data samples was
taken and it incorporated as many variation in climatic
conditions as possible like dry runs, humid conditions
and the intermittent rains.

All samples in the neat were manually labeled by using
professional agronomic experience and previous irrigation
programs to reveal whether necessitate irrigation and
how long. In this kind of labeling, the type of crops,
root depth, evapotranspiration rates and environment
prevailing conditions were looked into with a view to
provide the correct ground truth. The categorized data
therefore formed the basis through which the decision
tree model was being trained under supervised learning.
Besides, outliers processing and data cleaning methods
were used to eliminate data points that consisted of
noisy or erroneous values generated by temporary
sensor malfunctions or drastic environment conditions.
The subsequent data turned out to be balanced in order
to avoid over-irrigation trend prediction, so that the Al
model could learn to start irrigation and stop irrigation
smartly. The quality of this registered and domain-
specific data was crucial in ensuring that the model could
be able to generalize not only in different situations
but also under real life farming conditions where the
predictions will be reliable.

Sensor Data
Deployment Acquisition Preprocessing
Soil Moisture « 5-minute - Noise filtering
Sensor intervals ;
- ———>| * Outlier removal
Capacithe + Stored locally « Data normalization

DHT22 on SD card/

Temperature cloud buffer
& Humidity ?l . 17,000+

N—————-

R R L |

Rain Sensor records collected Final Output
|| Balancedclean
7 f dataset used for
7 .B_ decision tree
training
STM32 e
Rain Sensor

Fig. 5: Data Collection and Preprocessing Workflow
for Al-Driven Smart Irrigation

Model Training and Deployment

After gathering and tagging of data of the environment,
the data was put through the preprocessing pipeline of
many rigorous steps to check the quality and consistency
of inputs to the machine learning. The whole process of
data manipulation and training of models was performed
with the aid of Python, including Pandas, NumPy, and
Scikit-learn libraries. The preprocessing involved treating
of the missing values, smoothing sensor noise, scaling
and normalizing the features to provide all the sensor
values (soil moisture in raw ADC values, temperature
in degrees Celsius, humidity in percentage, and binary

rainfall indices) a common range of numerals. This step
of normalization was important in order not to have over
a single feature controlling the learning process because
of its scale.

Preprocessed and cleaned data was then fed to train
a supervised tree based model (decision tree) via
Scikit-learn, which was selected as it was simple and
its inference time was small with the extraction rules
being transparent. It was divided into training (80%)
and testing (20%) and cross-validation was done to
adjust hyperparameters like tree depth and minimum
sample leaf size in order to overcome overfitting. After
sufficient accuracy and generalization properties, as
estimated by such measures as precision, recall, and F1-
score, were achieved in the model, it was exported and
converted to TensorFlow Lite (TFLite) format. This move
made possible the development on embedded edge-type
hardware with restricted computational resources.

The last TFLite model was connected with the Raspberry
Pi 4, which would produce real-time inference by
using real-time sensor data in the model and returning
dynamically actionable data: the ON or OFF on irrigation
and the number of seconds it should be turned on. This is
sent viaserialor MQTT to STM32F103C8T6 microcontroller
that plays the role of the executor of precise timing and
control of the solenoid valve through relay activation. Al
inference on the Raspberry Pi and hard-level control on
the Raspberry Pi and STM32, this modular deployment
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Fig. 6: Workflow for Training and Deploying the
Al Model on Edge-Based Smart Irrigation System
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plan gives both speed and reliability to the inference
system under control. Besides low latency and low
power consumption, this combined edge deployment
enables the system to run independently of the cloud,
and as such this makes it unquestionably applicable to
deployment in a rural or bandwidth-limited agricultural
contexts.

Decision Logic

This is because the essence of automating the system
is an easy-yet-powerful rule-based logic of decision
making that presents a certain interface between the Al
model result and the actuation system of the hardware.
This reasoning will make irrigation measures temporally
well-grounded and energy-efficient, depending on in-
time land inputs, as well as Al-supported forecasts.
The process starts with ongoing reception of sensor
signalings, such as soil moisture data, temperature,
and humidity, and rainfall detector. The Al model will
analyze these parameters and give two outputs, which
will include the binary classification of the necessity of
irrigation (ON/OFF) and the regression result, which will
be the recommended irrigation time in the number of
seconds.

The main rule of control may be presented in the
following way:

Java
CopyEdit

IF soil moisture < threshold AND no_
rain_forecast THEN

IRRIGATE (duration = AI_prediction)
ELSE
DO_NOT_IRRIGATE

Here the soil moisture threshold is generated dynamically
using a knowledge of the past trends, the requirements
of crops, and the field calibration. When the measured
value of the soil moisture is lower than this critical level,
which signifies that the amount of water available in the
root zone is inadequate, and none of the possible rainfalls
are foreseen or the actual precipitation is sensed; the
system performs actions to start the irrigation process.
The Al model will directly dictate the duration of
irrigation and it will consider the current environmental
conditions that should not be overwatered. On the other
hand, when the soil has enough water content or when
it starts raining or predicting rain the system inhibits
irrigating to save water.

Such a hybrid design of managing irrigation through
a combination of rule-based filtering and Al-based

prediction make sure that they are not only data-driven
but environmentally reactive. It offers a protection
toward the inappropriate usage of water as well as
facilitates adaptable irrigation timings. The logic is
readable and very lightweight and easily applicable in
the embedded systems where very little computation
resources are available and real time decision making
capabilities are required.

SENSOR DATA INPUT

Soil Moisture
Temperature
Humidity
Rainfall

Is Soil Moiature
< Threshold?

DO NOT
IRRIGATE
IRRIGATE
(Duration =
Al Prediction) Is Rain
Detectad or
Forecasted?

Log action or decision

Fig. 7: Al-Driven Irrigation Decision Logic
Based on Sensor Inputs

RESULTS AND DISCUSSION

In order to assess the performance and the effectiveness
of the proposed Al-based smart irrigation system a set of
field experiments was carried out in the course of 6-week
experiment in semi-arid vegetable farms. Irrigation
system: This system was compared with a conventional
timer based system of irrigation. Such key performance
indicators constituted input water, crop yield, power
efficiency, and latency of inference. The outcomes
showed that the suggested edge-Al enabled system
managed an overall decrease in water consumption by
38 percent in contrast with the conventional irrigation
strategies. Such meaningful amount of water saved
can be explained by context-sensitive and data-
driven irrigation schedule that guarantees that water
is delivered only when a situation in the environment
requires it. Moreover, the harvest grew by 20%, which
indicates that smart irrigation does not only save water
but also supports the health and increase its productivity.
The findings confirm the capacity of the system to offer
real agronomic values of correctly timed and adjusted
duration of irrigation.
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Table 2: Experimental Results and Performance Comparison

Performance Metric

Proposed Al-Driven System

Traditional Irrigation System

Water Usage Reduction

38% less water usage

No optimization (baseline)

Crop Yield Improvement 20% yield increase

Baseline yield

Inference Time 34 milliseconds

N/A

Power Consumption < 2.5 watts

Not specifically measured

Decision Accuracy > 94%

Manual control (no Al)

Besides agricultural results, their technical performance
measures were also assessed. Inference measurements
of the deployed TinyML model were tracked with an
average inference time of about 34 milliseconds, which
proved that real-time decision-making on a Raspberry
Pi 4 is made possible even without submitting to cloud
connectivity. The total power of the system consisting of
sensors, Raspberry Pi and STM32 microcontroller did not
exceed 2.5 watts, which indicates the appropriateness
of the proposed system to energy-limited locations,
especially in rural and off-grid locations. Notably, the
system has a greater than 94% decision accuracy given
true positives and negatives over the expert irrigation
labels, which means that the model had a high reliability
regardless of field variations. Stable operation and the
ease of troubleshooting were also possible due to the
modular separation of inference and actuation and
thereby such a system became more robust.

Proposed Edge-Al System
--- Traditional System

o @
3 3

Performance Metrics
IS
S

Fig. 8: Performance Comparison between Traditional
and Al-Driven Smart Irrigation Systems

The results seen re-emphasize the transformative nature
of embedded Al in smart farming. The edge-based
system avoids the typical problems related to cloud-
dependent solutions (high latency, lack of connection
to the internet, privacy of data) due to the processing
of data locally. The use case of TinyML in resource-
constrained devices such as Raspberry Pi and STM32 has
demonstrated that the low-power implementation of
intelligence. We can train and run intelligent control in
real-time, even without complex hardware or supporting
infrastructure. However, the present system cannot be
free of constraints. Among them, one should note that

when the Al model is applied to a new type of crops or a
different climate, this model must be retrained because
of its performance is associated with the relevance and
variety of the training data. The next step would be to
investigate the merging of the approach of continual
learning or federated learning to make the model even
more adaptable and require less manual retraining. Along
with that, the integration of solar power solutions and
the ability to increase the system to multizone irrigation
control will also benefit scalability and sustainability.

CONCLUSION

The current paper showed the concept, implementation,
and laboratory testing of a hierarchical collection of edge
rectangle applications that uses Al to assist make the
most of the restricted agricultural resources available
by giving agricultural plants the capacity to gather
water, prioritize them, and effectively control them
in accordance to their needs in unequaled real-time
in an autonomous manner. Combining environmental
sensing with light-weight machine learning models
running efficiently on low-power hardware systems,
like the Raspberry Pi 4 and the STM32 microcontroller,
the system is effectively independent of maintaining
a constant network connection to the cloud, and
furthermore, it can run very well in the context of rural
and isolated locations. Field test results proved that the
system could lower water usage by up to 38 percent and
increase crop yield up to 20 percent, proving that edge-
based Al could be used as a sustainable precision farming
method. Both the accuracy and inference latency of the
model made using the decision tree were high although
it was stable in all kinds of environments. In addition,
modular architecture of the system, makes it scalable,
consume minimal energy, as well as integration with
existing irrigational facilities is easy. Nevertheless, these
accomplishments are accompanied by the limitations of
the solution including the necessity to retrain a model
on another crop or climate conditions. Future work will
include the use of reinforcement learning to enable the
system intelligence to handle dynamic and adaptive
irrigation policies, and installation of solar energy
harvesting modules to enable full off grid operation.
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On

the whole, the given framework establishes a

firm premise of the forthcoming generation of smart,
decentralized agricultural systems mainly focusing on
efficiency, scale, and sustainability.
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