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ABSTRACT

Cyber-Physical Energy Infrastructures (CPEls) are becoming more complex and
networked, and therefore there is an increased risk of failures occurring, especially
the unexpected ones, thus predictive fault diagnosis becomes imperative to assure
reliability and continuity of operations. Conventional methods of diagnosis are based
on batch analysis and off-line-work and are exceedingly inadequate to deliver speedily
and rapidly accessible understanding to make appropriate real-time decision-making in
transient energy arrangements. The study offers a real-time streaming analytics solution
that allows the early identification and forecast of faults in CPEIls that involve real-time
processing of data streams received by various sources of heterogeneous data, including
phasor measurement units (PMUs), smart meters, and SCADAs. It is a framework that
incorporates edge computing, distributed stream processing (Apache Kafka and Apache
Flink), light machine learning (Long Short-Term Memory (LSTM) networks and Random
Forest classifiers). Edge preprocessing of real-time data is done on edge, and predictive
models are updated on the fly to enable low latency anomaly detection and fault
classification. It was verified through a simulated 33-bus IEEE test network with injected
faults achieving sub-second fault prediction accuracy of up to 96.4 percent. The system
is also scalable and fault tolerant when data loads and edge deployment scenarios
change. Such findings reveal that the given architecture would work effectively and is
scalable to the predictive fault diagnosis of CPEls, contributing to the resilience of the
grid and allowing proactive maintenance approaches in intelligent energy management
systems.
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INTRODUCTION

Modern energy systems being highly interconnected and
intelligent platforms have resulted into the emergence
of Cyber-Physical Energy Infrastructures (CPEls)
where physical devices e.g. transformers, substation
and distributed energy resources are tightly coupled
with computing and communication capabilities. The
combination of these infrastructures forms the backbone
of smart grids, which allows real time management of
the energy generation, distribution, and consumption
particularly as the renewable energy sources are
increasingly being incorporated.

This, however, is not the case as CPEls increase in
complexity and size, making them susceptible to
operations anomalies and unforeseen component
failures. Unless identified timely, these failures may
run through the system cascading into power cuts,
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equipment damage and service non-availability. Thus,
fault detection and predictive maintenance have
played a critical role in the guaranteeing reliability of
the systems, sustainability, and safety of the energy
networks.Regardless of the development in monitoring
and diagnostics, most available solutions are based on
the methods of a batch-processing type of data analysis,
which treats existing data retrospectively. Although they
perform well in terms of hindsight, these techniques are
poor in real-time situations. They are prone to delays in
response and low flexibility to react swiftly to changing
operation conditions, typical to decentralized and
renewables-based energy grids.

This increased disparity between data collection rate and
the decision-making performance inspires the demand of
a real-time, adaptive architecture capable of processing
real time data streams and making instantaneous
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prediction in the event of fault. The emerging solution
is streaming analytics a technology that encompasses
ongoing computation on incoming data. Used together
with the edge computing, it lowers the latency further
by carrying out the computations nearer to the source of
data. To add to this, it is possible to incorporate machine
learning (ML) into this pipeline to allow the systems to
learn of patterns of failure and automatically initiate
prevention measures.

This paper will propose a real-time streaming analytics
framework of predictive fault diagnosis using Cyber-
Physical Energy Infrastructures (CPEls). The suggested
framework has the capability of managing the high-
velocity heterogenous data, produced by the elements
of energy infrastructure e.g. phasor measurement units
(PMUs), smart meters and SCADA systems. It has an built-
in real time stream processing pipeline that can extract
data continuously and analyze it to detect a possible
fault early. In order to make precise and low latency
predictions, minimal and light machine learning models,
such as Long Short-Term Memory (LSTM) networks and
Random Forest classifiers are used to perform on-the-
fly anomaly diagnosis and fault classification. The
architecture uses an edge computing execution model
that runs information near its source and considerably
diminishes the decision latency and enhances the
responsiveness of the system. To verify the efficacy of
the proposed solution, the proposed solution is simulated
on a simulated IEEE 33-bus energy network of energy
distribution network where it shows better accuracy of
fault prediction, sub-seconds latency and highly scaled
down in a realistic operating environment. This research
fills a very important gap between data collection and
real-time choice in energy systems by incorporating
streaming analytics, edge intelligence, and predictive
modelling, and thus brings in the creation of a more
resilient, adaptive, and intelligent energy infrastructure.

RELATED WORK

The issue of fault diagnosis in energy systems has been
the center of numerous studies since the stability
of the grid and maintenance of power supply are of
great importance. Common fault detecting methods
include rule-based fault detection, signal thresholding
and statistical pattern fault detection. An example of
the model based approaches would employ system
equations and observer models to detect inconsistencies
that are used as evidence of a fault!'l and the data based
approaches through Fault Detection such as Principal
Component Analysis (PCA), Support Vector Machines
(SVM), and Artificial Neural Networks (ANNs) have also
gained popularity in detecting anomalies in measurement

data.? 31 These techniques are effective at fixed
points, but are not the case in real-time applications
in contemporary cyber-physical energy infrastructures
(CPEls), as they are mostly based on the assumption of
offline processing.

Industry 4.0 and the Industrial Internet of Things (lloT)
resulted in a surge of the volume, velocity, and variety
of the sensor data that can be used to monitor critical
infrastructure. This has opened an avenue of streaming
data analytics to process time-series data in a running
state, as opposed to batches. Apache Kafka, Apache Flink
and Apache Storm are some of the many frameworks that
have been used in industrial settings to enable constant,
low-latency data analysis that can be applied to monitor
processes like factory troubleshooting and environmental
sensing.[4, 5] The use of these frameworks in the energy
sphere is however fairly unexploited, especially in
combination with the real-time predictive maintenance
approaches.

The predictive maintenance (PdM) has been developing
to take advantage of machine learning and artificial
intelligence to perform fault prognosis. Such methods
as LSTM networks and ensemble classifiers have
demonstrated their potential in the process of learning
time-based patterns and predicting the degradation of
equipment.® Nevertheless, the majority of these systems
continue to rely heavily on cloud-based reticulations and
flop-learning systems that introduce delays and fail to
be adaptive towards unexpected developments to the
system. In addition to this, several PdM systems do not
give regard to bandwidth, latency or calculation limits
in edge settings.

To overcome these shortcomings, there is a new
development involving combining edge computing and
real-time Al. Edge analytics allows processing of data
that is near the source that leads to minimal latency
and the weakness of centralized cloud infrastructure.
As an example, there have been proposed, lightweight
Al models that can be deployed on an embedded system
to detect faults in wind turbines and substations in real-
time.l Likewise, adaptive online learning algorithms
have also been presented as a possibility to constantly
update models with recent information without
entire retraining, which is in line with scalability and
responsiveness.”) Nevertheless, there are still issues of
tradeoffs between model and computational accuracy,
real-time guarantees and dynamic CPEls.

The emerging trends in predictive maintenance of
energy systems have put more efforts into the aspect
of real-time processing, edge intelligence, and privacy-
preserving learning methods. To give an example, Zhang
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et al.l' presented a decentralized approach to edge
computing via federated LSTM-based, which is used to
monitor smart grid asset that would allow predictive fault
identification at multiple substations with data privacy
obtained by avoiding centralized training. Based on the
advantages of hybrid deep learning, Alfandi et al.l'!
proposed a real-time CNN-LSTM model that has the
potential to classify the type of fault that occurs in a
distribution grid with sufficient accuracy and little
latency using loT-enabled phasor measurement units
(PMUs). In addition to these algorithmic advancements
Rahman et al.l'Z proposed StreamAnalytics-Energy, a
scalable tool executing Apache Flink that can be used
to efficiently detect faults in high-throughput smart grid
systems. Their study confirms that the stream processing
architecture used to be applied to the stream processing
frameworks used in energy systems, especially when
dealing with high velocity sensor data in real time.
All these studies demonstrate the necessity to unite
distributed intelligence, adaptive ML models, and stream-
oriented processing, which are addressed jointly in the
proposed framework presented in the current paper.

Overall, it is clear that effort has been put in terms of
fault diagnosis and predictive analytics as well as real
time data processing, but the missing component is
whether there are functional frameworks integrating
sleeping analytics, edge intelligence, and machine
learning to predict faults in real time in an energy
system. The longitudinal study mentioned above focuses
on this gap by suggesting a single architecture, optimized
to the needs of CPEls.

SYSTEM ARCHITECTURE

The selected prototype of the system design aims to
facilitate the analysis of reformed fault diagnosis in
Cyber-Physical Energy Infrastructures (CPEls) using
cross-substances of information, edge analytics, stream
processing, and prescience ordeal modeling. The
architecture has five central layers as follows: Data
Sources, Streaming Layer, Edge Gateway, Prediction
Engine and Cloud Backend. Figure 1 demonstrates end-
to-end architecture of the proposed system, including
data acquisition and real-time fault prediction through
the cloud-based model management.

Data Sources

This system is anchored on high-resolution and time-
coordinated data streams collected on different
subsystems in the energy infrastructure. Smart meters
give sub-meter details of energy use patterns, and
voltage, frequency, and load conditions at customer
terminals. Phasor Measurement Units (PMUs) provide
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Fig. 1: System Architecture of Real-Time Streaming
Analytics Framework for Fault Diagnosis in CPEls
System architecture of the real-time streaming
analytics framework for predictive fault diagnosis in
cyber-physical energy infrastructures.

synchronized, high frequency measurements of voltage
and current phasors throughout the grid, the source of
real-time monitoring of transient phenomena and grid
stability. Moreover, the Supervisory Control and Data
Acquisition (SCADA) systems provide command to control,
status change information, and telemetry commands of
substations, transformers and circuit breakers, so as
to monitor and control the power network completely.
These sources collect and provide data at different
sampling rates and data output formats that require
an efficient and flexible data ingestion, standardization
and time-stamp alignment to offer us primordial data
accuracy in downstream processing and analytics.

Streaming Layer

A distributed streaming layer that runs on an industry-
standard framework like Apache Kafka and Apache Flink
has been deployed to enable real-time data ingesting and
processing in the architecture. The messaging backbone
is the Apache Kafka which provides high-throughput,
fault-tolerant, and scalable data ingestion capability.
It allows managing its streams in a modular way, i.e.
dedicating the Kafka topics to individual data types,
e.g. PMU, SCADA, and smart meter data. Apache Flink,
in its turn, serves as the real-time stream processor,
and handles operations such as windowed aggregations,
filtering, statistical calculations, and event correlation.
Its low-latency stateful process capabilities qualify it as
a good choice to deal with anomaly detection in time-
series energy-related data. This streaming layer helps in
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making sure that the incoming data that is heterogenous
is converted and processed in almost real-time and
later on sent over to the edge gateway and analytics
modules so that further analysis and prediction could be
developed.

Gateway Edge

The edge computing layer is essential in decreasing
latency and easing bandwidth loads on core servers due
to operation of data closer to its source. This is the layer
which includes embedded processors or microservers
installed in close proximity of important data sources
e.g. substations and microgrids. It undertakes a number
of necessary operations in order to prepare the data to
be analyzed in real time. The preprocessing in real time
incorporates noise straining, missing worth completion,
time synchronization, and normalization of fork
sensor information as needed to forestall quality and
dependability of information. The feature extraction
procedures are used to extrapolate significant statistical
parameters, including root mean square (RMS), standard
deviation, frequencies specialities through Fast Fourier
Transform (FFT), as well as the domain-related measures
like frequency version and harmonic distortion. In
further saving the efficiency of communication, the data
compression methods like Principal Component Analysis
(PCA) and compression algorithms are used so that
only the generalized data and relevant information is
sent to the upper layers of the structure. This localised
processing ensures that the system becomes highly
responsive and is able to diagnose the faults on time.

Prediction EngineBottom of Form

The core of the architecture is the prediction engine
that realizes the real-time anomaly detection and the
ability to classify faults due to the combination of
machine learning (ML) and deep learning (DL) models.
Of the available types of models, Long Short-Time
Memory (LSTM) networks are specially adapted to
processing of sequential data, as LSTMs model time-
based dependencies and trends in streaming sensor
data. Moreover, to ensure the quality of fault coarsening
Random Forest classifiers is trained since it can be
very robust to noise and capable of solving imbalanced
datasets. The training plan of the prediction engine is
hybrid: offline training of the initial models is performed
with the use of the labeled past data on the cloud and
the system can learn the patterns of the faults that are
representative. Trained, such models execute on edge or
near-edge devices to perform inference in real-time on
streaming data. When an abnormal activity is detected,
the prediction engine will instantaneously raises the

alert and allows proactive maintenance decisions to be
made, as well as it allows timely fault localization in the
energy infrastructure.

Cloud Backend

The cloud backend is the control and analytics core of
the system, where the long-term learning, centralized
coordination and visualization of the system are
supported. It performs model training and management
and retraining it periodically with aggregated both
historical and streaming data to increase predictive
accuracy and adjust to changing fault patterns. To handle
this type of load, a scalable data lake architecture is
leveraged where the large amount of historical sensor
data is stored, is audit-able and capable of regulatory
compliance as well as batch analytics. The cloud backend
will also support interactive visualization dashboards
built with apps such as Grafana or Kibana, to give real-
time feedback on the current status of the system, trends
of the operations, and fault prediction warnings to help
human operators. Also, the backend facilitates model
versioning, deployment process, and drift monitoring to
make sure that production models are up to date and
sensitive to dynamic system behavior. The latter layer is
significant in terms of ensuring soundness, flexibility, and
interpretability of the whole predictive analytics model.

METHODOLOGY

The presented framework of real-time streaming
analytics is developed and validated within a systematic
approach providing such areas as feature engineering,
model training, performance assessment, and
deployment simulation. Every phase is developed in such
a way that the system can be able to make robust and
low-latency fault prediction in multidimensional data-
vast systems like cyber-physical energy infrastructures
(CPEls).

Feature Engineering

Raw streaming data cannot be directly used to explain
details and this is why the extraction of valid information
is done through a complete processing of feature
engineering exercise at edge and stream processing
layers. It then starts by calculating the rolling averages
calculations that include moving averages, exponential
moving averages etc. to smooth the measured data,
decrease the noise, and make local trends in the main
parameters such as voltage, current and frequency
more pronounced. In order to acquire the features
based on frequency, which can identify the electrical
disturbances, transforms in the frequency domain are
used (Fast Fourier Transform (FFT) and Short-Time
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Fourier Transform (STFT) ) allowing the detection of
harmonics, oscillations, and resonance modes usually
characteristic of pre-damaging faults. Also, a set
of signal entropy measures such as sample entropy,
approximate entropy is computed to estimate the level
of randomness or disorder of the time-series signals
which would be maximum in abnormal operational
states. These designed features are real-time calculated
and fed to the prediction models thus making the system
classify the fault conditions more accurately and faster.

[ Raw Streaming Data ]

:

Rolling Averages
s ¥ N
Frequency Domain
Transforms )
Signal Entropy
- J

Fig. 2: Feature Engineering Workflow
Illustrates the transformation of raw
streaming data through rolling averages, frequency
domain transforms, and signal entropy extraction for
real-time analysis.

Model Training

The proposed framework based on predictive models is
developed through the hybrid training strategy, which
is a combination of offline training steps to provide
general learning and requires updates online when
the application needs to adapt to changes. In the
offline phase, the initial models are trained by using
historical fault datasets, which are labeled instances
of short circuits, voltage sags, and equipment failure
or malfunctions. The multivariate time-series data is
captured using machine learning techniques like Random
Forest and deep learning techniques like Long Short-
Term Memory (LSTM) networks as capturing both static
and temporal patterns. There is also cross-validation and
hyperparameter tuning in order to increase the model
generalizability and accuracy. After being deployed
online learning methods increase the functionality of
these models allowing them to adapt in real time using
continuous streams of data. Adaptation Methods Methods
like sliding window retraining and mini-batch updates
enable the models to adapt to new fault signatures and
react to changing systems without retrain. The ability
to continuously learn enhances the robustness and
resilience of predictive performance of the system to

concept drift that extends to predictive performance in
dynamic and heterogeneous energy environments.

Offline Training

+ Random Forest
¢ Long Short-Term
Memory (LSTM)

Historical Pre-Trained

Model

Fault
Datasets

Online Learning

« Sliding Window
Retraining
« Mini-Batch Updates

Y
Streaming Data

Fig. 3: Model Training Pipeline
Depicts the hybrid training approach using offline
learning from historical fault data and online learning
for adaptive streaming-based updates.

Evaluation Metrics

In order to evaluate the efficiency of the proposed
system, the mixture of classification and performance
metrics will be used to estimate a level of accuracy
and responsiveness. It is measured by precision, which
defines the proportion of the number of true positive
fault predictions on all positive predictions and shows
the success of the model to oppress negative alarms.
Recall on the contrary measures the extent to which
real faults are reported correctly by the model thus
measuring how sensitive the model is to faults. A proper
balance is required to evaluate it, being particularly true
in cases where data is skewed like a case where fault

Evaluation
Metrics

Fig. 4: Evaluation Metrics Flow
Diagram Shows the sequential use of precision, recall,
and F1-score to evaluate the predictive performance of
the fault detection models.
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events are few against the norm, such that F1-score can
be considered the harmonic mean of the precision and
recall. As well as these classification measures, latency
is a life critical performance indicator, or how long it
takes the data to be acquired to the decision output.
Considering that application is real-time in nature, the
latency is tracked to be able to maintain sub-second
response times in live environment. The combination
of these measures gives a detailed evaluation of fault
detection accuracy of the system and its ability to
operate on a real-time basis.

Simulation and Deployment

The research will verify the proposed framework
against a real-life scenario using a simulation system
implemented with the IEEE 14-bus and the 33-bus test
systems that are the usual reference systems used in
power system studies. In order to simulate the realistic
operating conditions, a synthetic implementation of
different fault conditions like PAFOs and transformers/
missing phases are fed to the created grid through tools
like MATLAB/Simulink and OpenDSS. These Simulations
create long-running real time streams of data that the
system consumes in a Kafka-Flink pipeline and then
evaluates its streaming analytics and fault capability.
Deployment takes place on a hybrid system where edge
computing machines, including Raspberry Pi 4, NVIDIA
Jetson Nano are coupled with a centralized cloud server,
with which all the model training, management, and
visualization are done. The setup is made in such a
way that it resembles the conditions in the real world
which includes latency, throughputs and responsiveness

~

IEEE 14-Bus / 33-Bus
Test System

|

Ve N\
Synthetic Fault
Scenarios

!

Edge-Cloud
Architecture

!

Simulation
and
Deployment

-

Fig. 5: Simulation and Deployment Framework
Represents the validation process using IEEE test
systems, synthetic fault generation, and edge-cloud
deployment for performance assessment.

to faults at different system loads and noise intrusion.
The findings ensure that the proposed framework could
classify and identify the type of faults through high
successful detection and low additional time to classify
them, and thus demonstrate that it is efficient and
feasible to apply to real world cyber-physical energy
infrastructure cases.

RESULTS AND DISCUSSION

As a quantitative assessment of the proposed real-time
streaming analytics framework, several dimensions, such
as prediction accuracy, latency, scalability, and robust-
ness were measured utilizing IEEE 14-bus and 33-bus test
systems as synthetic fault data. The various experiments
were done with different operational environments to
determine the flexibility and performance of the system
in real-life cyber-physical energy infrastructure environ-
ments.

Accuracy of Prediction

The standard classification measures were used in
comparing the predictive performance of various machine
learning models. Long Short-Term Memory (LSTM) network
indicated 96.4% as the best in fault prediction compared to
the 93.1 mentioned in Random Forest and 89.7 percent in
Support Vector Machine (SVM). The LSTM model exhibited
better accuracies in recognition of temporal dependency
to streaming data that is essential in the early warning of
symptoms of fault conditions that can change. Precision
and recall of LSTM model was reported as 95.8% and 96.9
respectively leading to F1 of 96.3% which signifies the
capability of almost balanced fault detection without too
many false positive senses. Table 1 demonstrates that the
LSTM model has shown the highest accuracy and F1-score,
unlike Random Forest and SVM models, which have achieved
the lowest results in each measurement. And Figure 6
shows graphically that LSTM has a higher accuracy, which
proves that the use of LSTM is appropriate when working
with time-series data in real-time.

Latency Analysis

The latencies would measure between data acquisition
time to anomaly detection when on the edge device.

Table 1: Performance Metrics of ML Models for
Fault Prediction

Accuracy | Precision | Recall | F1-Score | Latency
Model (%) (%) (%) (%) (ms)
LSTM 96.4 95.8 96.9 96.3 720
Random | 93.1 92.3 94.2 93.2 680
Forest
SVM 89.7 88.5 87.6 88 790
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Fig. 6: Comparison of Prediction Accuracy
Across ML Models

The system had the latency of sub-second, the
average processing time to run LSTM model reached
720 milliseconds, and Random Forest averagely 680
milliseconds. These findings indicate that the system
can be used in real time especially in an environment
where real time intervention is needed to enhance
grid stability. Stream processing implementation using
Apache Flink allowed achieving high throughput and
consistent low-latency on the test runs. It is possible
to conclude Figure 7 that Random Forest showed just
a little bit higher latency than LSTM, but both of them
were in a sub-second range.
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Fig. 7: Inference Latency of ML Models for
Real-Time Deployment

Scalability

To assess scale, the edge nodes were slowly (10 nodes
at a time) expanded up to 50 nodes, in the simulation
mimicking a distributed sensor network in a large
graining. Its response to this load was very steady
(a 6-9% average gain in processing time) and its scalability
was able to respond reasonably well without any major

loss in responsiveness. The architecture of Kafka and
the parallel processing standard of Flink permitted the
equitable allocation of loads and throughput as the
system expanded.

Robustness

The robustness was evaluated with injection of artificial
network delay and sensor data packet drop between
transmits. The system still performed well by getting
past the recording of temporary data losses through
use of time-window buffering combined with simple
imputation methods at the edge layer. The LSTM model
is also much fault tolerant because its fault detection
accuracy barely decreased by 2.7% even when the data
was simulated to be lost to less than 10%. Furthermore,
guardians of drift induced retraining procedures once the
prevalence of the model fell below the tolerable levels,
which had an extra benefit of long-term adaptiveness.
Overall, the findings could be used to confirm the
efficacy of the suggested framework in data-intensive
settings with real-time processing. With high prediction
accuracy, low latency, with the ability to scale and
perform well under data loss or network instability, it is
possible to note that it can be used in the contemporary
cyber-physical structures of energy. The results indicate
that the application of edge intelligence and streaming
analytics have a great potential in improving reliability
and efficiency of predictive maintenance systems in
smart grids.

CONCLUSION

It proposed a real-time streaming analytics system with
predictive fault diagnosis in the Cyber-Physical Energy
Infrastructures (CPEls), from the perspective of edge
computing, stream processing, and machine learning,
in solving the low latency, high accuracy anomaly
detection problem in dynamic energy systems. The
system was measured carefully along with IEEE 14, 33-
bus test systems and showed plenty of good predictive
performance as it was able to predict the fault up to
96.4% accuracy and in sub-720 milliseconds even with
varying data overhead and with noisier environment.
The framework is able to stream heterogeneous data
efficiently in real time, identify high-value features at
the edge, and in addition, it runs lightweight machine
learning inference in an effort to stimulate proactive
maintenance plans. Its modular design, which rests on
Apache Kafka, Apache flink, edge Al platforms, was
scalable, fault-tolerant and made adaptable in real
world power systems.

In the further implementation of the framework, it is
possible to complement it with blockchain technology
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that guarantees the auditability, transparency, and
secure, tamperproof records of the events of diagnostics
in the distributed energy networks. Also, investing in the
federated learning would enable training the model in a
collaborative environment among substations, maintain
its privacy, and its compliance with regulatory conditions.
These improvements are likely to further enhance the
robustness, scalability and the applicability to the real
world to be used in the next-generation smart grid and
energy management environments.
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