Real-Time Streaming Analytics for Predictive Fault Diagnosis in Cyber-Physical Energy Infrastructures

Ishrat Z. Mukti¹, Ebadur R. Khan²

¹Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh. ²Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh.

KEYWORDS:

Streaming analytics,
Predictive fault diagnosis,
Cyber-physical energy systems, Edge
computing,
Real-time anomaly detection,
Smart grid,
machine learning

ARTICLE HISTORY:

Submitted: 03.12.2025 Revised: 10.03.2026 Accepted: 16.04.2026

https://doi.org/10.31838/ECE/03.02.03

ABSTRACT

Cyber-Physical Energy Infrastructures (CPEIs) are becoming more complex and networked, and therefore there is an increased risk of failures occurring, especially the unexpected ones, thus predictive fault diagnosis becomes imperative to assure reliability and continuity of operations. Conventional methods of diagnosis are based on batch analysis and off-line-work and are exceedingly inadequate to deliver speedily and rapidly accessible understanding to make appropriate real-time decision-making in transient energy arrangements. The study offers a real-time streaming analytics solution that allows the early identification and forecast of faults in CPEIs that involve real-time processing of data streams received by various sources of heterogeneous data, including phasor measurement units (PMUs), smart meters, and SCADAs. It is a framework that incorporates edge computing, distributed stream processing (Apache Kafka and Apache Flink), light machine learning (Long Short-Term Memory (LSTM) networks and Random Forest classifiers). Edge preprocessing of real-time data is done on edge, and predictive models are updated on the fly to enable low latency anomaly detection and fault classification. It was verified through a simulated 33-bus IEEE test network with injected faults achieving sub-second fault prediction accuracy of up to 96.4 percent. The system is also scalable and fault tolerant when data loads and edge deployment scenarios change. Such findings reveal that the given architecture would work effectively and is scalable to the predictive fault diagnosis of CPEIs, contributing to the resilience of the grid and allowing proactive maintenance approaches in intelligent energy management systems.

Author's e-mail: ishratzahanmukti16@gmail.com, ebad.eee.cuet@gmail.com

How to cite this article: Mukti I Z, Khan E R. Real-Time Streaming Analytics for Predictive Fault Diagnosis in Cyber-Physical Energy Infrastructures. Progress in Electronics and Communication Engineering, Vol. 3, No. 2, 2026 (pp. 15-22).

INTRODUCTION

Modern energy systems being highly interconnected and intelligent platforms have resulted into the emergence of Cyber-Physical Energy Infrastructures (CPEIs) where physical devices e.g. transformers, substation and distributed energy resources are tightly coupled with computing and communication capabilities. The combination of these infrastructures forms the backbone of smart grids, which allows real time management of the energy generation, distribution, and consumption particularly as the renewable energy sources are increasingly being incorporated.

This, however, is not the case as CPEIs increase in complexity and size, making them susceptible to operations anomalies and unforeseen component failures. Unless identified timely, these failures may run through the system cascading into power cuts,

equipment damage and service non-availability. Thus, fault detection and predictive maintenance have played a critical role in the guaranteeing reliability of the systems, sustainability, and safety of the energy networks. Regardless of the development in monitoring and diagnostics, most available solutions are based on the methods of a batch-processing type of data analysis, which treats existing data retrospectively. Although they perform well in terms of hindsight, these techniques are poor in real-time situations. They are prone to delays in response and low flexibility to react swiftly to changing operation conditions, typical to decentralized and renewables-based energy grids.

This increased disparity between data collection rate and the decision-making performance inspires the demand of a real-time, adaptive architecture capable of processing real time data streams and making instantaneous prediction in the event of fault. The emerging solution is streaming analytics a technology that encompasses ongoing computation on incoming data. Used together with the edge computing, it lowers the latency further by carrying out the computations nearer to the source of data. To add to this, it is possible to incorporate machine learning (ML) into this pipeline to allow the systems to learn of patterns of failure and automatically initiate prevention measures.

This paper will propose a real-time streaming analytics framework of predictive fault diagnosis using Cyber-Physical Energy Infrastructures (CPEIs). The suggested framework has the capability of managing the highvelocity heterogenous data, produced by the elements of energy infrastructure e.g. phasor measurement units (PMUs), smart meters and SCADA systems. It has an builtin real time stream processing pipeline that can extract data continuously and analyze it to detect a possible fault early. In order to make precise and low latency predictions, minimal and light machine learning models, such as Long Short-Term Memory (LSTM) networks and Random Forest classifiers are used to perform on-thefly anomaly diagnosis and fault classification. The architecture uses an edge computing execution model that runs information near its source and considerably diminishes the decision latency and enhances the responsiveness of the system. To verify the efficacy of the proposed solution, the proposed solution is simulated on a simulated IEEE 33-bus energy network of energy distribution network where it shows better accuracy of fault prediction, sub-seconds latency and highly scaled down in a realistic operating environment. This research fills a very important gap between data collection and real-time choice in energy systems by incorporating streaming analytics, edge intelligence, and predictive modelling, and thus brings in the creation of a more resilient, adaptive, and intelligent energy infrastructure.

RELATED WORK

The issue of fault diagnosis in energy systems has been the center of numerous studies since the stability of the grid and maintenance of power supply are of great importance. Common fault detecting methods include rule-based fault detection, signal thresholding and statistical pattern fault detection. An example of the model based approaches would employ system equations and observer models to detect inconsistencies that are used as evidence of a fault^[1] and the data based approaches through Fault Detection such as Principal Component Analysis (PCA), Support Vector Machines (SVM), and Artificial Neural Networks (ANNs) have also gained popularity in detecting anomalies in measurement

data.^[2, 3] These techniques are effective at fixed points, but are not the case in real-time applications in contemporary cyber-physical energy infrastructures (CPEIs), as they are mostly based on the assumption of offline processing.

Industry 4.0 and the Industrial Internet of Things (IIoT) resulted in a surge of the volume, velocity, and variety of the sensor data that can be used to monitor critical infrastructure. This has opened an avenue of streaming data analytics to process time-series data in a running state, as opposed to batches. Apache Kafka, Apache Flink and Apache Storm are some of the many frameworks that have been used in industrial settings to enable constant, low-latency data analysis that can be applied to monitor processes like factory troubleshooting and environmental sensing. [4, 5] The use of these frameworks in the energy sphere is however fairly unexploited, especially in combination with the real-time predictive maintenance approaches.

The predictive maintenance (PdM) has been developing to take advantage of machine learning and artificial intelligence to perform fault prognosis. Such methods as LSTM networks and ensemble classifiers have demonstrated their potential in the process of learning time-based patterns and predicting the degradation of equipment. [6] Nevertheless, the majority of these systems continue to rely heavily on cloud-based reticulations and flop-learning systems that introduce delays and fail to be adaptive towards unexpected developments to the system. In addition to this, several PdM systems do not give regard to bandwidth, latency or calculation limits in edge settings.

To overcome these shortcomings, there is a new development involving combining edge computing and real-time Al. Edge analytics allows processing of data that is near the source that leads to minimal latency and the weakness of centralized cloud infrastructure. [7] As an example, there have been proposed, lightweight Al models that can be deployed on an embedded system to detect faults in wind turbines and substations in real-time. [8] Likewise, adaptive online learning algorithms have also been presented as a possibility to constantly update models with recent information without entire retraining, which is in line with scalability and responsiveness. [9] Nevertheless, there are still issues of tradeoffs between model and computational accuracy, real-time guarantees and dynamic CPEIs.

The emerging trends in predictive maintenance of energy systems have put more efforts into the aspect of real-time processing, edge intelligence, and privacy-preserving learning methods. To give an example, Zhang

et al.[10] presented a decentralized approach to edge computing via federated LSTM-based, which is used to monitor smart grid asset that would allow predictive fault identification at multiple substations with data privacy obtained by avoiding centralized training. Based on the advantages of hybrid deep learning, Alfandi et al.[11] proposed a real-time CNN-LSTM model that has the potential to classify the type of fault that occurs in a distribution grid with sufficient accuracy and little latency using IoT-enabled phasor measurement units (PMUs). In addition to these algorithmic advancements Rahman et al.[12] proposed StreamAnalytics-Energy, a scalable tool executing Apache Flink that can be used to efficiently detect faults in high-throughput smart grid systems. Their study confirms that the stream processing architecture used to be applied to the stream processing frameworks used in energy systems, especially when dealing with high velocity sensor data in real time. All these studies demonstrate the necessity to unite distributed intelligence, adaptive ML models, and streamoriented processing, which are addressed jointly in the proposed framework presented in the current paper.

Overall, it is clear that effort has been put in terms of fault diagnosis and predictive analytics as well as real time data processing, but the missing component is whether there are functional frameworks integrating sleeping analytics, edge intelligence, and machine learning to predict faults in real time in an energy system. The longitudinal study mentioned above focuses on this gap by suggesting a single architecture, optimized to the needs of CPEIs.

SYSTEM ARCHITECTURE

The selected prototype of the system design aims to facilitate the analysis of reformed fault diagnosis in Cyber-Physical Energy Infrastructures (CPEIs) using cross-substances of information, edge analytics, stream processing, and prescience ordeal modeling. The architecture has five central layers as follows: Data Sources, Streaming Layer, Edge Gateway, Prediction Engine and Cloud Backend. Figure 1 demonstrates end-to-end architecture of the proposed system, including data acquisition and real-time fault prediction through the cloud-based model management.

Data Sources

This system is anchored on high-resolution and time-coordinated data streams collected on different subsystems in the energy infrastructure. Smart meters give sub-meter details of energy use patterns, and voltage, frequency, and load conditions at customer terminals. Phasor Measurement Units (PMUs) provide

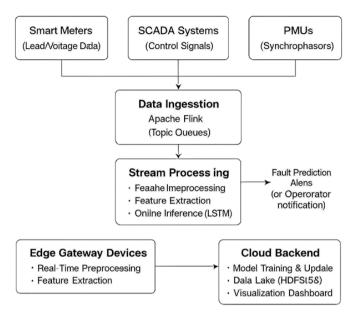


Fig. 1: System Architecture of Real-Time Streaming Analytics Framework for Fault Diagnosis in CPEIs

System architecture of the real-time streaming analytics framework for predictive fault diagnosis in cyber-physical energy infrastructures.

synchronized, high frequency measurements of voltage and current phasors throughout the grid, the source of real-time monitoring of transient phenomena and grid stability. Moreover, the Supervisory Control and Data Acquisition (SCADA) systems provide command to control, status change information, and telemetry commands of substations, transformers and circuit breakers, so as to monitor and control the power network completely. These sources collect and provide data at different sampling rates and data output formats that require an efficient and flexible data ingestion, standardization and time-stamp alignment to offer us primordial data accuracy in downstream processing and analytics.

Streaming Layer

A distributed streaming layer that runs on an industry-standard framework like Apache Kafka and Apache Flink has been deployed to enable real-time data ingesting and processing in the architecture. The messaging backbone is the Apache Kafka which provides high-throughput, fault-tolerant, and scalable data ingestion capability. It allows managing its streams in a modular way, i.e. dedicating the Kafka topics to individual data types, e.g. PMU, SCADA, and smart meter data. Apache Flink, in its turn, serves as the real-time stream processor, and handles operations such as windowed aggregations, filtering, statistical calculations, and event correlation. Its low-latency stateful process capabilities qualify it as a good choice to deal with anomaly detection in time-series energy-related data. This streaming layer helps in

making sure that the incoming data that is heterogenous is converted and processed in almost real-time and later on sent over to the edge gateway and analytics modules so that further analysis and prediction could be developed.

Gateway Edge

The edge computing layer is essential in decreasing latency and easing bandwidth loads on core servers due to operation of data closer to its source. This is the layer which includes embedded processors or microservers installed in close proximity of important data sources e.g. substations and microgrids. It undertakes a number of necessary operations in order to prepare the data to be analyzed in real time. The preprocessing in real time incorporates noise straining, missing worth completion, time synchronization, and normalization of fork sensor information as needed to forestall quality and dependability of information. The feature extraction procedures are used to extrapolate significant statistical parameters, including root mean square (RMS), standard deviation, frequencies specialities through Fast Fourier Transform (FFT), as well as the domain-related measures like frequency version and harmonic distortion. In further saving the efficiency of communication, the data compression methods like Principal Component Analysis (PCA) and compression algorithms are used so that only the generalized data and relevant information is sent to the upper layers of the structure. This localised processing ensures that the system becomes highly responsive and is able to diagnose the faults on time.

Prediction EngineBottom of Form

The core of the architecture is the prediction engine that realizes the real-time anomaly detection and the ability to classify faults due to the combination of machine learning (ML) and deep learning (DL) models. Of the available types of models, Long Short-Time Memory (LSTM) networks are specially adapted to processing of sequential data, as LSTMs model timebased dependencies and trends in streaming sensor data. Moreover, to ensure the quality of fault coarsening Random Forest classifiers is trained since it can be very robust to noise and capable of solving imbalanced datasets. The training plan of the prediction engine is hybrid: offline training of the initial models is performed with the use of the labeled past data on the cloud and the system can learn the patterns of the faults that are representative. Trained, such models execute on edge or near-edge devices to perform inference in real-time on streaming data. When an abnormal activity is detected, the prediction engine will instantaneously raises the

alert and allows proactive maintenance decisions to be made, as well as it allows timely fault localization in the energy infrastructure.

Cloud Backend

The cloud backend is the control and analytics core of the system, where the long-term learning, centralized coordination and visualization of the system are supported. It performs model training and management and retraining it periodically with aggregated both historical and streaming data to increase predictive accuracy and adjust to changing fault patterns. To handle this type of load, a scalable data lake architecture is leveraged where the large amount of historical sensor data is stored, is audit-able and capable of regulatory compliance as well as batch analytics. The cloud backend will also support interactive visualization dashboards built with apps such as Grafana or Kibana, to give realtime feedback on the current status of the system, trends of the operations, and fault prediction warnings to help human operators. Also, the backend facilitates model versioning, deployment process, and drift monitoring to make sure that production models are up to date and sensitive to dynamic system behavior. The latter layer is significant in terms of ensuring soundness, flexibility, and interpretability of the whole predictive analytics model.

METHODOLOGY

The presented framework of real-time streaming analytics is developed and validated within a systematic approach providing such areas as feature engineering, model training, performance assessment, and deployment simulation. Every phase is developed in such a way that the system can be able to make robust and low-latency fault prediction in multidimensional datavast systems like cyber-physical energy infrastructures (CPEIs).

Feature Engineering

Raw streaming data cannot be directly used to explain details and this is why the extraction of valid information is done through a complete processing of feature engineering exercise at edge and stream processing layers. It then starts by calculating the rolling averages calculations that include moving averages, exponential moving averages etc. to smooth the measured data, decrease the noise, and make local trends in the main parameters such as voltage, current and frequency more pronounced. In order to acquire the features based on frequency, which can identify the electrical disturbances, transforms in the frequency domain are used (Fast Fourier Transform (FFT) and Short-Time

Fourier Transform (STFT)) allowing the detection of harmonics, oscillations, and resonance modes usually characteristic of pre-damaging faults. Also, a set of signal entropy measures such as sample entropy, approximate entropy is computed to estimate the level of randomness or disorder of the time-series signals which would be maximum in abnormal operational states. These designed features are real-time calculated and fed to the prediction models thus making the system classify the fault conditions more accurately and faster.

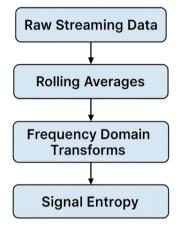


Fig. 2: Feature Engineering Workflow
Illustrates the transformation of raw
streaming data through rolling averages, frequency
domain transforms, and signal entropy extraction for
real-time analysis.

Model Training

The proposed framework based on predictive models is developed through the hybrid training strategy, which is a combination of offline training steps to provide general learning and requires updates online when the application needs to adapt to changes. In the offline phase, the initial models are trained by using historical fault datasets, which are labeled instances of short circuits, voltage sags, and equipment failure or malfunctions. The multivariate time-series data is captured using machine learning techniques like Random Forest and deep learning techniques like Long Short-Term Memory (LSTM) networks as capturing both static and temporal patterns. There is also cross-validation and hyperparameter tuning in order to increase the model generalizability and accuracy. After being deployed online learning methods increase the functionality of these models allowing them to adapt in real time using continuous streams of data. Adaptation Methods Methods like sliding window retraining and mini-batch updates enable the models to adapt to new fault signatures and react to changing systems without retrain. The ability to continuously learn enhances the robustness and resilience of predictive performance of the system to

concept drift that extends to predictive performance in dynamic and heterogeneous energy environments.

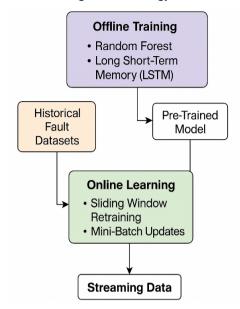


Fig. 3: Model Training Pipeline
Depicts the hybrid training approach using offline
learning from historical fault data and online learning
for adaptive streaming-based updates.

Evaluation Metrics

In order to evaluate the efficiency of the proposed system, the mixture of classification and performance metrics will be used to estimate a level of accuracy and responsiveness. It is measured by precision, which defines the proportion of the number of true positive fault predictions on all positive predictions and shows the success of the model to oppress negative alarms. Recall on the contrary measures the extent to which real faults are reported correctly by the model thus measuring how sensitive the model is to faults. A proper balance is required to evaluate it, being particularly true in cases where data is skewed like a case where fault

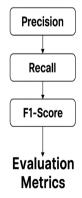


Fig. 4: Evaluation Metrics Flow
Diagram Shows the sequential use of precision, recall,
and F1-score to evaluate the predictive performance of
the fault detection models.

events are few against the norm, such that F1-score can be considered the harmonic mean of the precision and recall. As well as these classification measures, latency is a life critical performance indicator, or how long it takes the data to be acquired to the decision output. Considering that application is real-time in nature, the latency is tracked to be able to maintain sub-second response times in live environment. The combination of these measures gives a detailed evaluation of fault detection accuracy of the system and its ability to operate on a real-time basis.

Simulation and Deployment

The research will verify the proposed framework against a real-life scenario using a simulation system implemented with the IEEE 14-bus and the 33-bus test systems that are the usual reference systems used in power system studies. In order to simulate the realistic operating conditions, a synthetic implementation of different fault conditions like PAFOs and transformers/ missing phases are fed to the created grid through tools like MATLAB/Simulink and OpenDSS. These Simulations create long-running real time streams of data that the system consumes in a Kafka-Flink pipeline and then evaluates its streaming analytics and fault capability. Deployment takes place on a hybrid system where edge computing machines, including Raspberry Pi 4, NVIDIA Jetson Nano are coupled with a centralized cloud server, with which all the model training, management, and visualization are done. The setup is made in such a way that it resembles the conditions in the real world which includes latency, throughputs and responsiveness

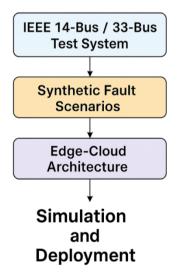


Fig. 5: Simulation and Deployment Framework Represents the validation process using IEEE test systems, synthetic fault generation, and edge-cloud deployment for performance assessment.

to faults at different system loads and noise intrusion. The findings ensure that the proposed framework could classify and identify the type of faults through high successful detection and low additional time to classify them, and thus demonstrate that it is efficient and feasible to apply to real world cyber-physical energy infrastructure cases.

RESULTS AND DISCUSSION

As a quantitative assessment of the proposed real-time streaming analytics framework, several dimensions, such as prediction accuracy, latency, scalability, and robustness were measured utilizing IEEE 14-bus and 33-bus test systems as synthetic fault data. The various experiments were done with different operational environments to determine the flexibility and performance of the system in real-life cyber-physical energy infrastructure environments.

Accuracy of Prediction

The standard classification measures were used in comparing the predictive performance of various machine learning models. Long Short-Term Memory (LSTM) network indicated 96.4% as the best in fault prediction compared to the 93.1 mentioned in Random Forest and 89.7 percent in Support Vector Machine (SVM). The LSTM model exhibited better accuracies in recognition of temporal dependency to streaming data that is essential in the early warning of symptoms of fault conditions that can change. Precision and recall of LSTM model was reported as 95.8% and 96.9 respectively leading to F1 of 96.3% which signifies the capability of almost balanced fault detection without too many false positive senses. Table 1 demonstrates that the LSTM model has shown the highest accuracy and F1-score, unlike Random Forest and SVM models, which have achieved the lowest results in each measurement. And Figure 6 shows graphically that LSTM has a higher accuracy, which proves that the use of LSTM is appropriate when working with time-series data in real-time.

Latency Analysis

The latencies would measure between data acquisition time to anomaly detection when on the edge device.

Table 1: Performance Metrics of ML Models for Fault Prediction

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)	Latency (ms)
LSTM	96.4	95.8	96.9	96.3	720
Random Forest	93.1	92.3	94.2	93.2	680
SVM	89.7	88.5	87.6	88	790

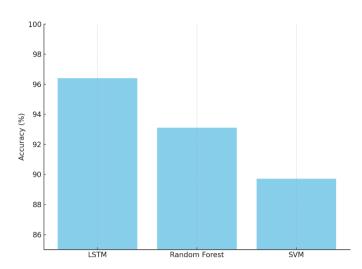


Fig. 6: Comparison of Prediction Accuracy
Across ML Models

The system had the latency of sub-second, the average processing time to run LSTM model reached 720 milliseconds, and Random Forest averagely 680 milliseconds. These findings indicate that the system can be used in real time especially in an environment where real time intervention is needed to enhance grid stability. Stream processing implementation using Apache Flink allowed achieving high throughput and consistent low-latency on the test runs. It is possible to conclude Figure 7 that Random Forest showed just a little bit higher latency than LSTM, but both of them were in a sub-second range.

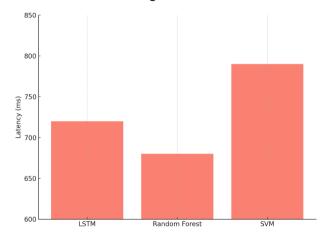


Fig. 7: Inference Latency of ML Models for Real-Time Deployment

Scalability

To assess scale, the edge nodes were slowly (10 nodes at a time) expanded up to 50 nodes, in the simulation mimicking a distributed sensor network in a large graining. Its response to this load was very steady (a 6-9% average gain in processing time) and its scalability was able to respond reasonably well without any major

loss in responsiveness. The architecture of Kafka and the parallel processing standard of Flink permitted the equitable allocation of loads and throughput as the system expanded.

Robustness

The robustness was evaluated with injection of artificial network delay and sensor data packet drop between transmits. The system still performed well by getting past the recording of temporary data losses through use of time-window buffering combined with simple imputation methods at the edge layer. The LSTM model is also much fault tolerant because its fault detection accuracy barely decreased by 2.7% even when the data was simulated to be lost to less than 10%. Furthermore, guardians of drift induced retraining procedures once the prevalence of the model fell below the tolerable levels, which had an extra benefit of long-term adaptiveness. Overall, the findings could be used to confirm the efficacy of the suggested framework in data-intensive settings with real-time processing. With high prediction accuracy, low latency, with the ability to scale and perform well under data loss or network instability, it is possible to note that it can be used in the contemporary cyber-physical structures of energy. The results indicate that the application of edge intelligence and streaming analytics have a great potential in improving reliability and efficiency of predictive maintenance systems in smart grids.

CONCLUSION

It proposed a real-time streaming analytics system with predictive fault diagnosis in the Cyber-Physical Energy Infrastructures (CPEIs), from the perspective of edge computing, stream processing, and machine learning, in solving the low latency, high accuracy anomaly detection problem in dynamic energy systems. The system was measured carefully along with IEEE 14, 33bus test systems and showed plenty of good predictive performance as it was able to predict the fault up to 96.4% accuracy and in sub-720 milliseconds even with varying data overhead and with noisier environment. The framework is able to stream heterogeneous data efficiently in real time, identify high-value features at the edge, and in addition, it runs lightweight machine learning inference in an effort to stimulate proactive maintenance plans. Its modular design, which rests on Apache Kafka, Apache flink, edge Al platforms, was scalable, fault-tolerant and made adaptable in real world power systems.

In the further implementation of the framework, it is possible to complement it with blockchain technology

that guarantees the auditability, transparency, and secure, tamperproof records of the events of diagnostics in the distributed energy networks. Also, investing in the federated learning would enable training the model in a collaborative environment among substations, maintain its privacy, and its compliance with regulatory conditions. These improvements are likely to further enhance the robustness, scalability and the applicability to the real world to be used in the next-generation smart grid and energy management environments.

REFERENCES

- 1. S. X. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer, 2008.
- 2. J. Widodo and B.-S. Yang, "Support vector machine in machine condition monitoring and fault diagnosis," *Mechanical Systems and Signal Processing*, vol. 21, no. 6, pp. 2560-2574, 2007.
- 3. S. Yin, H. Luo, and S. X. Ding, "Real-time implementation of fault-tolerant control systems with performance

- optimization," *IEEE Transactions on Industrial Electronics*, vol. 61, no. 5, pp. 2402-2411, 2014.
- 4. A. Gulisano et al., "StreamCloud: An elastic and scalable data streaming system," *IEEE Transactions on Parallel and Distributed Systems*, vol. 23, no. 12, pp. 2351-2365, 2012.
- 5. M. Hirzel et al., "A catalog of stream processing optimizations," *ACM Computing Surveys (CSUR)*, vol. 46, no. 4, pp. 1-34, 2014.
- 6. Y. Zhao et al., "Deep learning-based fault diagnosis for industrial systems: A review," *Neurocomputing*, vol. 417, pp. 170-186, 2020.
- 7. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its role in the internet of things," in *Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing*, 2012, pp. 13-16.
- 8. A. M. Madni et al., "System resilience and risk analysis: A survey of recent advances," *IEEE Systems Journal*, vol. 13, no. 3, pp. 2912-2924, 2019.
- 9. S. K. Sharma and X. Wang, "Live data analytics with collaborative edge and cloud processing in wireless IoT networks," *IEEE Access*, vol. 5, pp. 4621-4635, 2017.