PROGRESS IN
ELECTRONICS AND
COMMUNICATION
ENGINEERING.

RESEARCH ARTICLE

Progress in Electronics and Communication Engineering, ISSN: 3048-7625 Vol. 3, No. 2, 2026 (pp. 1-9)
ECEJOURNALS.IN

Secure Boot and Firmware Update Framework
for ARM Cortex-M Embedded loT Devices

KEYWORDS:

Secure Boot,
Firmware Update,
ARM Cortex-M,
Embedded Security,
loT,

OTA,

Cryptography,
STM32,

Root of Trust

ARTICLE HISTORY:

Submitted : 10.10.2025
Revised :15.01.2026
Accepted :21.02.2026

Lau W. Cheng'*, Beh L. Wei?

'"Faculty of Information Science and Technology University, Kebangsaan, Malaysia
’Faculty of Information Science and Technology University, Kebangsaan, Malaysia

ABSTRACT

The paper presents a lightweight and well-impervious security framework suitable to
ARM Cortex-M-based I0Es embedded devices, which will serve an important purpose of
presenting secure boot and firmware update operations in resource-constrained systems.
As loT implementations and applications in sensitive parts of our life like healthcare,
smart infrastructure, and industrial control systems increase exponentially, embedded
devices become more exposed to firmware tampering, write malicious code and update
securities. The framework that is proposed addresses such threats by employing a multi-
layered cryptographic approach, suitable to the framework by symmetric encryption
with the use of AES-GCM, offering confidentiality, elliptic curve digital signature
algorithm (ECDSA) providing authentication, and the SHA-256 hash to provide integrity
verification. A trusted bootloader (« a procedure incorporating cryptographic functions
used to secure a bootloader implementation »,) in a trusted ROM who administers
cryptographic verification of the firmware signature with the help of a hardware-based
root of trust prior to handing off control to the application firmware. As an additional
measure the rollback protection is implemented with the help of version control to
avoid firmware downgrade until known vulnerabilities are eliminated. The firmware
update process allows encrypted over-the-air (OTA) update process to execute safe
remote updates, storing the data maliciously and risking transmission. An atomic and fail
safe update process is achieved through double-buffering. The experimental system was
used and tested on STM32F429 Cortex-M4 microcontroller, and it successfully detected
unauthorized modification of the firmware and was able to withstand rollback attacks.
Performance evaluation with the bootloader as the benchmark shows the latency was
only 10 milliseconds and the number of Flash memory usage was less than 0.05 percent.
These outcomes confirm the application of the framework in the low-power and
memory-constrained embedded systems without undermining state-of-the-art security
assurances. The approach is compared to the current solutions in security to show a
very usable set of efficiency, scalability and ease of implementation, which makes the
presented approach an optimal one to be used in production loT systems. A discussion on
future improvements is provided wherein they would want to integrate it with hardware
security modules and supporting quantum-resilient cryptographic primitives that would
make the system secure in the long term.

Author’s e-mail: Lau.wai@ftsm.ukm.my, beh.lee@ftsm.ukm.my

How to cite this article: Cheng L W, Wei B L. Secure Boot and Firmware Update

https://doi.org/10.31838/ECE/03.02.01

INTRODUCTION

With the numerous benefits of the technology, the
exponential increase in the Internet of Things (loT) has
transformed many industries such as in the healthcare
sector, in the transportation industry, smart grids and
industrial automation. Billions of connected devices
have been installed into consumer as well as mission-
critical settings and the integrity and security of the
embedded systems have emerged as the priority.

Framework for ARM Cortex-M Embedded loT Devices. Progress in Electronics and
Communication Engineering, Vol. 3, No. 2, 2026 (pp. 1-9).

An embedded system has a lot of different components,
one of them being the firmware layer, a set of very
low-level control logic controlling how the hardware
operates, that is both highly important, and both highly
targeted. The compromise of the firmware may lead to
disastrous situations like hijacking of systems where the
systems are controlled remotely to execute given code,
leakage of data or just creation of back doors that defy
detectability using traditional security systems.

Progress in Electronics and Communication Engineering |July - Dec 2026 1

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

Since the sophistication of security attacks on embedded
systems is still on the increase, two basic defensive
mechanisms have been found to be requirements of
trustworthy computing; that is the secure boot and the
secure firmware update. The functionality of secure boot
will display that the system will run only authenticated,
verified firmware, which have non-modification, and this
prevents running of unauthorized or malicious code on
startup. The integrity of the device through the device
lifecycle with respect to updates, on the other hand, is
the responsibility of secure firmware update mechanisms
so that updates are obtained out of sources that are
legitimate, they are untouched and they cannot be
rolled back to its previous versions with vulnerabilities.

The Cortex-M microcontrollers have had a significant
market share of the embedded processor in the world
market due to their low power consumptions, cheapness,
and high performances. Edge devices like sensors,
controllers and wearable systems have wide applications
with such processors. They are usually deployed
with very limited capacity in terms of computational
resources, memory and power. Such constraints are
troublesome to the integration of effective security
solutions and most especially in the use of cryptographic
processes. Moreover, lacking in most of the low-cost
Cortex-M variants are any dedicated security hardware,
necessitating software-based solutions that are efficient,
but small enough to meet space constraints.

Firmware
Security

Internet
of Things

Fig. 1: Overview of the Proposed Lightweight
Security Framework for ARM Cortex-M loT Devices

Although industry-driven standards, e.g., ARM Platform
Security Architecture (PSA) and open-source efforts,
e.g., Trusted Firmware-M (TF-M), do exist and act as
blueprints of secure embedded systems, e.g., requiring
hardware support, recent initiatives have a large
implementation overhead. As a result, security is not
always implemented in real-world deployments, or, in
case of implementation, it is very sporadic and in a
piecemeal fashion, and thus devices leave themselves
exposed to a variety of attacks.

This paper presents a lightweight, modular, and
practical security framework that is optimized to ARM
Cortex -M based loT devices, but focus will be on STM32
family. The scheme uses symmetric and asymmetric
encryption primitives, integrity verification and version

management to realize secure boot-up and over-the-
air (OTA) firmware upgrades. It is optimized to be
efficient, so the load on device performance and device
memory is negligible and the security profile is high.
The solution will be designed in a widely applicable way
to the Cortex-M ecosystem and have minimal hardware
requirements and will be easy to adopt in new as well as
existing embedded systems.

The rest of the paper is structured in the following way:
Section 2 involves related work in this field; Section 3
describes the system architecture; Section 4 provides
the methodology; Section 5 details the implementation
specifics; Section 6 describes results of the experiment;
Section 7 provides the analysis of results and discussion;
Section 8 involves security considerations; and Section 9
provides conclusion and further research.

RELATED WORK

Authentication of Firmware and safe increase routines
in embedded gadgets have been of huge interest in the
recent years because of the widespread implementation
of loT gadgets with the facts of security-sensitive
applications. Multiple works have discussed the
requirement of secure boot and update procedure,
using in many cases hardware specific solutions or
cryptographic systems.

In,1" the authors present a secure boot infrastructure
where cryptographic keys are stored into the hardware
security modules (HSMs) and used to validate during
boot time. Such solutions, though being effective in
high-end microprocessor systems, are not adequately
applicable to the low-cost, resource-constrained ARM
Cortex-M devices because they necessitate extra silicon
and more consumption of power. Likewise, in,[code
integrity and secure key storage using Trusted Execution
Environments (TEE)s hardware-assisted solution were
described. The complexity of implementation and its
dependency on hardware however makes it difficult
to be adopted on restrictive compact embedded
platforms.

The well-developed guidelines written by ARM on
secure execution and update of embedded firmware
are known as Platform Security Architecture (PSA)®!
in and Trusted Firmware-M (TF-M).[4 These structures
have security primitives, threat models and hardware
abstraction layers. Nonetheless, in the real world use of
such solutions it may be critical to develop substantial
amounts of code, involving TrustZone-enabled hardware,
and an elaborate secure provisioning framework, all of
which are not normally part of off-the-shelf Cortex-M
connected loT devices.

2 - Progress in Electronics and Communication Engineering |July - Dec 2026

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

A number of light weighted, software based secure
boot involving microcontrollers have been suggested.
As an instance, in,! a minimalist bootloader has been
developed by employing cryptographic hash as well
as the RSA-based signatures validation. Although the
method does offer secure authentication, it does
not have any measures against the use of encrypted
firmwares or against rollback attacks. Inl¥! another
work is done on the secure firmware updates over the
air channels (OTA) through symmetric cryptography.
Despite good performance with limited resources, the
system does not manage end-to-end authentication, as
well as version control leaving the update mechanism
vulnerables to downgrade attacks and man in the middle
attacks.

The recent project described in?”! combines cryptographic
verification and secure OTA update of ARM Cortex-M
chips, however, it presupposes a secure element used
to store keys and this component is not available in
some environments. In addition to that, the above
works all focus on rollback protection, image encryption
and boot-time verification separately, with no unified
framework that is optimized to be implemented on low-
cost microcontrollers.

On the contrary, the framework in this paper can fill
this gapp by offering a software-based, lightweight, and
holistic solution that can use secure boot, encrypted
OTA firmware upgrade, and rollback protection of ARM
Cortex-M chipsets without the need of third-party secure
hardware. The system suggested shows good trade-off
between security, performance, and implementation
complexity which is checked on STM32 microcontrollers.

SYSTEM ARCHITECTURE
Hardware Assumptions

The recommended design of secure boot and firmware
update solution will be deployed on the ARM Cortex-M4
family of microcontrollers since the STM32F4xx is
widely used in loT and embedded applications. These
microcontrollers present an optimized trade-off between
processing capability, memory storage and energy
consumption thus they are the best choices when it

comes to secure embedded implementations. The system
presumes the availability of the on-chip Flash memory
that has the read protection features turned on and this
allows blocking unauthorized access to the firmware and
sensitive data stored in the memory allocations. The
framework is mostly software-based in order to maintain
a wide compatibility, although theoretically it may also
make use of any cryptographic hardware accelerators
available--including the integrated AES, RNG, and HASH
cores of the STM32 line itself - in order to offload and
accelerate the more intensive computation-heavy
cryptographic applications, like hashing and encryption.
Further, the architecture depends upon a write-once,
tamper-resistant region of ROM (usually implemented as
system memory or Flash sectors with protection) to pad
the public key used in firmware signature verification
safely. Such an unchangeable source of faith is necessary
to make sure that genuine and unmodified firmware
images are run by the device during the boot-up stage.
This hardware compatibility ensures strict optimization
of the framework on the one hand and high security
guarantee on the other hand, as well as practicality
of application in Cortex-M based systems with minimal
system resources.

Bootloader Design

The essence of proposed security scheme is a read-
only stage-one bootloader installed into a secure area
of the microcontroller ROM or Flash memory, with
write-protection disabled to eliminate the possibility of
unauthorized changes. This boot loader is the root of
trust of the secure boot process on the device and is the
component that provides a measure of correctness and
genuineness of the firmware prior to the execution. When
a system starts up, the bootloader cryptographically
verifies the firmware image with Elliptic Curve Digital
Signature Algorithm (ECDSA) based on a pre-computed
Elliptic Curve Digital Signature Algorithm (ECDSA) public
key stored in non-modifiable portion of the ROM. As a
measure of integrity, the bootloader calculates a signed
SHA-256 hash of the firmware binary, and compares
it with that of the firmware metadata. With this, any
unauthorized modification in the firmware either out

Table 1: Hardware Assumptions and Their Functional Roles in the Secure Boot and Firmware Update Framework

Hardware Component

Function/Role in Framework

ARM Cortex-M4 MCU (STM32F4xx)

Target platform for secure boot and firmware updates

On-chip Flash with Read Protection

Prevents unauthorized firmware/data access

Cryptographic Accelerators (AES, RNG)

Optional offloading for faster encryption, hashing, and key generation

Write-Once ROM / Protected Flash

Stores immutable public key for signature verification (Root of Trust)

Secure Bootloader Region

Resides in protected memory to ensure tamper-resistant secure boot
execution

Progress in Electronics and Communication Engineering |July - Dec 2026 3

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

of corruption or out of malicious injection will reliably
be detected. Also, to avoid rollback attack -In which a
signed-but-still-vulnerable version of the firmware is
restored by reinstalling it- the bootloader implements
some version control by checking the firmware version
embedded in the update package against the version on
non-volatile persistent store. Only firmware of higher
version is allowed to run and the lower version with
exploitable coding cannot be restored. This multitiered
verification preserves a performance-efficient verified
execution environment, and is a natural fit to be used
on resource constrained ARM Cortex-M microcontrollers
used in the safest loT systems.

4 N
System Reset/
C" Power-On
\ J
s l &
Bootloader
@ Execution
N, .
!

' ™
Firmware Hashing
(SHA-256)

/

0 l ™

Signature Verification
(ECDSA)

_ J

)

-
E Version Check

(Rollback Prevention)

\ J

Execute X Abort
Firmware Boot

Fig. 2: Secure Bootloader Workflow for
Firmware Verification and Rollback Protection in
ARM Cortex-M Devices

~

Firmware Update Protocol

In the proposed framework, the firmware update protocol
aims at providing a secure, reliable and authenticated
updating and firmware installation process (especially
in the case of over-the-air (OTA) updates). To guard
the privacy and authenticity of their own firmware by
transmitting the update payload, encryption is performed
in the context of the AES-GCM (Galois/Counter Mode)
algorithm, which is not only useful in its encrypting
capabilities, but also in authentication of messages,
referred to as message authentication codes (MACs).
After downloading the encrypted firmware image,

the device then uses a pre-shared symmetric key or
negotiates a session key as part of a secure provisioning
procedure and then decrypts the firmware image. Prior
to installation of the decrypted firmware, the version
number embedded in the firmware metadata is validated
by the bootloader or updating handler the image being
updated should not be newer than the installed version
thus providing rollback protection. The system moves to
the next step that is re-verification encrypted integrity
of the firmware only when the version is valid. This is
done by remodelling the SHA-256 hash of the firmware
and checking it against the attached ECDSA signature
with the aid of the public key stored in the secure ROM.
This post-update signature verification makes sure that
the firmware is not tampered during transfer as well as
storage. In case even one verification operation fails,
the system discards the update and either keeps the
current firmware or destroys it cleanly and starts a safe
crucial rescue method. Such secure update protocol not
only protects devices against unauthorized or modified
firmware installations, but also allows robustness against
network-based attacks and compromises of the update
channel, and is therefore particularly appropriate to
scalable secure deployment in embedded Internet of
Things.

¢)
D Start OTA Update

Process

1

1)
@ Receive Encrypted
Firmware Image
(AES-GCM)

A

Firmware
Version

Hash
I

P
" Validate ECDSA
Signature

P
O’ Verify SHA-256 J
A

.

p
0 Discard and initiate
recovery

Fig. 3: Secure Firmware Update Protocol Flow for
Encrypted OTA Delivery and Integrity Verification

METHODOLOGY

The deployment of the secure boot and firmware update
framework is done on a modular design and is divided in
four major stages:

4 - Progress in Electronics and Communication Engineering |July - Dec 2026

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

Bootloader Development

The bootloader, which can be considered as the core
of the secure execution environment, was designed to
work with the ARM CortexM 4 micro-controller board.
The set of used libraries includes STM32 HAL (Hardware
Abstraction Layer) and mbedTLS cryptography library.
STM32 HAL will guarantee low level compatibility of
the hardware, efficient peripheral usage and portability
to other STM32 devices, whereas mbedTLS will offer a
lightweight designed, well maintained, and embedded
optimized implementation of cryptographic algorithms
such as SHA-256 and ECDSA. We have placed it there
(the bootloader) in a special, protected zone of the on
chip Flash memory which has read and write protection
enabled to make it tamper resistant. This segment is
permanent all through the lifecycle of the device in
order to provide integrity of the secure boot process.

The bootloader is the init code that runs first at run
time after the device restart or reset. It begins a secure
verification procedure by determining the SHA-256 hash
of the firmware image in external or internal memory in
the first place. Such hash is then matched to a previously
computed digital signature, which is appended to
the firmware image. The verification of signature
is conducted by the Elliptic Curve Digital Signature
Algorithm (ECDSA) with the bootloader applying a public

i B
Q) Power-on/Rest
\ S

h 4

Bootloader
executes from
[protected Flash

J

'S
Reads firmware
from application reign)
o

J

Verlfles
(o] Vot E
[mbedesl S|gnatu re

|}

p
0 Hands over
control

/

Fig. 4: Bootloader Architecture and Cryptographic
Verification Flow for Secure Firmware Execution

key safely embedded on the ROM during provisioning. The
hash is only compared against the signed digest hence by
the time it matches, they pass control to the application
firmware through the bootloader. This cryptographic
check will protect against a compromised firmware
by letting the users know that the firmware is not
modified and is coming directly out of a trusted source.
When hardware protections are coupled with powerful
cryptographic verifications the implementation of the
bootloader offers a bootstrap secure source of trust with
low memory and performance overhead as needed by
real-time and resources constrained IoT use cases.

Firmware Image Signing

Firmware image signing is a very important process in
assuring the authenticity and integrity of the executed
code/code therein a mobile device. All the firmware
images in the proposed framework are offline signed by
a secure development workstation which has the private
ECDSA key. The private key is never disclosed to the
embedded device itself or via an unwanted transmission
channel, hence, avoiding the possibility of compromise
of the key. The signing is done by first calculating a SHA-
256 hash on the end binary of the compilation firmware.
The content in this digest is a representation of said
firmware in a special manner and a flip of only one bit
in the binary would result in a harshly different hash
output.

After the computation of the hash, it is then digitally
signed using the developers copy of the ECDSA private
key resulting in a signature which can be later-verified
using the corresponding developers copy of the public
key stored in the secure ROM or Flash during the
provisioning process. The firmware image has additional
metadata including its version number and the size of
the executable never-ending binary (number of bytes)
added, along with the signature. Such metadata is
applied in secure boot and update mechanism to
implement version control (rollback protection) and it
checks the integrity of the received image.

The fully signed image (the binary of firmware plus
version metadata, plus the signed digital image) is then
ready to be securely shipped. In over-the-air (OTA) case,
this package is encrypted with AES-GCM and sent to the
device. The system does this by carrying out its signing
processes entirely offline and never leaving the secret
key exposed on any secure build environment; hence
the firmware cannot be modified or falsely signed by any
parties without the specific authority to do so. Combined
with post-update and boot-time verification this signing
mechanism provides the basis of the trusted execution
pipeline of the device.

Progress in Electronics and Communication Engineering |July - Dec 2026 3]

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

Developer
Compiled
Firmware Binary Device
Metadata Decrypt Image
(Version, Size) . !
A
esoon || S
Hash Generation Encryption 9
Enforce
ECDSA Version Control
Signature
(Private Key)
A
[Firmware Binary
+ Metadata
+ Signature]

Fig. 5: Firmware Image Signing and Secure Packaging
Workflow for OTA Deployment and Device Verification

OTA Update Implementation

To facilitate safe and robust firmware updates the
proposed framework expands a standard UART-based
loader to support reception of an AES-GCM encrypted
firmware image, and facilitate confidentiality and
authenticity Over-the-Air (OTA) update capabilities.
The UART interface that is supported by many devices
and often utilized in provisioning and communicating
with the devices was chosen because of its simplicity
and compatibility with the existing infrastructure, i.e.,
Bluetooth, LoRa, or Wi-Fi-to-UART bridge.

The device to which the firmware needs to be loaded
accepts the encrypted firmware image which was
produced and signed off-line and sent using the
UART interface. AES-GCM (Galois/Counter Mode) is
used because it accomplishes both encryption and
authentication in a single pass so that the firmware
image can be transmitted without being eavesdropped
upon and tampered with. The received firmware gets
encrypted and never instantly ran or written instantly
over the base firmware in the main application memory.
Rather, it is cached in a secondary staging space of Flash
memory so that it can be pre-installed tested.

Execution of the signature verification of the new
firmware with the ECDSA public key stored in the non-
modifiable memory of the device is performed before
the new firmware is promoted to active status. The
hash of the image in form of SHA-256 is computed
and is compared to the appended signature to verify
authenticity and integrity. Provided that this check has
passed and new sufficient firmware version is specified in
the metadata, an image is accepted and the bootloader
flags it as active. Once a system has been reset, the
newly verified firmware assumes execution.

This staged design makes sure that a firmware is never
deployed without full verification and gives robustness

against failures between stages (e.g. power loss) in the
update. This will allow the system to restore to the
latest known good operating system in case of failure,
corruption, and therefore keep the devices available,
and be safe to operate.

(], UART-Based OTA
L Communication Layer

1

'd N

Staging Phase
Encrypted image transfer
(AES-GCM)

4
[Verification Phase

Store in secondary memory
Calculate SHA-256 hash

Verify ECDSA signature
'd I ™\ 4 By
Version check Activation
(Rollback [y Phase
protection) Promote valid
firmware
L)% Reboot
J
' N f 3
° System U %¢ Revert on
L Reset ; failure

UART-Based OTA Commucition
imger activativation

Fig. 6: Secure OTA Firmware Update Workflow with
Encrypted Image Reception, Validation, and Activation

Security Validation Testing

In order to determine the strength and viability of
the suggested secure boot and firmware update
infrastructure, an extensive set of security validation
tests were performed. The tests were to be conducted
in order to simulate the attacks in the real environment,
checking the cryptographic integrity and examining the
performance effect on the embedded system.

To begin with, tampering with the firmware was
calculated and the tampering effect conducted by
means of just deliberately altering bytes in the signed
firmware binary but not just the main code area but
also the attached metadata. In each of the test cases,
inconsistencies reported by the hashing (SHA-256)
and signature verification (ECDSA) functions in the
bootloader repeatedly identified discrepancies between
the calculated hash and signed digest. This lead to
automatic discarding of the spoofed firmware and thus
it will not be executed and the code could be harmful.

6 - Progress in Electronics and Communication Engineering |July - Dec 2026

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

Second, OTA update attack emulations, such as replay
attacks and version downgrade attacks, were done on
the system. In the case of replay, an update image that
was sent previously and that was valid was resent to the
device. Nonetheless, the version-checking mechanism
of the framework which depends on the embedded
metadata and a non-volatile firmware version counter,
was able to prevent reinstallation of obsolete firmware.
Equally, any effort to decrease the security of the
firmware by manually manipulating version metadata
in other than a valid image was defeated, because the
bootloader invalidated the digital signature as a result
of the hash bucket inconsistency that occurred upon
metadata manipulation.

Besides these operating tests of security, performance
profiling was also undertaken to get the computation
and memory overhead cost brought in by security
mechanisms. The time of execution was recorded,
boot up, calculation of firmware hashes, verification of
signature, and decryption of updates using AES-GCM. The
outcome indicated that the total secure boot took less
than 10 milliseconds of delay and less than 5 percent of
flash and RAM available at STM32F4297ZI platform. These
indicators support the viability of the framework in low-
power resource-constrained embedded loT devices, and
in the processes, they verify its robustness in security and
system performance in a realistic deployment scenario.

ReESULT AND DISCUSSION

The framework proposed was vigorously validated in
view of determining its capability in accomplishing the
dual objective of surpassing sound security and low usage
of resources. The mechanism, the secure boot, which
is based on the cryptographic integrity checks, was
verified, and this was done by simulating many attack
scenarios. Bootloader was always capable of rejecting
tampered firmware images by using very specific hashing
sha-256 and verification of ecdsa signature meaning
that only untampered and legitimate firmware could be
run. There was also a rollback protection, which worked

well on the basis of version metadata included in the
firmware header. Any attempt to install older firmware,
including authentic or fake, was duly rejected; this
indicated that the framework ensures only forward-only
firmware upgrade, a significant prerequisite in secure
firmware lifecycle management.

Base Boot Time

Flash Usage by Bootloader &
Crypto Libs (~18KB)

Boot Time Overhead (9.2 ms)

Remaining Flash Memory (~357KB)

Fig. 7: Resource Impact of Secure Boot and Firmware
Update Framework on STM32F429Z] MCU

The system added minimal overheads as far as its
performance is concerned which is why it can be used
in real-time embedded applications. This generated
an overall impact of exceeding 9.2 milliseconds to the
overall boot time, which is reasonable considering the
cryptographic operations take a majority of resources
and time, but it is not a factor during most of the loT
applications that do not require ultra-low startup
time. The memory footprint was also maintained at a
expectable limit. Totally bootloader and crypto libraries
(mbedTLS) used approximately 18 KB of Flash memory,
or only about 5 percent of the capacity granting by the
STM32F429Z1 microcontroller. Memory consumption
was kept low and there was an optional AES and SHA
hardware accelerators to enhance efficiency. These
findings indicate that the suggested implementation can
offer a desirable balance between system performance
and security assurance and that such can be deployed
on most of the Cortex-M based microcontrollers without
having to make substantial changes in the hardware.

Relating to the reliability aspect, the firmware update
process was robust in relation to different negative events
such as power failurOe and partial transfer among others.
The strategy of the double-buffering strategy protected
the system by storing and validating the new firmware

Table 2: Summary of Security Validation Tests and Outcomes

Test Category Evaluation Method

Result / Outcome

Firmware Tampering

Modified firmware binary and metadata

Successfully detected and rejected by SHA-256
and ECDSA verification

Replay Attack

Reused a previously valid encrypted firmware image | Blocked using firmware version validation logic

Version Downgrade

Lower version metadata in otherwise valid image

Signature check failed due to hash mismatch;
update rejected

Boot Time Overhead

Measured time added during secure boot phase

< 10 ms increase observed

Memory Overhead

components

Measured Flash and RAM usage of added security

< 5% resource usage on STM32F4297|

Progress in Electronics and Communication Engineering |July - Dec 2026 4

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

Table 3. Summary of Performance, Security, and Reliability Metrics for the Proposed Secure Firmware Framework

Metric

Description

Boot Time Overhead

Approximately 9.2 ms additional boot time due to cryptographic operations

Flash Memory Usage

Bootloader and crypto libs consume ~18 KB (~<5% of 512 KB flash)

RAM Usage

Remains modest, optimized with optional hardware accelerators

Firmware Integrity Check

Ensures authenticity via SHA-256 and ECDSA signature verification

Rollback Protection

Prevents outdated firmware installation using version metadata

Firmware Update Resilience

Double-buffering allows safe updates even during power loss

Hardware Acceleration Support

Uses AES/SHA hardware accelerators to boost efficiency

Compatibility with Cortex-M MCUs

No significant hardware upgrades required for deployment

Comparison with ARM PSA

Comparable security with reduced complexity and resource usage

on a secondary region prior to activation thus keeping
the system stable even upon a failed update or abortive
update. When compared to a more complex solution
like ARM PSA Certified platforms, proposed framework
achieved more or less the same levels of cryptographic
protection and critical assurance, but did not demand as
many system resources and did not make integration so
complex. This is especially appealing to low-power, cost-
constrained loT systems. In general, the findings reveal
that the framework can provide a powerful and end2end
security of firmware with a reasonable practicality used
to deploy in embedded systems with limited memory,
power, and computing resources.

CONCLUSION

The current paper will introduce lightweight,
nondescript security solution able to maintain firmware
integrity as well as update mechanism applied to ARM
Cortex-M based loT embedded devices. Due to the
identified limitations of resource-poor microcontrollers,
it is feasible to construct a secure boot and encrypted
over-the-air (OTA) firmware update with well-known
cryptographic primitives (SHA-256, ECDSA, and AES-
GCM). Bootloader blocks at startup and requires
authenticity and integrity checks and once the rollback
protection is enabled, it forces the removal of old or
possibly vulnerable versions of firmwares. OTA update
protocol ensures safe delivery of image and atomic
update management delivered in the form of a doubled
buffered memory design, protecting the device even
in the event of adverse situations like power loss in
the middle of updates. On the STM32F429ZI reference
platform, verification of the solution demonstrated it
to be capable of minimising performance and memory
overhead, and effectively mitigate against common
attack vectors, including tampering, replay and
downgrade attacks. The proposed framework offers
equally high protection levels as architectures that
apply dedicated hardware or secure elements, at an

implementation complexity that is greatly reduced. This
turns it into a convenient and expandable solution of loT
applications in the real-life environment where cost,
power, and memory limitations are vital. Additional
improvements in future features could involve the
incorporation of secure elements or post-quantum
cryptographic primitives along with remote attestation
capability with further enhancing the trust and long-
term safety within embedded systems.

REFERENCES

1. Alam, M., Islam, M. M., & Uluagac, A. S. (2020). A secure
boot framework for loT devices using hardware security
modules. Proceedings of IEEE SECURECOMM, 1-10.

2. Sadeghi, R., Zeitouni, S., & Paverd, A. (2021). TEE-based
secure boot for embedded systems. IEEE Transactions
on Dependable and Secure Computing, 18(2), 482-495.
https://doi.org/10.1109/TDSC.2019.2892677

3. ARM Ltd. (2021). Platform Security Architecture (PSA):
Threat models and security analyses. Retrieved from
https://developer.arm.com/psa

4. Trusted Firmware Project. (2023). Trusted Firmware-M
(TF-M) documentation. Retrieved from https://trusted-
firmware.org/projects/tf-m/

5. Bhunia, S., & Tehranipoor, M. (2018). Hardware security: A
hands-on learning approach. Morgan Kaufmann.

6. Das, P, Dey, S., & Paul, S. (2021). Lightweight secure firm-
ware update for loT devices using symmetric encryption.
Proceedings of IEEE International Conference on Con-
sumer Electronics (ICCE), 1-6. https://doi.org/10.1109/
ICCE2021.9362114

7. Lin, Y., Liu, H., & Wang, M. (2021). Secure OTA update
mechanism for ARM Cortex-M devices with cryptographic
verification. IEEE Access, 9, 104711-104722. https://doi.
org/10.1109/ACCESS.2021.3099193

8. Cui, A., & Stolfo, S. J. (2010). A quantitative analysis of
the insecurity of embedded network devices: Results of
a wide-area scan. Proceedings of the 26th Annual Com-
puter Security Applications Conference (ACSAC), 97-106.
https://doi.org/10.1145/1920261.1920276

8 - Progress in Electronics and Communication Engineering |July - Dec 2026

Lau W. Cheng and Beh L. Wei : Secure Boot and Firmware Update Framework for
ARM Cortex-M Embedded loT Devices

10.

1.

12.

Abombhara, M., & Koien, G. M. (2015). Cyber security and
the Internet of Things: Vulnerabilities, threats, intruders
and attacks. Journal of Cyber Security and Mobility, 4(1),
65-88.

Neudecker, P., & Frei, S. (2014). Unpatchable: Measuring
the brokenness of embedded device firmware. Black Hat
USA. Retrieved from https://www.blackhat.com/docs/
us-14/materials/us-14-Neudecker-Unpatchable-Measur-
ing-The-Brokenness-Of-Embedded-Device-Firmware-WP.
pdf

Kumar, T. M. S. (2024). Security challenges and solutions
in RF-based loT networks: A comprehensive review. SCCTS
Journal of Embedded Systems Design and Applications,
1(1), 19-24. https://doi.org/10.31838/ESA/01.01.04

Kumar, T. M. S. (2024). Low-power communication proto-
cols for loT-driven wireless sensor networks. Journal of

13.

14.

15.

Progress in Electronics and Communication Engineering |July - Dec 2026

Wireless Sensor Networks and loT, 1(1), 37-43. https://
doi.org/10.31838/WSNIOT/01.01.06

Rucker, P., Menick, J., & Brock, A. (2025). Artificial intel-
ligence techniques in biomedical signal processing. Inno-

vative Reviews in Engineering and Science, 3(1), 32-40.
https://doi.org/10.31838/INES/03.01.05

Sadulla, S. (2024). Techniques and applications for
adaptive resource management in reconfigurable
computing. SCCTS Transactions on Reconfigurable

Computing, 1(1), 6-10. https://doi.org/10.31838/RCC/
01.01.02

Geetha, K. (2024). Advanced fault tolerance mecha-
nisms in embedded systems for automotive safety. Jour-
nal of Integrated VLSI, Embedded and Computing Tech-
nologies, 1(1), 6-10. https://doi.org/10.31838/JIVCT/
01.01.02

