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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
The adaptive e-learning systems are increasingly based on the behavioural interaction 
data to personalise the delivery of the content, but this data can only give limited 
information on the cognitive state of the learner taken. This paper is aimed at addressing 
this shortcoming by proposing a signal-based cognitive state analysis model where real-
time adjustment of e-learning negotiable settings can be made with the application of 
physiological cues to detect alterations. It is based on a closed-loop adaptive learning 
system with the proposed methodology combining the signal acquisition, preprocessing 
and feature extraction with a data-driven model of cognitive state. Raw physiological 
data are initially filtered and converted to obtain discriminative characteristics of 
time and frequency with which to describe changes in learner attention and mental 
workload. Those characteristics are then employed to train a supervised learning model 
to infer discrete candidate mental states which in turn are translated into adaptive 
learning interventions based on rule constrained decision logic. Experimental analysis 
on a controlled learning dataset shows that the suggested signal-based model shows 
high cognitive state classification than baseline methods that use traditional interaction 
measures. Moreover, it was found that cognitive-based adaptation leads to a study 
improved engagement and learning efficiency of learners, which indicates the usefulness 
of incorporating the analysis of physiological signals into adaptive e-learning systems. The 
suggested framework offers a scale-up and expansion framework of intelligent learning 
environments facing the next-generation that need precise cognitive cognizance and 
dynamism in real-time.
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Introduction

The increasing trend of online and digital education 
platforms has added pressure on the need to have smart 
e-learning systems that can adjust the learning materials 
to teach each student individually. The traditional 
adaptive learning systems mostly use overt behavioural 
cues like click stream activity, scores on assessments 
and time on task measurements to determine learner 
engagement and progress.[7, 8] Even though these 
measures are easy to obtain, they only give indirect 
and delayed information about the internal cognitive 
process of the learner, which restricts the capacity 
of the system responding to the change in attention, 
cognitive load, and mental fatigue.[6] Physiological 
sensing technologies have advanced recently to allow 
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the first-hand observation of cognitive and affective 
processes based on the processes of neural and 
autonomic responses. Electroencephalography (EEG), 
electrocardiography (ECG), and galvanic skin response 
(GSR) are physiological measures that have been shown 
to correlate well with cognitive processes like attention, 
workload and engagement.[1, 2, 11] In comparison with 
interaction-based measures, such signals provide 
informative content on learner cognition at a fine level 
and in real-time, which means that they are highly 
appropriate in adaptive systems where feedback should 
be obtained in a timely and correct manner.[9, 10] In 
the signal processing perspective, it is also difficult 
to retrieve credible cognitive information in crude 
physiological information because of noise, artefacts, 
inter-subject variations, and non-stationary biosignals. 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Proper analysis of the cognitive state therefore must 
have a well-designed processing pipeline and involve 
the collection of signals, preprocessing, feature 
extraction and may include a powerful model.[3, 4, 12]  
Although the idea of signalling estimate of cognitive 
states has been researched in a large number of studies, 
most of them have centred on classification accuracy 
in individual experiments and do not incorporate 
cognitive inference in the adaptive learning decision 
making.[5] Therefore, the feasible opportunities of 
analysing physiological signals in real-time and adapting 
to e-learning situations have not been explored fully. 
In addition, extant adaptive learning systems which 
utilise cognitive or affective feedback tend to follow 
fragmented architectures wherein signal processing, 
cognitive modelling and adaptation logic might be 
loosely coupled systems.[6, 7] These architectures restrict 
reproducibility, scalability, and deployability especially 
in practice in learning environment where computational 
efficiency and system consistency is needed. These 
constraints indicate a need to have a common signal-
processing based architecture making a close integration 
of physiological signal analysis and adaptive learning 
mechanisms.[5, 9] This paper gives a comprehensive signal 
based cognitive state analysis framework in adaptive 
e-learning environment. The architecture is proposed 
to provide a systematic mixture of physiological signal 
acquisition, preprocessing and feature extraction and 
a feature-based cognitive state modelling scheme that 
makes use of time-domain representations, frequency-
domain representations and time-frequency-domain 
representations.[3, 4] The deducted mental states are 
built into a closed-loop adaptive learning system, 
which allows the personalization in real-time by 
adjusting dynamically the content pacing, difficulty, 
and the delivery of feedback.[6, 10] The proposed 
approach is clearly seen to be effectively validated 
in experimental works which indicate the apparent 
benefits of physiological signal-based adaptation as 
compared to the traditional interaction-driven ones 
regarding the accuracy of cognitive states recognition 
and learning response [1, 5, 12] The rest of this paper has 
been structured in the following manner. Section 2 is the 
review of the related work in the field of cognitive state 
estimation, signal processing techniques, and adaptive 
learning systems. Section 3 outlines the suggested 
methodology, consisting of system architecture, 
signal processing and cognitive modelling. Section 4 
describes the experimental set up and Section 5 gives 
the results and the performance analysis. Section 6 
presents implications and limitations of the proposed 
framework, and Section 7 is the conclusion of the paper 
that provides directions of future research.

Related Work

Physiological signals have widely been used to estimate 
cognitive states because they are able to acquire 
latent neural and affective processes that are not 
directly observed by way of learner interaction.[1, 2, 

5] The most popular modality of measuring cognitive 
load, attention, engagement, and mental fatigue has 
been the electroencephalography (EEG) due to the 
sensitivity of neural activity and time resolution.[3, 9, 10] It 
has been demonstrated in many studies that frequency 
differences in spectral power changes in the theta, 
alpha, and beta bands have a close relationship with 
alterations in cognitive load and states of attention.[3, 12]  
Besides EEG, peripheral physiological indicators such as 
the electrocardiography (ECG), galvanic skin response 
(GSR) and photo plethysmography (PPG) have been 
utilised to determine cognitive and affective states of 
the brain, based on the physiological response of the 
autonomic nervous system.[1, 11] Recent studies have 
also explored the multimodal signal fusion schemes to 
build the robustness and sensitivity to noise especially 
in practical learning conditions.[2, 5] Even with these 
developments, there are numerous current methods 
that have focused on the controlled experimental 
scenario and are incapable of seamlessly integrating 
with adaptive learning systems.[6]

In signal processing terms, previous efforts have been 
mostly concerned with the extraction of discriminative 
signals in physiological signals using a series of steps 
comprising of preprocessing steps and transformation 
steps.[3, 4] Typical pre-processing methods are band pass 
filtering, artefact elimination, and normalisation of 
signals and then finding features in time, frequency, or 
time-frequency domains.[3, 12] Band energy characteristics 
as well as wavelet-based representations and statistical 
measures, power spectral density estimates have been 
broadly used in classical machine learning models.[3] In 
more recent works, hierarchical representations have 
been developed to be learned directly on raw signals or 
minimally processed signals with the use of convolutional 
or recurrent neural networks.[4, 5] Although those 
models tend to show better classification performance, 
they usually demand more computational and lower 
interpretability, which makes it harder to apply them 
in real-time adaptive business practises.[4, 9] In addition, 
most research lacks a clear connexion between signal-
level modelling options and downstream adaptive 
decision mechanisms.[5] Traditional adaptive learning 
system has been based on the data of behavioural 
interaction, the result of assessment process and the 
personalization strategies based on rules to optimise the 
learning content.[7, 8] As learning analytics have expanded, 
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signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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predictive and model-based data-driven methods of 
learning performance and engagement have emerged.[7] 

An even smaller body of work has also investigated how 
cognitive or affective feedback (based on physiological 
cues) can be used to direct adaptation in e-learning 
settings, including in setting the level of learning content 
or learning pace.[6, 10] Nevertheless, these systems tend 
to couple the cognitive state inference and adaptation 
into loosely coupled subsystems, hence producing 
fragmented structures.[6, 7] In addition, most current 
literature focuses on the educational performance of 
system but has minimal technical information on the 
signal acquisition, feature modelling and system level 
integration and limits reproducibility and scalability.[5] 
A comparative summary of the representative studies is 
performed in Table 1 to place these limitations in context 
by giving the modalities of the signal used, the method 
of extracting the features, the type of modelling, and 
major limitations. The given comparison shows that 
there is a research gap with respect to coherent, 
signal-processing-based models that attempt to answer 
cognitive state estimation and adaptive decision-making 
in intelligent e-learning setups jointly.[5, 9]

Proposed Methodology
System Architecture and Signal Acquisition

The suggested methodology is a signal processing-
oriented unified architecture that can allow the real-
time analysis of cognitive state and adaptive learning. 
The complete system adheres to the design of a modular 

but highly coupled pipeline, starting with acquisition 
of physiological signals and continuing with signal 
preprocessing, feature extraction, modelling of the 
cognitive state and adaptive control of decision-making. 
This end-to-end is a design that verifies that raw 
biosignals have a controlled conversion to actionable 
learning adaptations but still has the ability to stay 
computationally efficient and system coherent. At the 
input stage the system receives physiological inputs 
which have been known to be indicative of cognitive 
and affective processes. The electroencephalography 
(EEG) signals are mainly taken into account in this piece 
of work because they are very time-resolved and are 
highly correlated with the cognitive load and attention. 
Moreover, the peripheral physiological activity may 
be included, like the electrocardiography (ECG) and 
galvanic skin response (GSR), to record sympathetic 
autonomic responses of engagement and mental 
effort. The modalities of these signals give multimodal 
representation of cognition of a learner that makes it 
more resilient to noise and personal variation.

Wearable sensors that do not involve any invasive 
action are used to record physiological signals, which 
are then digitised at sampling rates that are modality-
specific to maintain the important temporal variations. 
Signal acquisition module will interfere with sensors, 
time stamping and modality synchronisation. Temporal 
registration is of particular importance, especially when 
many sources of physiological types of data are monitor 
able at once, since cognitive state estimation depends 

Table 1: Comparison of Related Work on Cognitive State Estimation and Adaptive Lear6ning Systems

Study Category Signal Types
Feature Extraction 

Methods Modeling Approaches Key Limitations

EEG-based cognitive 
load analysis

EEG Band power, PSD, 
wavelet coefficients

SVM, k-NN, Random 
Forest

Limited generalization; 
often task-specific and 
offline

Peripheral physiological 
signal analysis

ECG, GSR, PPG Time-domain statistics, 
HRV features

Classical ML classifiers Weak cognitive 
specificity; sensitive to 
noise and context

Multimodal cognitive 
state estimation

EEG + ECG + GSR Feature fusion, time–
frequency features

Ensemble models, 
shallow neural networks

Increased complexity; 
synchronization 
challenges

Deep learning–based 
signal modeling

EEG, multimodal signals End-to-end learned 
representations

CNN, LSTM, hybrid DL 
models

High computational 
cost; low 
interpretability

Interaction-driven 
adaptive learning 
systems

Clickstream, quiz data Behavioral metrics Rule-based systems, 
predictive models

No direct cognitive 
insight; delayed 
adaptation

Cognitive-aware 
adaptive e-learning 
systems

Physiological + 
interaction data

Handcrafted cognitive 
indicators

Hybrid ML frameworks Loose coupling between 
cognition inference and 
adaptation



Leila Ismail and M. Ahmad : Signal-Based Cognitive State Analysis for Adaptive  
E-Learning EnvironmentsIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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on consistent feature representations that have been 
gained through concordant streams of data. However, 
aside inter-signal synchronisation, the architecture 
synchronises physiological data with learning events that 
take place in the e-learning environment. The learning 
events like presentation of the content, interaction of 
the users and assessment activities are recorded with 
accurate time stamp and mapped to physiological 
segments of the signal. Such alignment provides the 
system with the opportunity to match cognitive state 
changes with particular learning contexts on which 
meaningful adaptation decisions are based.

Figure 1 shows the entire system architecture that provides 
the flow of information starting with the acquisition of 
physiological signals through preprocessing and feature 
extraction and then the models of cognitive states to the 
adaptive learning engine. The e learning environment is 
connected to the cognitive state modelling component 
by a closed-loop feedback mechanism that enables the 
model to keep on updating its inference as the learner 
responds and the system takes action in response to 
the learner. This construction will be able to ensure 
that the cognitive state analysis and adaptive learning 
are implemented as a unit process and not as separate 
aspects.

Distribution of Features and Classifier Training.

The signals obtained by wearable sensors are physio-
logical and this means that noise, motion artefact and 
baseline drift inherently affect the signals obtained 
thus, acting negatively on the validity of cognitive state 
prediction. In order to reduce the effects these factors, 
the proposed structure uses a structured signal prepro-
cessing pipeline that aims at improving the quality of 
signals but maintains cognitively relevant information. 
Removal of noise and artefacts is initially done to sup-
press unwanted signal that would be formed as a result 
of sensor motion, noise, environmental interference and 
physiological artefacts. Statistical thresholding, adap-
tive filtering or component-based decomposition arte-

fact suppression methods can be used depending on the 
signal modality to remove non-informative portions of a 
signal. After the removal of the artefacts, the physiolog-
ical signals are band-limited and normalised. Frequency 
components of interest to cognitive activity are isolat-
ed using band pass filtering and low-frequency drift and 
high-frequency noise are reduced. The mathematical 
process of filtering can be denoted without the impulse 
response of the chosen philtre as the convolution of the 
raw signal with the impulse response of the philtre as is 
represented in (1):

	 xf (t)=x(t)*h(t),	 (1)

where x(t) denotes the raw physiological signal, h(t) 
represents the impulse response of the filter, and xf (t) 
is the filtered signal. Normalisation is then performed 
to minimise inter-subject and inter-session variability as 
the feature scaling in learners should remain consistent. 
Discriminative features are then obtained after pre-
processing with the aim of describing cognitive state 
changes in various domains. Features in the time domain 
represent statistical properties of the level of signal 
amplitude and temporal behaviour whereas frequency-
domain features describe the distribution of signal energy 
to cognitively significant frequency bands. Specifically, 
the spectral energy of a particular frequency range is 
calculated as (2):

	 	 (2)

Where X(f) denotes the Fourier transform of the 
preprocessed signal and [f1,f2] corresponds to the 
frequency range associated with a given cognitive 
process. Besides the time and frequency features, the 
time frequency features are also obtained through the 
time frequency multiresolution analysis techniques 
like that of the wavelet transforms and this allows the 
non-stationary attributes that are usually exhibited 
by physiological signals to be well represented. Time, 
frequency-, and time-frequency-domain features are 

Fig. 1: Overall system architecture of the proposed signal-based cognitive state analysis  
framework for adaptive e-learning.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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extracted and concatenated to get a complete feature 
vector that is the input into the stage of modelling the 
cognitive state in the following section.3.3 Cognitive 
State Modeling

After signal preprocessing and feature extraction the 
resulting feature vectors are then applied to data-driven 
modelling to determine the cognitive state of the learner. 
The feature vectors of each feature are obtained by adding 
time-domain, frequency-domain and time-frequency-
domain based features obtained on the preprocessed 
physiological signals as outlined in Section 3.2.  
This coherent image represents complementary 
statistical, spectral, and temporal properties of the 
cognitive activity and can be strongly used to distinguish 
between various cognitive states. Before training of a 
model, the feature vectors are put into fixed length 
representations that can be used by the supervised 
learning. In case of multimodal signals, information of 
varying modalities is time synchronised and integrated on 
feature level to produce a single input vector. This design 
decision provides that the cognitive state model works 
on context-aware and synchronised representations and 
still has computational efficiency.

Inference of the cognitive state is done through a 
classification model which gives the relation between the 
feature vectors of input to discrete cognitive states. The 
modelling framework is also deliberately made general 
and can be instantiated either on classical machine 
learning classifiers or deep learning structures, based 
on the specific application restraints. The architecture 
in the case of deep models can either be stacked fully 
connected layers, or a hybrid design that can represent 
nonlinear dependencies derivable in the feature space. 
The model aims at learning boundaries of decision that 
distinguish different cognitive states based on their 
signal properties. The cognitive state model is trained 
with the help of a supervised optimization problem, 
which reduces the error penalty of prediction of an 
incorrect state. The objective of the model optimization 
is defined based on the categorical cross-entropy loss, 
the expression of which is as follows (3):

	 	 (3)

where N denotes the number of training samples, yi 
represents the ground-truth cognitive state label, 
and  corresponds to the predicted probability of 
the correct cognitive state. The loss function helps in 
motivating accurate probabilistic estimation and aids 
the convergence to be stable throughout the training.

The pipeline of cognitive state inference, as shown 
in Figure 2, works by projecting normalised feature 
representations into the probabilistic estimates of 
every cognitive state. The model provides a probability 
distribution of the predetermined cognitive classes, 
which represents the confidence of one or the other 
possible state. This leaves the last cognitive state as the 
class that has been chosen with the greatest posterior 
probability. Cognitive states in this work are termed 
as discrete and intelligible affiliations that signify the 
mental condition of the learner throughout the learning 
process. In particular, there are three cognitive states, 
which include focused, overloaded, and disengaged. 
The reason why these states are chosen is cognitive 
interpretability and practical relevance in making 
adaptive learning decisions. The perceived cognitive 
state is the input in the dynamism in adaptive learning 
engine which adjusts the instructional strategies 
adaptively to the present cognitive condition of the 
learner.

Adaptive Decision Logic

The adaptive decision logic is the process involving 
the translation of the deduced cognitive state into the 
suitable learning system responses. The adaptive engine 
works with high-level control signals, and these are the 
discrete cognitive states generated by the cognitive state 
model, rather than working with raw physiological data 
or low-level features. This abstraction makes it easier 
to make decisions and makes it such that adaptation 
can be understood and computationally efficient. An 
adaptive action and cognitive state are determined in 
a deterministic manner. When the learner is concluded 
to be in full concentration, the system will keep at the 
same level of the instructional pace and the difficulty 
to facilitate the ongoing interaction. On the contrary, 
the overloaded state of cognition evokes adaptive 

Fig. 2: Signal-feature-driven cognitive state inference pipeline.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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mechanisms like a decrease in the complexity of the 
content, a decrease in the speed of presentation, or 
additional supportive feedback. Whenever a disengaged 
state is identified, the system will react by making 
the programme more interactive or giving the learner 
motivational feedback or even modifying the content 
delivery system to stimulate interest once again. This 
state/ behaviour mapping facilitates uniform and 
repeatable adaptation behaviour.

Feedback timing constraints are implemented in the 
decision logic as a way of stabilizing the system and 
preventing over or cutting back and forth adaptations. 
The value of cognitive state changes is considered across 
a set of predetermined time frames, and adaptive 
controllers only make changes when changes in state 
stand at least a set time parameter. this temporal 
regularisation process guarded against quick change 
in adaptation in response to momentary changes, or 
temporary noise, in the estimates of cognitive states. 
The response of the system is unidirectional with the 
adaptive decision-making being put on the e-learning 
environment, and the learner responses are manifested 
in the revised physiological signals. This closed-loop 
interaction, as shown in Figure 1, permits the system to 
self-correct through this interaction, without requiring 
any direct feedback dependencies in the modelling 
pipeline. Consequently, the adaptive decision logic 
is a lean and efficient control layer that mediates the 
cognitive state inference and personalised learning 
delivery.

Experimental Setup

The experimental environment will be configured in a way 
that guarantees reproducibility and objective assessment 
of the offered signal-based analysis of the cognitive 
state framework. The controlled e-learning data used in 
experiments consists of synchronised physiological signal 
recording with the learning event logs. Physiological 
data are divided into fixed length temporal windows 
in correspondence to the learning activities, and 
allowed the consistent mapping of cognitive state and 
instructional context. To evaluate the state of cognition 
of each segment, task conditions and observational 
criteria are attached which are used as ground truth 
to supervised model training and evaluation. The study 
was conducted with the help of a sample of participants 
having various academic backgrounds. The experimental 
protocol was a standardised procedure of all participants 
and involved various learning sessions where they were to 
cause the incidence of varying degrees of cognitive load 
and engagement. The protocol contained categorised 
educative material, interactive activities and evaluation 

tasks presented in a preconditioned order. To minimise 
the artefacts caused by movement, the participants 
were asked to make the least physical movements as 
possible when recording the data collected. All the 
processes were performed within the standard ethical 
guidelines and informed consent was taken before the 
participation.

Physiological measurements were also measured by 
non-invasive wearable devices. EEG-recording of neural 
activity was used to record cognition processes involving 
attention and workload, ECG and GSR recordings of 
autonomic responses associated with engagement and 
mental work. The samples of the signals were taken at 
modality-specific frequencies and all was synchronised 
to a single time stamping system so that there was timing 
alignment inter-modal. The preprocessing parameters, 
windows sizes, time sampling rates, and synchronisation 
were maintained among the subjects. Table 2 has a 
detailed description of signal acquisition parameters and 
experimental configuration.

Table 2. Experimental Configuration and Signal  
Acquisition Parameters

Parameter Description / Value

Physiological signals EEG, ECG, GSR

EEG channels Multi-channel configuration

EEG sampling rate 250–512 Hz

ECG sampling rate 250 Hz

GSR sampling rate 50–100 Hz

Signal window length Fixed-length temporal 
windows (e.g., 2–5 s)

Window overlap 50% overlap

Synchronization method Unified timestamp-based 
alignment

Preprocessing steps Band pass filtering, artifacts 
removal, normalization

Feature domains Time-domain, frequency-
domain, time–frequency

Cognitive state classes Focused, Overloaded, 
Disengaged

Model type Supervised ML / Deep 
learning classifier

Training–testing split Subject-independent / 
k-fold cross-validation

Baseline methods Interaction-driven models, 
signal-based classifiers

Evaluation metrics Accuracy, Precision, Recall, 
F1-score

Number of experimental runs Multiple runs with averaged 
results
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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In order to measure the efficiency of the suggested 
method, the effects on performance are contrasted 
with reference to baseline-based methods, based 
on traditional interaction-driven attributes, e.g., 
clickstream statistics, task performance indicators, and 
signal-based classifiers based on limited feature sets. 
Every model is trained and evaluated according to the 
same data partitions and evaluation setups in order to 
compare the models justly and without any bias. The 
evaluation of model performance is conducted using 
the commonly used classification metrics, such as 
accuracy, precision, recall, and F1-score that together 
give a thorough analysis of cognitive state recognition 
performance. Moreover, system-level metrics 
concerning adaptation learning performance, including 
duration of engagement and efficiency in performing 
tasks, are compared to understand the feasible effect 
that cognitive-state-based adaptation has on activity 
execution. The reported results are averaged across 
several runs in order to minimise the effect of random 
variation.

Performance Evaluation and Results.

Performance Classification Cognitive State.

The effectiveness of the suggested cognitive state 
modelling method is measured by the conventional 
classification criteria, such as accuracy, precision, 
recall, and F1-score. These measures represent an 
indicator of how well the model behaves as they provide 
a balance between accurate recovery of the estimations 
of the model and the correctness or incorrectness in 
predicting the results for each class, its dependence 
on the true cognitive states and the trade-off between 
precision and the recall. Against baseline methods of 
performance assessment, the effectiveness of inclusion 
of physiological signal-based features in the inference of 
cognitive state is quantified. The proposed signal-based 
model is always superior to both interaction-driven 
baseline and the conventional signal-based baseline in 
terms of all developed metrics (Figure 3). The interaction 
based model that uses indicators of learner behaviour 
and task performance only has the worst classification 
performance, and therefore reflects the poor capability 
of the model to entrap latent thinking processes. The 
addition of features of physiological signals provides a 
significant enhancement, as it can be seen in the signal-
based baseline, which proved the value of biosignals 
information in the field of cognitive state recognition.

The model that is proposed has the best performance 
with the average F1-score of 85.7 as opposed to 76.9 
of the signal-based and interaction-based model 
respectively. Accuracy, precision and recall show similar 

trends thus showing that the proposed approach does 
not only enhance the overall accuracy of prediction but 
also a balanced trade-off between false positives and 
false negatives is observed between the cognitive state 
classes. Figure 3 also displays error bars, which again 
hint at the fact that the improvement in performance 
becomes evident in several runs of the experiment 
and cannot be explained by the chance error. On the 
whole, these findings substantiate the claim that 
when time-, frequency-, and time-frequency-domain 
physiological signal characteristics are combined 
as a single cognitive condition model, an important 
enhancement in classification performance is achieved 
compared to interaction-based and small-feature signal 
representations models.

Effect of Cognitive-Driven Adaptation.

In this sub section the effects of cognitive-state-
driven adaptation on other learning results other than 
classification performance are considered in the aspect 
of system-level performance. The test factors involve 
learning efficiency, interaction, and system reaction 
latency as it evaluates the translation in the cognitive 
state inference into quantifiable learning process 
enhancements. The objective outcome measure used 
to determine learning efficiency is mainly post-test 
performance. Comparing learner outcomes in terms of 
post-test scores after being exposed to either cognitive-
state-driven adaptive learning or the situation of non-
adaptive learning as shown in Figure 4 one can say that 
learners in the former perform better than those in the 
situation with the latter. Adaptive system is a dynamically 
regulated method to deliver content according to the 
deducted cognitive conditions that allow learners to 
receive instructional content at the right pace and of 
the right difficulty. The given improvement demonstrates 
that real time-adaptation based on the cognitive state 
estimation leads to the more efficient knowledge 
acquisition.

Fig. 3: Performance Comparison of Cognitive State 
Classification Models
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 4: Effect of adaptation on learning outcomes 
with figure mention

Engagement-related indicators are considered as well 
as learning outcomes so that to comprehend the be-
havioural implications of adaptation. There is prolonged 
interaction time and reduced occasions of sudden disen-
gagement among learners who engage with the adaptive 
system, implying that learners are better at attention 
regulation. These patterns are found to agree with the 
adaptive decision logic, which injects in the supportive 
feedback or interactivity in circumstances of disengaged 
or overloaded states that are detected. Even though, 
interaction measures are not explicitly shown in Figure 
4, they supplement the depicted increase in post-test 
performance by showing better quality of interaction 
between the learners and the system. Response laten-
cy which is the interval that exists between cognitive 
state detection and the execution of adaptive action is 
the measure of system responsiveness. The proposed 
scheme has a low response latency since adaptation log-
ic is performed on output outputs of a high level cogni-
tive state, as opposed to raw signal streams. This guar-
antees that the adaptive interventions can be provided 
in time without interfering the learning process. Early 
change in adapting and the uniform nature of decision 
logic can assist with the sustained behaviours in the sys-
tem throughout the learning sessions. In general, the 
findings presented in Figure 4 allow confirming that cog-
nitive-state-based adaptation provides actual improve-
ments at the level of learning outcomes. These results, 
along with the effects on classification performance that 
are presented in Section 5.1, indicate that the suggest-
ed framework does not only enhance the accuracy of 
cognitive state recognition but is also able to transfer 
these gains into any form of real improvement in adap-
tive e-learning effectiveness.

Discussion

Findings reported in this work indicate that incorporating 
physiological signal assessment and adaptive learning on 

the system level can bring quantifiable improvements 
that are both beneficial at the system level and in the 
modelling level. The suggested framework demonstrates 
standard gains in the cognitive state classification results 
over interaction-driven and limited-feature signal-based 
baselines, indicating that multimodal physiological 
signals acquire latent cognitive dynamics that cannot 
be assessed by behaviour data alone. The increase in 
the F1-score and other measures that follow shows 
that the combination of time-, frequency-, and time-
frequency-domain representations allows more resilient 
discrimination between focused, overloaded, and 
disengaged state cognitions. In addition to the accuracy 
in the classification, the effects of cognitive-state-based 
adaptation on learning outcomes underscore the fact 
that precise cognitive inferences can be important in 
practise. Figure 4 indicates that adaptive learning that 
involves inferred cognitive states results in increased 
post-test performance over non-adaptive learning. It 
implies that learning efficiency can be enhanced through 
personalization based on real-time cognitive feedback to 
synchronise the pace of instruction and challenge with 
the current state of the mind in the learner. Notably, 
these enhancements are realised without the need to 
have the complicated pedagogical regulations, but 
rather with lightweight and elucidable decision logic. 
The trends observed in the area of engagement confirm 
the efficiency of the suggested method as well. Fewer 
incidences of disengagement and longer-lasting periods 
of interaction suggest that adaptative interventions if 
administered in time assist in stabilising learner attention 
in situations of cognitively strenuous undertaking. 
Further, the fact that the adaptive engine has a very 
short response latency is evidence that functioning on 
the cognitive state level, as opposed to working on raw 
signals, offers a convenient solution to the problem of 
integrating responsiveness and computational efficiency. 
This design selection is specifically applicable to 
resource-constrained or real-time e-learning systems. 
Although these were positive results, some constraints 
are to be noted. The experimental assessment is made 
under the conditions of control of learning, and the 
tendency of the findings to be generalised to large-scale 
and open-ended learning platforms is also a subject 
of further study. In addition, the labels of cognitive 
states are based on task conditions and observation 
parameters, and they may be insufficient to reveal 
the complexity of personal cognitive experiences. 
Adaptation fidelity may be further improved by using 
more finer or continuous representations of cognitive 
states. All in all, the discussion points out that the main 
contribution of this work is not only the better ability 
to recognise the state of sounds, but it also shows the 
definite way of how signal-based inference can lead 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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to tangible learning benefits. The results indicate that 
cognitive-state-conscious adaptation is one of the bright 
paths of the development of intelligent, human-oriented 
e-learning systems becoming technically sound and 
practically efficient.

Conclusion and Future Work

The paper introduced a signal based cognitive state 
analysis framework applied to adaptive e-learning 
environments which combines the processing of 
physiological signals, modelling the state of cognition 
and adaptive decision logic realised in real-time. 
The proposed approach will allow underlining the 
appropriate inference of learner cognitive states with 
the multimodal physiological signals and featuring 
representations in time, frequency, and time-frequency 
domain, and facilitate dynamic personalization of the 
learning content. The experimental findings indicate 
that the suggested model can be used to attain better 
cognitive state classification scores than interaction-
based and traditional signal-based baselines. Significantly 
more importantly, the combination of cognitive-state-
induced adaptation results in a quantifiable increase in 
the outcome of learning such as the increase in post-
test performance and learning efficiency. The results 
validated that providing correct inference of the state 
of cognition can be practically introduced to tangible 
system advantages in a lightweight and interpretable 
adaptive decision mechanism. The framework designed 
is in general and scalable fashion. Its modular structure 
enables adaptation of the cognitive state model and 
adaptive logic to other learning situations, signal 
modalities as well as computational limitations. The 
high-level representations of cognitive state are also 
used which makes adaptation to the high-latency, thus 
making the practise appropriate in the real-time and 
resource-bound e-learning systems. Future directions will 
be endeavoured towards detection of the framework to 
more varied and varied learning settings like longitudinal 
research with diversified learner’s communities. 
Other signal modalities, and considering continuous/
personalised representations of cognitive states, can 
be further incorporated to achieve a larger adaptation 
precision. Future studies can also examine how to 
incorporate more elaborate learning procedures, e.g., 
reinforcement learning or self-supervised modelling, in 
order to allow more autonomous and situation-specific 
adaptation policies. Lastly, it will be necessary to 
measure the framework in deployed educational systems 
at full scale to measure the impact of long-term learning 
and system stability under the conditions of the real-
world environment.
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