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ABSTRACT

The adaptive e-learning systems are increasingly based on the behavioural interaction
data to personalise the delivery of the content, but this data can only give limited
information on the cognitive state of the learner taken. This paper is aimed at addressing
this shortcoming by proposing a signal-based cognitive state analysis model where real-
time adjustment of e-learning negotiable settings can be made with the application of
physiological cues to detect alterations. It is based on a closed-loop adaptive learning
system with the proposed methodology combining the signal acquisition, preprocessing
and feature extraction with a data-driven model of cognitive state. Raw physiological
data are initially filtered and converted to obtain discriminative characteristics of
time and frequency with which to describe changes in learner attention and mental
workload. Those characteristics are then employed to train a supervised learning model
to infer discrete candidate mental states which in turn are translated into adaptive
learning interventions based on rule constrained decision logic. Experimental analysis
on a controlled learning dataset shows that the suggested signal-based model shows
high cognitive state classification than baseline methods that use traditional interaction
measures. Moreover, it was found that cognitive-based adaptation leads to a study
improved engagement and learning efficiency of learners, which indicates the usefulness
of incorporating the analysis of physiological signals into adaptive e-learning systems. The
suggested framework offers a scale-up and expansion framework of intelligent learning
environments facing the next-generation that need precise cognitive cognizance and
dynamism in real-time.
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INTRODUCTION

The increasing trend of online and digital education
platforms has added pressure on the need to have smart
e-learning systems that can adjust the learning materials
to teach each student individually. The traditional
adaptive learning systems mostly use overt behavioural
cues like click stream activity, scores on assessments
and time on task measurements to determine learner
engagement and progress.”> 8 Even though these
measures are easy to obtain, they only give indirect
and delayed information about the internal cognitive
process of the learner, which restricts the capacity
of the system responding to the change in attention,
cognitive load, and mental fatigue.l! Physiological
sensing technologies have advanced recently to allow
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the first-hand observation of cognitive and affective
processes based on the processes of neural and
autonomic responses. Electroencephalography (EEG),
electrocardiography (ECG), and galvanic skin response
(GSR) are physiological measures that have been shown
to correlate well with cognitive processes like attention,
workload and engagement.[" 2 "l |n comparison with
interaction-based measures, such signals provide
informative content on learner cognition at a fine level
and in real-time, which means that they are highly
appropriate in adaptive systems where feedback should
be obtained in a timely and correct manner. "9 In
the signal processing perspective, it is also difficult
to retrieve credible cognitive information in crude
physiological information because of noise, artefacts,
inter-subject variations, and non-stationary biosignals.
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Proper analysis of the cognitive state therefore must
have a well-designed processing pipeline and involve
the collection of signals, preprocessing, feature
extraction and may include a powerful model.B 4 2
Although the idea of signalling estimate of cognitive
states has been researched in a large number of studies,
most of them have centred on classification accuracy
in individual experiments and do not incorporate
cognitive inference in the adaptive learning decision
making.®! Therefore, the feasible opportunities of
analysing physiological signals in real-time and adapting
to e-learning situations have not been explored fully.
In addition, extant adaptive learning systems which
utilise cognitive or affective feedback tend to follow
fragmented architectures wherein signal processing,
cognitive modelling and adaptation logic might be
loosely coupled systems.! 71 These architectures restrict
reproducibility, scalability, and deployability especially
in practice in learning environment where computational
efficiency and system consistency is needed. These
constraints indicate a need to have a common signal-
processing based architecture making a close integration
of physiological signal analysis and adaptive learning
mechanisms.? % This paper gives a comprehensive signal
based cognitive state analysis framework in adaptive
e-learning environment. The architecture is proposed
to provide a systematic mixture of physiological signal
acquisition, preprocessing and feature extraction and
a feature-based cognitive state modelling scheme that
makes use of time-domain representations, frequency-
domain representations and time-frequency-domain
representations.> 41 The deducted mental states are
built into a closed-loop adaptive learning system,
which allows the personalization in real-time by
adjusting dynamically the content pacing, difficulty,
and the delivery of feedback.® ' The proposed
approach is clearly seen to be effectively validated
in experimental works which indicate the apparent
benefits of physiological signal-based adaptation as
compared to the traditional interaction-driven ones
regarding the accuracy of cognitive states recognition
and learning response ['» > 121 The rest of this paper has
been structured in the following manner. Section 2 is the
review of the related work in the field of cognitive state
estimation, signal processing techniques, and adaptive
learning systems. Section 3 outlines the suggested
methodology, consisting of system architecture,
signal processing and cognitive modelling. Section 4
describes the experimental set up and Section 5 gives
the results and the performance analysis. Section 6
presents implications and limitations of the proposed
framework, and Section 7 is the conclusion of the paper
that provides directions of future research.

s I

RELATED WORK

Physiological signals have widely been used to estimate
cognitive states because they are able to acquire
latent neural and affective processes that are not
directly observed by way of learner interaction.!" 2
1 The most popular modality of measuring cognitive
load, attention, engagement, and mental fatigue has
been the electroencephalography (EEG) due to the
sensitivity of neural activity and time resolution. % 0 |t
has been demonstrated in many studies that frequency
differences in spectral power changes in the theta,
alpha, and beta bands have a close relationship with
alterations in cognitive load and states of attention.[® '
Besides EEG, peripheral physiological indicators such as
the electrocardiography (ECG), galvanic skin response
(GSR) and photo plethysmography (PPG) have been
utilised to determine cognitive and affective states of
the brain, based on the physiological response of the
autonomic nervous system.[" "1 Recent studies have
also explored the multimodal signal fusion schemes to
build the robustness and sensitivity to noise especially
in practical learning conditions.® 51 Even with these
developments, there are numerous current methods
that have focused on the controlled experimental
scenario and are incapable of seamlessly integrating
with adaptive learning systems.[¢]

In signal processing terms, previous efforts have been
mostly concerned with the extraction of discriminative
signals in physiological signals using a series of steps
comprising of preprocessing steps and transformation
steps.> 4 Typical pre-processing methods are band pass
filtering, artefact elimination, and normalisation of
signals and then finding features in time, frequency, or
time-frequency domains. 2 Band energy characteristics
as well as wavelet-based representations and statistical
measures, power spectral density estimates have been
broadly used in classical machine learning models.! In
more recent works, hierarchical representations have
been developed to be learned directly on raw signals or
minimally processed signals with the use of convolutional
or recurrent neural networks.®™ ° Although those
models tend to show better classification performance,
they usually demand more computational and lower
interpretability, which makes it harder to apply them
in real-time adaptive business practises. ! In addition,
most research lacks a clear connexion between signal-
level modelling options and downstream adaptive
decision mechanisms.! Traditional adaptive learning
system has been based on the data of behavioural
interaction, the result of assessment process and the
personalization strategies based on rules to optimise the
learning content.-8 As learning analytics have expanded,
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predictive and model-based data-driven methods of
learning performance and engagement have emerged.!
An even smaller body of work has also investigated how
cognitive or affective feedback (based on physiological
cues) can be used to direct adaptation in e-learning
settings, including in setting the level of learning content
or learning pace.[® 1% Nevertheless, these systems tend
to couple the cognitive state inference and adaptation
into loosely coupled subsystems, hence producing
fragmented structures.> 71 In addition, most current
literature focuses on the educational performance of
system but has minimal technical information on the
signal acquisition, feature modelling and system level
integration and limits reproducibility and scalability.®
A comparative summary of the representative studies is
performed in Table 1 to place these limitations in context
by giving the modalities of the signal used, the method
of extracting the features, the type of modelling, and
major limitations. The given comparison shows that
there is a research gap with respect to coherent,
signal-processing-based models that attempt to answer
cognitive state estimation and adaptive decision-making
in intelligent e-learning setups jointly.?

PROPOSED METHODOLOGY

System Architecture and Signal Acquisition

The suggested methodology is a signal processing-
oriented unified architecture that can allow the real-
time analysis of cognitive state and adaptive learning.
The complete system adheres to the design of a modular

but highly coupled pipeline, starting with acquisition
of physiological signals and continuing with signal
preprocessing, feature extraction, modelling of the
cognitive state and adaptive control of decision-making.
This end-to-end is a design that verifies that raw
biosignals have a controlled conversion to actionable
learning adaptations but still has the ability to stay
computationally efficient and system coherent. At the
input stage the system receives physiological inputs
which have been known to be indicative of cognitive
and affective processes. The electroencephalography
(EEG) signals are mainly taken into account in this piece
of work because they are very time-resolved and are
highly correlated with the cognitive load and attention.
Moreover, the peripheral physiological activity may
be included, like the electrocardiography (ECG) and
galvanic skin response (GSR), to record sympathetic
autonomic responses of engagement and mental
effort. The modalities of these signals give multimodal
representation of cognition of a learner that makes it
more resilient to noise and personal variation.

Wearable sensors that do not involve any invasive
action are used to record physiological signals, which
are then digitised at sampling rates that are modality-
specific to maintain the important temporal variations.
Signal acquisition module will interfere with sensors,
time stamping and modality synchronisation. Temporal
registration is of particular importance, especially when
many sources of physiological types of data are monitor
able at once, since cognitive state estimation depends

Table 1: Comparison of Related Work on Cognitive State Estimation and Adaptive Lear6ning Systems

Feature Extraction

signal analysis

HRYV features

Study Category Signal Types Methods Modeling Approaches Key Limitations
EEG-based cognitive EEG Band power, PSD, SVM, k-NN, Random Limited generalization;
load analysis wavelet coefficients Forest often task-specific and

offline
Peripheral physiological | ECG, GSR, PPG Time-domain statistics, | Classical ML classifiers | Weak cognitive

specificity; sensitive to
noise and context

Multimodal cognitive
state estimation

EEG + ECG + GSR

Feature fusion, time-
frequency features

Ensemble models,
shallow neural networks

Increased complexity;
synchronization
challenges

Deep learning-based
signal modeling

EEG, multimodal signals

End-to-end learned
representations

CNN, LSTM, hybrid DL
models

High computational
cost; low
interpretability

Interaction-driven
adaptive learning
systems

Clickstream, quiz data

Behavioral metrics

Rule-based systems,
predictive models

No direct cognitive
insight; delayed
adaptation

Cognitive-aware
adaptive e-learning
systems

Physiological +
interaction data

Handcrafted cognitive
indicators

Hybrid ML frameworks

Loose coupling between
cognition inference and
adaptation
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Fig. 1: Overall system architecture of the proposed signal-based cognitive state analysis
framework for adaptive e-learning.

on consistent feature representations that have been
gained through concordant streams of data. However,
aside inter-signal synchronisation, the architecture
synchronises physiological data with learning events that
take place in the e-learning environment. The learning
events like presentation of the content, interaction of
the users and assessment activities are recorded with
accurate time stamp and mapped to physiological
segments of the signal. Such alignment provides the
system with the opportunity to match cognitive state
changes with particular learning contexts on which
meaningful adaptation decisions are based.

Figure 1showstheentiresystemarchitecturethat provides
the flow of information starting with the acquisition of
physiological signals through preprocessing and feature
extraction and then the models of cognitive states to the
adaptive learning engine. The e learning environment is
connected to the cognitive state modelling component
by a closed-loop feedback mechanism that enables the
model to keep on updating its inference as the learner
responds and the system takes action in response to
the learner. This construction will be able to ensure
that the cognitive state analysis and adaptive learning
are implemented as a unit process and not as separate
aspects.

Distribution of Features and Classifier Training.

The signals obtained by wearable sensors are physio-
logical and this means that noise, motion artefact and
baseline drift inherently affect the signals obtained
thus, acting negatively on the validity of cognitive state
prediction. In order to reduce the effects these factors,
the proposed structure uses a structured signal prepro-
cessing pipeline that aims at improving the quality of
signals but maintains cognitively relevant information.
Removal of noise and artefacts is initially done to sup-
press unwanted signal that would be formed as a result
of sensor motion, noise, environmental interference and
physiological artefacts. Statistical thresholding, adap-
tive filtering or component-based decomposition arte-
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fact suppression methods can be used depending on the
signal modality to remove non-informative portions of a
signal. After the removal of the artefacts, the physiolog-
ical signals are band-limited and normalised. Frequency
components of interest to cognitive activity are isolat-
ed using band pass filtering and low-frequency drift and
high-frequency noise are reduced. The mathematical
process of filtering can be denoted without the impulse
response of the chosen philtre as the convolution of the
raw signal with the impulse response of the philtre as is
represented in (1):

X, (t)=x(t)*h(t), (1)
where x(t) denotes the raw physiological signal, h(t)
represents the impulse response of the filter, and x, (t)
is the filtered signal. Normalisation is then performed
to minimise inter-subject and inter-session variability as
the feature scaling in learners should remain consistent.
Discriminative features are then obtained after pre-
processing with the aim of describing cognitive state
changes in various domains. Features in the time domain
represent statistical properties of the level of signal
amplitude and temporal behaviour whereas frequency-
domain features describe the distribution of signal energy
to cognitively significant frequency bands. Specifically,
the spectral energy of a particular frequency range is
calculated as (2):

P, = [IX(F)Iaf, @
Where X(f) denotes the Fourier transform of the
preprocessed signal and [f,f,] corresponds to the
frequency range associated with a given cognitive
process. Besides the time and frequency features, the
time frequency features are also obtained through the
time frequency multiresolution analysis techniques
like that of the wavelet transforms and this allows the
non-stationary attributes that are usually exhibited
by physiological signals to be well represented. Time,
frequency-, and time-frequency-domain features are
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Fig. 2: Signal-feature-driven cognitive state inference pipeline.

extracted and concatenated to get a complete feature
vector that is the input into the stage of modelling the
cognitive state in the following section.3.3 Cognitive
State Modeling

After signal preprocessing and feature extraction the
resulting feature vectors are then applied to data-driven
modelling to determine the cognitive state of the learner.
The feature vectors of each feature are obtained by adding
time-domain, frequency-domain and time-frequency-
domain based features obtained on the preprocessed
physiological signals as outlined in Section 3.2.
This coherent image represents complementary
statistical, spectral, and temporal properties of the
cognitive activity and can be strongly used to distinguish
between various cognitive states. Before training of a
model, the feature vectors are put into fixed length
representations that can be used by the supervised
learning. In case of multimodal signals, information of
varying modalities is time synchronised and integrated on
feature level to produce a single input vector. This design
decision provides that the cognitive state model works
on context-aware and synchronised representations and
still has computational efficiency.

Inference of the cognitive state is done through a
classification model which gives the relation between the
feature vectors of input to discrete cognitive states. The
modelling framework is also deliberately made general
and can be instantiated either on classical machine
learning classifiers or deep learning structures, based
on the specific application restraints. The architecture
in the case of deep models can either be stacked fully
connected layers, or a hybrid design that can represent
nonlinear dependencies derivable in the feature space.
The model aims at learning boundaries of decision that
distinguish different cognitive states based on their
signal properties. The cognitive state model is trained
with the help of a supervised optimization problem,
which reduces the error penalty of prediction of an
incorrect state. The objective of the model optimization
is defined based on the categorical cross-entropy loss,
the expression of which is as follows (3):

L= —E?'I:ljﬁ IDE@|'11 (3)
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where N denotes the number of training samples, v,
represents the ground-truth cognitive state label,
and Vi corresponds to the predicted probability of
the correct cognitive state. The loss function helps in
motivating accurate probabilistic estimation and aids
the convergence to be stable throughout the training.

The pipeline of cognitive state inference, as shown
in Figure 2, works by projecting normalised feature
representations into the probabilistic estimates of
every cognitive state. The model provides a probability
distribution of the predetermined cognitive classes,
which represents the confidence of one or the other
possible state. This leaves the last cognitive state as the
class that has been chosen with the greatest posterior
probability. Cognitive states in this work are termed
as discrete and intelligible affiliations that signify the
mental condition of the learner throughout the learning
process. In particular, there are three cognitive states,
which include focused, overloaded, and disengaged.
The reason why these states are chosen is cognitive
interpretability and practical relevance in making
adaptive learning decisions. The perceived cognitive
state is the input in the dynamism in adaptive learning
engine which adjusts the instructional strategies
adaptively to the present cognitive condition of the
learner.

Adaptive Decision Logic

The adaptive decision logic is the process involving
the translation of the deduced cognitive state into the
suitable learning system responses. The adaptive engine
works with high-level control signals, and these are the
discrete cognitive states generated by the cognitive state
model, rather than working with raw physiological data
or low-level features. This abstraction makes it easier
to make decisions and makes it such that adaptation
can be understood and computationally efficient. An
adaptive action and cognitive state are determined in
a deterministic manner. When the learner is concluded
to be in full concentration, the system will keep at the
same level of the instructional pace and the difficulty
to facilitate the ongoing interaction. On the contrary,
the overloaded state of cognition evokes adaptive
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mechanisms like a decrease in the complexity of the
content, a decrease in the speed of presentation, or
additional supportive feedback. Whenever a disengaged
state is identified, the system will react by making
the programme more interactive or giving the learner
motivational feedback or even modifying the content
delivery system to stimulate interest once again. This
state/ behaviour mapping facilitates uniform and
repeatable adaptation behaviour.

Feedback timing constraints are implemented in the
decision logic as a way of stabilizing the system and
preventing over or cutting back and forth adaptations.
The value of cognitive state changes is considered across
a set of predetermined time frames, and adaptive
controllers only make changes when changes in state
stand at least a set time parameter. this temporal
regularisation process guarded against quick change
in adaptation in response to momentary changes, or
temporary noise, in the estimates of cognitive states.
The response of the system is unidirectional with the
adaptive decision-making being put on the e-learning
environment, and the learner responses are manifested
in the revised physiological signals. This closed-loop
interaction, as shown in Figure 1, permits the system to
self-correct through this interaction, without requiring
any direct feedback dependencies in the modelling
pipeline. Consequently, the adaptive decision logic
is a lean and efficient control layer that mediates the
cognitive state inference and personalised learning
delivery.

EXPERIMENTAL SETUP

The experimental environment will be configured in away
that guarantees reproducibility and objective assessment
of the offered signal-based analysis of the cognitive
state framework. The controlled e-learning data used in
experiments consists of synchronised physiological signal
recording with the learning event logs. Physiological
data are divided into fixed length temporal windows
in correspondence to the learning activities, and
allowed the consistent mapping of cognitive state and
instructional context. To evaluate the state of cognition
of each segment, task conditions and observational
criteria are attached which are used as ground truth
to supervised model training and evaluation. The study
was conducted with the help of a sample of participants
having various academic backgrounds. The experimental
protocol was a standardised procedure of all participants
and involved various learning sessions where they were to
cause the incidence of varying degrees of cognitive load
and engagement. The protocol contained categorised
educative material, interactive activities and evaluation
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tasks presented in a preconditioned order. To minimise
the artefacts caused by movement, the participants
were asked to make the least physical movements as
possible when recording the data collected. All the
processes were performed within the standard ethical
guidelines and informed consent was taken before the
participation.

Physiological measurements were also measured by
non-invasive wearable devices. EEG-recording of neural
activity was used to record cognition processes involving
attention and workload, ECG and GSR recordings of
autonomic responses associated with engagement and
mental work. The samples of the signals were taken at
modality-specific frequencies and all was synchronised
to a single time stamping system so that there was timing
alignment inter-modal. The preprocessing parameters,
windows sizes, time sampling rates, and synchronisation
were maintained among the subjects. Table 2 has a
detailed description of signal acquisition parameters and
experimental configuration.

Table 2. Experimental Configuration and Signal
Acquisition Parameters

Parameter Description / Value
Physiological signals EEG, ECG, GSR
EEG channels Multi-channel configuration
EEG sampling rate 250-512 Hz
ECG sampling rate 250 Hz
GSR sampling rate 50-100 Hz

Signal window length

Fixed-length temporal
windows (e.g., 2-5s)

Window overlap

50% overlap

Synchronization method

Unified timestamp-based
alignment

Preprocessing steps

Band pass filtering, artifacts
removal, normalization

Feature domains

Time-domain, frequency-
domain, time-frequency

Cognitive state classes

Focused, Overloaded,
Disengaged

Model type

Supervised ML / Deep
learning classifier

Training-testing split

Subject-independent /
k-fold cross-validation

Baseline methods

Interaction-driven models,
signal-based classifiers

Evaluation metrics

Accuracy, Precision, Recall,
F1-score

Number of experimental runs

Multiple runs with averaged
results

National Journal of Signal and Image Processing | Oct - Dec 2025



Leila Ismail and M. Ahmad : Signal-Based Cognitive State Analysis for Adaptive
E-Learning Environments

In order to measure the efficiency of the suggested
method, the effects on performance are contrasted
with reference to baseline-based methods, based
on traditional interaction-driven attributes, e.g.,
clickstream statistics, task performance indicators, and
signal-based classifiers based on limited feature sets.
Every model is trained and evaluated according to the
same data partitions and evaluation setups in order to
compare the models justly and without any bias. The
evaluation of model performance is conducted using
the commonly used classification metrics, such as
accuracy, precision, recall, and F1-score that together
give a thorough analysis of cognitive state recognition
performance. Moreover, system-level metrics
concerning adaptation learning performance, including
duration of engagement and efficiency in performing
tasks, are compared to understand the feasible effect
that cognitive-state-based adaptation has on activity
execution. The reported results are averaged across
several runs in order to minimise the effect of random
variation.

PERFORMANCE EVALUATION AND RESULTS.
Performance Classification Cognitive State.

The effectiveness of the suggested cognitive state
modelling method is measured by the conventional
classification criteria, such as accuracy, precision,
recall, and F1-score. These measures represent an
indicator of how well the model behaves as they provide
a balance between accurate recovery of the estimations
of the model and the correctness or incorrectness in
predicting the results for each class, its dependence
on the true cognitive states and the trade-off between
precision and the recall. Against baseline methods of
performance assessment, the effectiveness of inclusion
of physiological signal-based features in the inference of
cognitive state is quantified. The proposed signal-based
model is always superior to both interaction-driven
baseline and the conventional signal-based baseline in
terms of all developed metrics (Figure 3). The interaction
based model that uses indicators of learner behaviour
and task performance only has the worst classification
performance, and therefore reflects the poor capability
of the model to entrap latent thinking processes. The
addition of features of physiological signals provides a
significant enhancement, as it can be seen in the signal-
based baseline, which proved the value of biosignals
information in the field of cognitive state recognition.

The model that is proposed has the best performance
with the average F1-score of 85.7 as opposed to 76.9
of the signal-based and interaction-based model
respectively. Accuracy, precision and recall show similar

National Journal of Signal and Image Processing | Oct - Dec 2025

90

80 85|'7 T

70 769
68.4

60 =

50

F1.Score (%)

40
30
20

L L
Interaction-Based Signal-Based Proposed Method

Model Baseline
Classification Models

Fig. 3: Performance Comparison of Cognitive State
Classification Models

trends thus showing that the proposed approach does
not only enhance the overall accuracy of prediction but
also a balanced trade-off between false positives and
false negatives is observed between the cognitive state
classes. Figure 3 also displays error bars, which again
hint at the fact that the improvement in performance
becomes evident in several runs of the experiment
and cannot be explained by the chance error. On the
whole, these findings substantiate the claim that
when time-, frequency-, and time-frequency-domain
physiological signal characteristics are combined
as a single cognitive condition model, an important
enhancement in classification performance is achieved
compared to interaction-based and small-feature signal
representations models.

Effect of Cognitive-Driven Adaptation.

In this sub section the effects of cognitive-state-
driven adaptation on other learning results other than
classification performance are considered in the aspect
of system-level performance. The test factors involve
learning efficiency, interaction, and system reaction
latency as it evaluates the translation in the cognitive
state inference into quantifiable learning process
enhancements. The objective outcome measure used
to determine learning efficiency is mainly post-test
performance. Comparing learner outcomes in terms of
post-test scores after being exposed to either cognitive-
state-driven adaptive learning or the situation of non-
adaptive learning as shown in Figure 4 one can say that
learners in the former perform better than those in the
situation with the latter. Adaptive system is a dynamically
regulated method to deliver content according to the
deducted cognitive conditions that allow learners to
receive instructional content at the right pace and of
the right difficulty. The given improvement demonstrates
that real time-adaptation based on the cognitive state
estimation leads to the more efficient knowledge
acquisition.
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Engagement-related indicators are considered as well
as learning outcomes so that to comprehend the be-
havioural implications of adaptation. There is prolonged
interaction time and reduced occasions of sudden disen-
gagement among learners who engage with the adaptive
system, implying that learners are better at attention
regulation. These patterns are found to agree with the
adaptive decision logic, which injects in the supportive
feedback or interactivity in circumstances of disengaged
or overloaded states that are detected. Even though,
interaction measures are not explicitly shown in Figure
4, they supplement the depicted increase in post-test
performance by showing better quality of interaction
between the learners and the system. Response laten-
cy which is the interval that exists between cognitive
state detection and the execution of adaptive action is
the measure of system responsiveness. The proposed
scheme has a low response latency since adaptation log-
ic is performed on output outputs of a high level cogni-
tive state, as opposed to raw signal streams. This guar-
antees that the adaptive interventions can be provided
in time without interfering the learning process. Early
change in adapting and the uniform nature of decision
logic can assist with the sustained behaviours in the sys-
tem throughout the learning sessions. In general, the
findings presented in Figure 4 allow confirming that cog-
nitive-state-based adaptation provides actual improve-
ments at the level of learning outcomes. These results,
along with the effects on classification performance that
are presented in Section 5.1, indicate that the suggest-
ed framework does not only enhance the accuracy of
cognitive state recognition but is also able to transfer
these gains into any form of real improvement in adap-
tive e-learning effectiveness.

DiscussiON

Findings reported in this work indicate that incorporating
physiological signal assessment and adaptive learning on
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the system level can bring quantifiable improvements
that are both beneficial at the system level and in the
modelling level. The suggested framework demonstrates
standard gains in the cognitive state classification results
over interaction-driven and limited-feature signal-based
baselines, indicating that multimodal physiological
signals acquire latent cognitive dynamics that cannot
be assessed by behaviour data alone. The increase in
the F1-score and other measures that follow shows
that the combination of time-, frequency-, and time-
frequency-domain representations allows more resilient
discrimination between focused, overloaded, and
disengaged state cognitions. In addition to the accuracy
in the classification, the effects of cognitive-state-based
adaptation on learning outcomes underscore the fact
that precise cognitive inferences can be important in
practise. Figure 4 indicates that adaptive learning that
involves inferred cognitive states results in increased
post-test performance over non-adaptive learning. It
implies that learning efficiency can be enhanced through
personalization based on real-time cognitive feedback to
synchronise the pace of instruction and challenge with
the current state of the mind in the learner. Notably,
these enhancements are realised without the need to
have the complicated pedagogical regulations, but
rather with lightweight and elucidable decision logic.
The trends observed in the area of engagement confirm
the efficiency of the suggested method as well. Fewer
incidences of disengagement and longer-lasting periods
of interaction suggest that adaptative interventions if
administered in time assist in stabilising learner attention
in situations of cognitively strenuous undertaking.
Further, the fact that the adaptive engine has a very
short response latency is evidence that functioning on
the cognitive state level, as opposed to working on raw
signals, offers a convenient solution to the problem of
integrating responsiveness and computational efficiency.
This design selection is specifically applicable to
resource-constrained or real-time e-learning systems.
Although these were positive results, some constraints
are to be noted. The experimental assessment is made
under the conditions of control of learning, and the
tendency of the findings to be generalised to large-scale
and open-ended learning platforms is also a subject
of further study. In addition, the labels of cognitive
states are based on task conditions and observation
parameters, and they may be insufficient to reveal
the complexity of personal cognitive experiences.
Adaptation fidelity may be further improved by using
more finer or continuous representations of cognitive
states. All in all, the discussion points out that the main
contribution of this work is not only the better ability
to recognise the state of sounds, but it also shows the
definite way of how signal-based inference can lead
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to tangible learning benefits. The results indicate that
cognitive-state-conscious adaptation is one of the bright
paths of the development of intelligent, human-oriented
e-learning systems becoming technically sound and
practically efficient.

CONCLUSION AND FUTURE WORK

The paper introduced a signal based cognitive state
analysis framework applied to adaptive e-learning
environments which combines the processing of
physiological signals, modelling the state of cognition
and adaptive decision logic realised in real-time.
The proposed approach will allow underlining the
appropriate inference of learner cognitive states with
the multimodal physiological signals and featuring
representations in time, frequency, and time-frequency
domain, and facilitate dynamic personalization of the
learning content. The experimental findings indicate
that the suggested model can be used to attain better
cognitive state classification scores than interaction-
based and traditional signal-based baselines. Significantly
more importantly, the combination of cognitive-state-
induced adaptation results in a quantifiable increase in
the outcome of learning such as the increase in post-
test performance and learning efficiency. The results
validated that providing correct inference of the state
of cognition can be practically introduced to tangible
system advantages in a lightweight and interpretable
adaptive decision mechanism. The framework designed
is in general and scalable fashion. Its modular structure
enables adaptation of the cognitive state model and
adaptive logic to other learning situations, signal
modalities as well as computational limitations. The
high-level representations of cognitive state are also
used which makes adaptation to the high-latency, thus
making the practise appropriate in the real-time and
resource-bound e-learning systems. Future directions will
be endeavoured towards detection of the framework to
more varied and varied learning settings like longitudinal
research with diversified learner’s communities.
Other signal modalities, and considering continuous/
personalised representations of cognitive states, can
be further incorporated to achieve a larger adaptation
precision. Future studies can also examine how to
incorporate more elaborate learning procedures, e.g.,
reinforcement learning or self-supervised modelling, in
order to allow more autonomous and situation-specific
adaptation policies. Lastly, it will be necessary to
measure the framework in deployed educational systems
at full scale to measure the impact of long-term learning
and system stability under the conditions of the real-
world environment.
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