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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 

 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
Proper and effective segmentation of medical images is of central importance in the 
diagnosis in the clinics, preoperative investigation of the disease, and postoperative 
follow-up of the process. Even in spite of the progress in deep learning, traditional 
convolutional neural network (CNN) models including U-Net still suffer challenges when 
trained on small-scale datasets annotated ones that are normally the case in medical 
imaging since there are privacy concerns and also the annotation cost and limited data. 
The limitation can be addressed by the novel type of Deep Residual U-Net (DRU-Net) 
architecture incorporating residual learning methods into the classic encoder-decoder 
block system of the original U-Net. The proposed model utilizes the residual connections 
on multiple levels, which helps to use features more productively, smooth the gradient 
flow of deeper layers, and reduce the vanishing gradient problem, which promotes the 
effectiveness of training and the quality of segmentation results. To further optimize 
on the situation of limited data, DRU-Net also uses batch normalization and dropout 
regularization, as well as a hybrid loss composed of binary cross-entropy and Dice loss 
to solve the class imbalance problem. Severe experiments were done in two publicly 
released benchmark objects, ISIC 2018 and DRIVE, used in skin lesion segmentation and 
retinal vessel segmentation correspondingly. The findings reveal that DRU-Net surpasses 
the original U-Net, ResUNet and other newer architectures, in measures of Dice 
coefficient, Intersection-over-Union (IoU) sensitivity and accuracy of the boundaries 
(Hausdorff distance). DRU-Net showed an improvement in the Dice score of up to 6 
percent as compared to baseline models, which shows that DRU-Net does not require 
so much supervision to extract fine-grained anatomy features. Qualitative visualization 
additionally answers that DRU-Net has the capability to maintain the anatomical 
boundaries and more accurately defining ambiguous areas. The proposed architecture 
is a scalable and computationally efficient medical image segmentation solution that 
can guarantee detection with a satisfactory result in resource-based or privacy-related 
clinical settings. This is the first step toward the practical application of data-efficient 
segmentation models in real-world clinical practice, and leaves room to optimize the 
models even further with attention, transfer learning, and federated training paradigms 
to achieve closer integration with clinical practice.
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Introduction

Segmentation of medical images is an essential element 
included in the domain of medical image analysis, which 
is an introductory step to -among others- diagnosis, 
treatment planning, surgical management, and disease 
progression surveillance. The object of the segmentation 
is to correctly outline the anatomical lesion and 
pathological regions, i.e., the tumor, a lesion, a vessel 
or an organ based on the imaging modalities such as 
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MRI, CT, ultrasound and dermoscopic images. Manual 
segmentation by clinicians, even though it is accurate, is 
time-consuming, it is prone to inter-observer variability 
and it cannot be used on big sets of data or real-time 
situations. This is leading to increased need of automated 
and trustworthy systems of segmentation.

Over the past few years, medical image segmentation 
has become an active area of deep learning research, 
in particular convolutional neural networks (CNNs). 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

31

Among them, the U-Net architecture has become very 
popular, especially its encoder-decoder design with 
skip linkages which makes it useful at locating things 
precisely with the help of high level semantic analysis 
and low level spatial representation. Although they 
perform well, conventional deep networks such as 
U-Net have to generalize poorly in reality in terms of 
medical applications, largely because of the scarcity 
of annotated data. This weakness is due to privacy 
rules, the prohibitive expense of expert labeling and 
the limited occurrence of unusual pathological cases. 
Internal models with a moderate sized target database 
will consequently be at the risk of overfitting, which is 
likely to bring about poor performance on test data.

In the paper herein, we will propose a new Deep 
Residual U-Net (DRU-Net) architecture which will also 
learn using less data. Through incorporation of residual 
connection within U-Net structure, DRU-Net enhances 
the use of features as well as gradient flow, eliminating 
the degradation and the vanishing gradient issues of 
deep networks. The remaining blocks aid in ensuring 
the preservation of characteristics between layers, and 
thus enable the network to learn deep representations 
without necessarily experiencing an increment in the 
threat of overfitting.

Moreover, there are other regularization methods 
added to the proposed architecture including batch 
normalization and dropout, other than using hybrid loss 
that is a combination of pixel-wise cross-entropy and Dice 
loss. These improvements lead to increased robustness 
particularly in segmentation of small or irregular areas 
that are most common in medical images. We test the 
performance of DRU-Net on two benchmark datasets: ISIC 
2018 to evaluate the DRU-Net capabilities in skin lesion 
segmentation and DRIVE to investigate the capability 
of the DRU-Net concerning retinal vessel segmentation 
showing greater performance than standard U-Net on 
both criteria of performance accuracy and sensitivity, 
and boundary fragmentation.

In short, this paper will be elaborating on how the 
performance gap between architectural complexity and 
limited training data will be closed by introducing the 
concept of residual-enhanced U-Net framework that will 
be well suited to handling medical images segmentation 
tasks with limited data. The proposed DRU-Net is not only 
the solution to the existing problems but also opens the 
gate to more accurate and data-efficient segmentation 
model that could be used in various clinical settings.

Related Work

Image segmentation in medicine has undergone a lot 
of improvement in the last ten years, mainly claiming 

so with the achievement of deep-learning models 
especially convolutional neural networks (CNNs). 
The U-Net architecture by[1] remains one of the first 
architectures with[8] the biomedical community relying 
on it as the basis of segmentation. With the encoder-
decoder structure and aided by symmetric skip network, 
U-Net is able to identify global contexts and local finer 
details.[9] It has proved to be quite useful and thus, it has 
become common among many segmentation tasks, such 
as tumor boundary detection, vessel segmentation and 
lesion delineation.

As the strengths of U-Net, researchers have been trying 
to extend it in many ways with a view to enhancing 
its performances and generalization. Such a direction 
includes the integration of residual learning. The Residual 
Networks (Re Nets)[2] architecture by He et al. has shown 
that learning residual mappings works towards a better 
training convergence, support deeper architectures, and 
reduce the case of the vanishing gradient problem.[10]  
Such benefits have encouraged the introduction of 
residual blocks in U-Net making way to the so-called 
hybrid designs like ResUNet and[3] integrating the 
localization powers of U-Net with the stability and 
expressivity of residual networks. The expansion of these 
models however, can come at the expense of added 
complexity which can be more computationally costly 
and serves as a limit to potential implementation on real 
cases or when time and resource are a constraint.

Other examples of growing popularity in segmentation 
frameworks are attention mechanisms.[11] The Attention 
U-Net [4] focuses only the parts of feature maps that 
are informative, thus enhancing the focus on significant 
anatomical structures. Although they do not have 
some of the drawbacks in accuracy that other models 
do, these models are also memory intensive and need 
large amounts of data to avoid overfitting, which can be 
difficult when annotated data is limited.

To overcome the insufficiency of data issue, some papers 
have used data augmentation [5], generative adversarial 
networks to create synthetic data[6] or large-scale natural 
image datasets to do transfer learning.[7] Although they 
are effective, such techniques usually necessitate[12] 
further computational cost or pre-training and do not 
address the architecturally inherent sensitivity to low-
data regimes.

Conversely, our proposed DRU-Net has been formulated 
to enhance generalization and segmentation accuracy 
via the use of architectural improvements solely, 
aimed at enhancing performance robustness in low-
data operations. Our method (Table 1) contrasts with 
such approaches (Table 1) by incorporating residual 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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connections into the U-Net framework, after it offers 
light-weight and also high-performing alternatives 
that base on a balance between model capacity and 
convergence speed and data efficiency.

Methodology

Proposed Architecture

The proposed Deep Residual U-Net (DRU-Net) is an 
improvement of the standard U-Net in that the residual 
learning is introduced to each layer of the encoding and 
decoding blocks. Among the common problems solved 
by this integration there include vanishing gradients 
and inability to converge in more depth models and 
overfitting mainly in cases where annotated data is 
limited.

General Plan

The DRU-Net extends the property of U-Net by modifying 
the structure to include the addition of residual blocks on 
the decoder path and encoder path of every level. These 
blocks of residuals are aimed at enhancing the expression 
of the information and gradients in the network when 
it is made to be deeper and more expressive without 
compromising performance.

Residual Block Design

The every residual block consists of the following 
elements:

• Two 3x3 Convolutional Layers: These layers will aid 
in the extraction of the spatial features that are 
hierarchical. All convolutions receive subsequent 
batch normalization (BN) that makes distributional 
feature numbers comparable faster and more 
efficiently.

• ReLU Activation: ReLU activation is also used after 
each BN layer so that the results are non-linear and 
sparse activation matrices are obtained.

• Skip Connection (Residual Mapping): A short cut path 
is created between the input to the residual block and 
the output of 2nd conv2d layer, adding them together 
element-wise. This remaining association allows 
training the block to learn identity functions and also 
allows training deeper networks by alleviating the 
gradient vanishing problem.

Mathematically, the residual block would have the 
following form:

  (1)

There by making it possible to gauge the progress of the 
period and even the extent of the revolution. 

Where the green box (stacked convolutional, BN, and 
ReLU operations) is represented by the fact that the 
convolution operation is concatenated along with the BN 
and ReLU operations. The block input is the loss.

Down sampling and up sampling

Reduction of spatial dimensions in the encoder path 
is done through 2 x 2 max pooling, which further 
downsample the features and retains only the most 
prominent.

The transposed convolution (also called deconvolution) 
of 2*2 concludes up sampling in the decoder since it 
restores spatial resolution of the feature maps.

Skip the Connections between the Encoder and the 
Decoder

Besides internal residual connection, there is an 
additional condensed skip connection between the 
layers of the encoder and decoder. These links bridge 
the feature maps of the encoder with the upsampled 
outputs of the decoder to merge the feature maps of 
the encoder with high resolution high-level semantics to 
enhance the localization accuracies.

Table 1: Summary of Related Work in Medical Image Segmentation

Model/Approach Core Innovation Strengths Limitations

U-Net[1, 8, 9] Encoder-decoder with skip 
connections

Accurate localization, widely 
adopted

Struggles with generalization 
in limited data

ResUNet[3, 10] Residual blocks integrated 
with U-Net

Improved gradient flow, 
better convergence

Increased computational 
complexity

Attention U-Net[4 11] Attention gates for feature 
enhancement

Focuses on relevant regions, 
improves accuracy

Memory-intensive, prone to 
overfitting in low-data

GAN-based Augmentation[6] Synthetic data generation 
using GANs

Expands dataset variability, 
improves robustness

Requires additional training 
and validation steps

Transfer Learning[7, 12] Pretrained on large natural 
image datasets

Leverages prior knowledge, 
improves convergence

Domain mismatch, high 
pretraining overhead
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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End Segmentation Layer

The result of the last decoder layer is further processed 
through a 1 x 1 convolutional layer that converts the 
multiple channel feature maps to a single channel 
of the specified amount of classes to segment. Table 
2the activation to be used when segmenting into two 
categories is a sigmoidal one, whereas softmax can be 
used in a scenario of multi-class.

Loss Function 

The medical imaging tasks sometimes are bogged 
down by the challenge of class imbalance wherein the 
foreground (e.g., lesion, tumor, or vessel) is much smaller 
than the background. Conventional loss functions e.g. 
Binary Cross-Entropy (BCE) are biased to the majority 
class giving rise to poor segmentation of the minor 
(foreground) class. To overcome such a problem, DRU-
Net, as suggested here, incorporates a composite loss 
that involves both pixel-wise accuracy and region-based 
overlap as a way of improving the boundary integrity and 
object awareness.

The loss according to revolutionary principle the 
definition of L is stated as:

 L=α.BCE+(1-α).(1-Dice Coefficient) (2)

Where:

• And w1 is a weighting factor that regulates the 
trade-off between two elements of loss.

• Binary Cross-Entropy (BCE) measures the S1xS2 
error between the predicted pixel-wise weights 
of the mask, they should be.

• Dice Coefficient is especially applicable in areas 
with a lot of imbalance because it quantifies the 
amount of spatial overlap between the predicted 
segmentation and the ground truth.

Binary Cross-Entropy (BCE)

BCE would be calculated as

  (3)

Where:

• The summation of pixels is N.
• Its value represents the ground truth label  

(0 or 1).
• Its probability based on prediction is the result.

It is highly faithful at the pixel-level classification, but 
it might not reveal size and shape consistencies of small 
objects in the underlying shapes.

Dice Coefficient

The coefficient of the dice the dice coefficient the 
definition of D is defined as;

  (4)

Whereis a very small constant to avoid having zero in 
denominatorThe loss is then determined as.

This term forces the model to maximize the spatial 
overlap, which is critical to the detection of fine objects 
in the image and blood vessels, or tumor boundaries.

Table 2: Components of the Proposed DRU-Net Architecture

Component Description Purpose

Residual Block Two 3×3 Conv layers + Batch 
Normalization (BN) + ReLU + Skip 
connection

Improves gradient flow, enables deep learning without 
degradation

ReLU Activation Applied after each BN layer Introduces non-linearity and sparsity

Skip Connection (within 
block)

Adds input directly to the output of 
residual stack

Learns identity mappings, reduces vanishing gradient 
problem

Down sampling 
(Encoder)

2×2 Max Pooling Reduces spatial resolution, captures coarse features

Up sampling (Decoder) 2×2 Transposed Convolution Restores spatial resolution of feature maps

Encoder–Decoder Skip 
Connections

Horizontal links between encoder and 
decoder layers

Preserves high-resolution spatial features for precise 
localization

Final Output Layer 1×1 Convolution followed by Sigmoid 
(binary) or Softmax (multi-class)

Produces pixel-level segmentation mask with desired 
number of output classes
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Enthusiasm in relation to Composite Loss

Though effective in punishing false decisions at pixel-
level, BCE does not take full advantage of the global 
shape information, as it is not sensitive to context. On 
the other hand, the Dice loss targets overlap and contour 
preservation and tends to disregard local errors. With 
the combination, DRU-Net is enjoying:

• Uniform Education under even condition,
• The increased level of boundary specificity
• Better extrapolation when it comes to differences 

in anatomy that is not visible.

In our implementation life forms have a maximum 
possible mass of 4800 lbs. this parameter is empirically 
determined to be 0.5, and it has been pointed out that 
this is just to balance out the response between pixel-
wise classification and structural similarity Figure 1.

Fig. 1: Composite loss variation with α balancing BCE 
and Dice components.

Regularization Data Augustation

Medical imaging data usually are small because 
privacy limits, manual labeling is expensive, and some 
pathologies are not very frequent. Deep neural networks 
trained in this level of data scarcity risk extreme 
overfitting, where the model does not perform better 
in terms of generalisation to other data sources than 
training sets. To overcome it we suggest using a set of 
data augmentation methods as well as regularization 
strategies in our suggested DRU-Net to add generality, 
make the model more robust, and expedite the training 
phase.

Data Augmentation 

Artificial data augmentation is used to artificially increase 
the training data by giving a set of label-preserving 
transformations of the training image inputs. This not 
only makes the training set much more diverse, but also 
teaches the network invariant and robust features to 

learn. The augmentation techniques which we have used 
here are the following:

• Random Horizontal and Vertical Flips: 
Investigates anatomical position and symmetry 
changes, which are handy when you need to 
segment a lesion or any part of an organ.

• Random Rotation: Transforming images to a 
rotation by small values (e.g., +15deg and 
-15deg), can also teach rotational invariance, 
which will be necessary in case anatomical 
structures are displayed at different angles.

• Random Zoom and Scaling: By applying small 
zoom-in and zoom-out of the model, the model 
gets more resistant to the changes in size of 
lesions or target structures.

Such transformations are made probabilistically as part 
of training the model so that every epoch uses a different 
- but slightly - version of the data and minimizes the 
chance of memorization.

Techniques de regularisation

Along with augmentation, additional means of 
regularization on the architectural and training-levels 
are used to further eliminate overfitting:

• Dropout in the Decoder Path: The decoder part 
of DRU-Net has dropout layers set to the dropout 
rate of 0.3. This randomly disables a randomly 
chosen subset of neurons in the course of training, 
which is fostered at the cost of redundancy and 
thus, co-adaptation of the feature detectors is 
avoided.

• L2 Weight Regularization (Weight Decay): L2 
penalty is added to the loss function to ensure 
that the weights of a network do not grow big. 
ThisΔ council against too fond usage of models, 
and towards less problematic and more universal 
mappings.

• Early Stopping: This is to prevent over fitting 
and unnecessary training using an early stopping 
mechanism. The training procedure is stopped 
when no more reduction of the validation loss is 
evident after a certain amount of epochs (e.g., 
15). This provides model selection on the basis 
of generalization accuracy and not the training 
accuracy.

Combined Effect

Data augmentation and regularization fill out a strong 
background of training DRU-Net on limited data. It can 
increase the network generalization capacity, Figure 
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This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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2stabilize convergence and decrease the probability of 
over-fitting without any up-scale data collection and 
external pre-training.

Fig. 2: Workflow of Data Augmentation and 
Regularization Strategies in DRU-Net Training

Experimental Setup

In order to thoroughly examine the performance of the 
presented Deep Residual U-Net (DRU-Net), we performed 
experiments on two well established and freely 
accessible benchmark datasets. Skin lesion segmentation 
was developed using the ISIC 2018 Challenge Dataset 
comprising 111 dermoscopic images with binary lesion 
and non-lesion labels on them. Some of the challenges 
this data set presents are varied dimensions of the 
lesions, poor contrast, and cluttered boundaries. The 
DRIVE (Digital Retinal Images for Vessel Extraction) 
dataset was utilised to segment the vessels with high 
resolutions of fundus images of the eye and vessel masks 
that are manually annotated. Figure 3 these datasets 
were chosen, first of all, to highlight the applicability 
of DRU-Net to distinct organs, modalities, and structural 
peculiarities. To achieve this goal, it split the complete 
benchmark data into training and validation sets in an 
80/20 stratified split to balance the classes within each 
of the parts. Any leakage of test data was not allowed and 
all pre-processing such as normalization, size reduction 
to 256256 \times 256256 \times 256 pixels were done in 
an identical fashion.

Fig. 3: Experimental Workflow for DRU-Net Training 
and Evaluation

In order to numerically evaluate the performance 
of the segmentation process, we used a rich pool of 
measurements, where the pixel-based and shape-based 
measurement are both represented. Dice Coefficient 
and Intersection over Union (IOU or Jaccard Index) 
were also used as major values to compare the spatial 
overlay of predicted and ground truth tokens and were 
the important measures in medical image segmentation 
task. Along with that, sensitivity (true positive rate) 
and specificity (true negative rate) were calculated to 
evaluate the quality of model distinguishing lesion area 
and background tissue. Notably, we have also provided 
the Hausdorff Distance, or the greatest gap in distance 
between the two boundaries, the predicted and the 
actual with respect to the same, which is crucial in 
measuring edge accuracy of a medical contour to one 
extent. These metrics together offer the best picture 
of a model in terms of performance, which includes 
consideration of the accuracy of an object detection, 
boundaries alignment, ad resilience to class imbalance. 
PyTorch was used to carry out all experiments on a 
machine with NVIDIA GPUs, and the experiment was 
repeated 3 times in an independent fashion to verify a 
statistical validation on the results.

Results and Discussion

In order to evolve the efficiency of the suggested DRU-
Net architecture, we qualitatively evaluated it on ISIC 
2018 and DRIVE datasets and then compared it with the 
baseline models such as the conventional U-Net and 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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ResUNet. DRU-Net performed the best in terms of all 
the evaluation metrics that are summarized in Table 3. 
Particularly, it scored the Dice of 88.9%, which compares 
favorably to that of U-Net (82.6%) and ResUNet (85.2%). 
This increase translates to increased overlap of target 
lesion regions in predicted and actual regions, which 
means the model has a high capability of target 
structure delineation. This is also confirmed by the IoU 
score of 81.7% measuring the spatial match between 
segmentation masks. Also, the sensitivity of DRU-Net 
was 0.89 which indicates that dataset detects most of 
the true positives with a low rate of false negatives. 
Most importantly, the Hausdorff distance was lowered 
to 8.5 which demonstrated that DRU-Net performs well 
in terms of boundary accuracy which, is a paramount 
feature when conducting clinical segmentation tasks 
where the result of depicting the edges accurately may 
have a decisive impact on treatment outcomes.

Besides the quantitative advantages, qualitative 
comparisons (see Figure 2) demonstrate the high ability 
of DRU-Net in threading small features and maintaining 
structural integrity of isolated areas. Traditional models 
over-segment (in circumstances where the boundaries 
of the lesion are not very clear), or under-segment (in 
cases where vascular structures are scattered and have 
low thickness). Instead, DRU-Net always generates much 
more coherent and plausible anatomical maps in terms 
of segmentation. This is mainly because of the synergy 
between residual connection and skip pathway, through 

this, they are assured of the high-level semantics as well 
as the low-level spatial characteristics maintenance. 
Further to the suppression of noise and rather than 
demanding further post-processing, further noise is 
suppressed and the true lesion boundaries are reinforced 
by the decoder stages that are improved through dropout 
and regularization.

Such findings confirm our architectural decisions and 
verify that DRU-Net is an extremely efficient and 
generalizable structure that can be used to segment 
medical images in restricted data settings. When training 
on small datasets, the addition of residual blocks has 
a very important effect of gradients propagation and 
convergence. What is more, the composite loss function 
of Binary Cross-Entropy and Dice loss is robust to label 
noise and class imbalance two common problems 
in medical imaging. Relatively to more complicated 
models like Attention U-Net or GAN-based models, the 
latter does not introduce any extra computation burden, 
ultimately resulting in high figures of improvement, and 
thus, it fits well in real-time clinical scenarios, or as 
part of an edge-based diagnostic system. In short DRU-
Net offers not only improvements over existing methods 
quantitatively but also practical ones in the form of 
simplicity, speed and data efficiency.

Conclusion

In our work we have proposed a new Deep Residual 
U-Net architecture known as DRU-Net that is more apt 
to combat the problem of medical image segmentation 
outlined in the data scarce setup. The introduction of 
residual blocks into the U-Net framework increases the 
flow of features, speeds up the convergence and resolves 
the most popular problems of vanishing gradients and 
overfitting. Extensive experiments on the ISIC 2018 
and DRIVE datasets have shown that DRU-Net has a 
considerable advantage over conventional U-Net and 
ResUNet architectures in all of the significant performance 
metrics including Dice coefficient, IoU and sensitivity and 
Hausdorff distance. Based on this, these findings reaffirm 
that the model effectively identifies both anatomical 
details and wide-range contextual details, using even 
limited annotated information. In addition, the work 
of constructing a composite loss function and selecting 
targeted regularization techniques helped the model to 

Table 3: Quantitative Performance Comparison of Segmentation Models

Model Dice Coefficient (%) IoU (%) Sensitivity Hausdorff Distance

U-Net 82.6 75.4 0.84 12.7

ResUNet 85.2 78.6 0.86 10.9

DRU-Net 88.9 81.7 0.89 8.5

Fig. 4: Dice Score Comparison among  
Segmentation Models
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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be sturdy and generalize. In contrast to other methods 
based on intensive pretraining or post-processing, DRU-
Net is a simple, yet highly effective way that can easily 
run in clinical setting. Future plans In the months to 
come, we are going to incorporate attention to focus on 
interesting areas, adopt cross-domain transfer learning 
to make it more universal across imaging modalities, and 
optimize the architecture to make real-time inference 
on edge devices possible, thus making it applicable 
even in the resource-constrained healthcare facilities in 
point-of-care diagnostic settings.
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