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ABSTRACT

Proper and effective segmentation of medical images is of central importance in the
diagnosis in the clinics, preoperative investigation of the disease, and postoperative
follow-up of the process. Even in spite of the progress in deep learning, traditional
convolutional neural network (CNN) models including U-Net still suffer challenges when
trained on small-scale datasets annotated ones that are normally the case in medical
imaging since there are privacy concerns and also the annotation cost and limited data.
The limitation can be addressed by the novel type of Deep Residual U-Net (DRU-Net)
architecture incorporating residual learning methods into the classic encoder-decoder
block system of the original U-Net. The proposed model utilizes the residual connections
on multiple levels, which helps to use features more productively, smooth the gradient
flow of deeper layers, and reduce the vanishing gradient problem, which promotes the
effectiveness of training and the quality of segmentation results. To further optimize
on the situation of limited data, DRU-Net also uses batch normalization and dropout
regularization, as well as a hybrid loss composed of binary cross-entropy and Dice loss
to solve the class imbalance problem. Severe experiments were done in two publicly
released benchmark objects, ISIC 2018 and DRIVE, used in skin lesion segmentation and
retinal vessel segmentation correspondingly. The findings reveal that DRU-Net surpasses
the original U-Net, ResUNet and other newer architectures, in measures of Dice
coefficient, Intersection-over-Union (loU) sensitivity and accuracy of the boundaries
(Hausdorff distance). DRU-Net showed an improvement in the Dice score of up to 6
percent as compared to baseline models, which shows that DRU-Net does not require
so much supervision to extract fine-grained anatomy features. Qualitative visualization
additionally answers that DRU-Net has the capability to maintain the anatomical
boundaries and more accurately defining ambiguous areas. The proposed architecture
is a scalable and computationally efficient medical image segmentation solution that
can guarantee detection with a satisfactory result in resource-based or privacy-related
clinical settings. This is the first step toward the practical application of data-efficient
segmentation models in real-world clinical practice, and leaves room to optimize the
models even further with attention, transfer learning, and federated training paradigms
to achieve closer integration with clinical practice.
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INTRODUCTION

Segmentation of medical images is an essential element
included in the domain of medical image analysis, which
is an introductory step to -among others- diagnosis,
treatment planning, surgical management, and disease
progression surveillance. The object of the segmentation
is to correctly outline the anatomical lesion and
pathological regions, i.e., the tumor, a lesion, a vessel
or an organ based on the imaging modalities such as
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MRI, CT, ultrasound and dermoscopic images. Manual
segmentation by clinicians, even though it is accurate, is
time-consuming, it is prone to inter-observer variability
and it cannot be used on big sets of data or real-time
situations. This is leading to increased need of automated
and trustworthy systems of segmentation.

Over the past few years, medical image segmentation
has become an active area of deep learning research,
in particular convolutional neural networks (CNNs).
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Among them, the U-Net architecture has become very
popular, especially its encoder-decoder design with
skip linkages which makes it useful at locating things
precisely with the help of high level semantic analysis
and low level spatial representation. Although they
perform well, conventional deep networks such as
U-Net have to generalize poorly in reality in terms of
medical applications, largely because of the scarcity
of annotated data. This weakness is due to privacy
rules, the prohibitive expense of expert labeling and
the limited occurrence of unusual pathological cases.
Internal models with a moderate sized target database
will consequently be at the risk of overfitting, which is
likely to bring about poor performance on test data.

In the paper herein, we will propose a new Deep
Residual U-Net (DRU-Net) architecture which will also
learn using less data. Through incorporation of residual
connection within U-Net structure, DRU-Net enhances
the use of features as well as gradient flow, eliminating
the degradation and the vanishing gradient issues of
deep networks. The remaining blocks aid in ensuring
the preservation of characteristics between layers, and
thus enable the network to learn deep representations
without necessarily experiencing an increment in the
threat of overfitting.

Moreover, there are other regularization methods
added to the proposed architecture including batch
normalization and dropout, other than using hybrid loss
that is a combination of pixel-wise cross-entropy and Dice
loss. These improvements lead to increased robustness
particularly in segmentation of small or irregular areas
that are most common in medical images. We test the
performance of DRU-Net on two benchmark datasets: ISIC
2018 to evaluate the DRU-Net capabilities in skin lesion
segmentation and DRIVE to investigate the capability
of the DRU-Net concerning retinal vessel segmentation
showing greater performance than standard U-Net on
both criteria of performance accuracy and sensitivity,
and boundary fragmentation.

In short, this paper will be elaborating on how the
performance gap between architectural complexity and
limited training data will be closed by introducing the
concept of residual-enhanced U-Net framework that will
be well suited to handling medical images segmentation
tasks with limited data. The proposed DRU-Net is not only
the solution to the existing problems but also opens the
gate to more accurate and data-efficient segmentation
model that could be used in various clinical settings.

RELATED WORK

Image segmentation in medicine has undergone a lot
of improvement in the last ten years, mainly claiming
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so with the achievement of deep-learning models
especially convolutional neural networks (CNNs).
The U-Net architecture by!" remains one of the first
architectures with® the biomedical community relying
on it as the basis of segmentation. With the encoder-
decoder structure and aided by symmetric skip network,
U-Net is able to identify global contexts and local finer
details.? It has proved to be quite useful and thus, it has
become common among many segmentation tasks, such
as tumor boundary detection, vessel segmentation and
lesion delineation.

As the strengths of U-Net, researchers have been trying
to extend it in many ways with a view to enhancing
its performances and generalization. Such a direction
includes the integration of residual learning. The Residual
Networks (Re Nets)!? architecture by He et al. has shown
that learning residual mappings works towards a better
training convergence, support deeper architectures, and
reduce the case of the vanishing gradient problem.['®
Such benefits have encouraged the introduction of
residual blocks in U-Net making way to the so-called
hybrid designs like ResUNet and® integrating the
localization powers of U-Net with the stability and
expressivity of residual networks. The expansion of these
models however, can come at the expense of added
complexity which can be more computationally costly
and serves as a limit to potential implementation on real
cases or when time and resource are a constraint.

Other examples of growing popularity in segmentation
frameworks are attention mechanisms.l'l The Attention
U-Net [4] focuses only the parts of feature maps that
are informative, thus enhancing the focus on significant
anatomical structures. Although they do not have
some of the drawbacks in accuracy that other models
do, these models are also memory intensive and need
large amounts of data to avoid overfitting, which can be
difficult when annotated data is limited.

To overcome the insufficiency of data issue, some papers
have used data augmentation [5], generative adversarial
networks to create synthetic datal® or large-scale natural
image datasets to do transfer learning.! Although they
are effective, such techniques usually necessitatel'
further computational cost or pre-training and do not
address the architecturally inherent sensitivity to low-
data regimes.

Conversely, our proposed DRU-Net has been formulated
to enhance generalization and segmentation accuracy
via the use of architectural improvements solely,
aimed at enhancing performance robustness in low-
data operations. Our method (Table 1) contrasts with
such approaches (Table 1) by incorporating residual
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Table 1: Summary of Related Work in Medical Image Segmentation

with U-Net

better convergence

Model/Approach Core Innovation Strengths Limitations
U-Net!" & °1 Encoder-decoder with skip Accurate localization, widely | Struggles with generalization
connections adopted in limited data
ResUNet[ 101 Residual blocks integrated Improved gradient flow, Increased computational

complexity

Attention U-Net* "

Attention gates for feature
enhancement

Focuses on relevant regions,
improves accuracy

Memory-intensive, prone to
overfitting in low-data

GAN-based Augmentation!®]

Synthetic data generation
using GANs

Expands dataset variability,
improves robustness

Requires additional training
and validation steps

Transfer Learning!” 2!

Pretrained on large natural
image datasets

Leverages prior knowledge,
improves convergence

Domain mismatch, high
pretraining overhead

connections into the U-Net framework, after it offers
light-weight and also high-performing alternatives
that base on a balance between model capacity and
convergence speed and data efficiency.

METHODOLOGY
Proposed Architecture

The proposed Deep Residual U-Net (DRU-Net) is an
improvement of the standard U-Net in that the residual
learning is introduced to each layer of the encoding and
decoding blocks. Among the common problems solved
by this integration there include vanishing gradients
and inability to converge in more depth models and
overfitting mainly in cases where annotated data is
limited.

General Plan

The DRU-Net extends the property of U-Net by modifying
the structure to include the addition of residual blocks on
the decoder path and encoder path of every level. These
blocks of residuals are aimed at enhancing the expression
of the information and gradients in the network when
it is made to be deeper and more expressive without
compromising performance.

Residual Block Design

The every residual block consists of the following
elements:

» Two 3x3 Convolutional Layers: These layers will aid
in the extraction of the spatial features that are
hierarchical. All convolutions receive subsequent
batch normalization (BN) that makes distributional
feature numbers comparable faster and more
efficiently.

e ReLU Activation: ReLU activation is also used after
each BN layer so that the results are non-linear and
sparse activation matrices are obtained.

2 —

« Skip Connection (Residual Mapping): A short cut path
is created between the input to the residual block and
the output of 2nd conv2d layer, adding them together
element-wise. This remaining association allows
training the block to learn identity functions and also
allows training deeper networks by alleviating the
gradient vanishing problem.

Mathematically, the residual block would have the
following form:

v=F(X {W}+X (1)

There by making it possible to gauge the progress of the
period and even the extent of the revolution.

Where the green box (stacked convolutional, BN, and
ReLU operations) is represented by the fact that the
convolution operation is concatenated along with the BN
and ReLU operations. The block input is the loss.

Down sampling and up sampling

Reduction of spatial dimensions in the encoder path
is done through 2 x 2 max pooling, which further
downsample the features and retains only the most
prominent.

The transposed convolution (also called deconvolution)
of 2*2 concludes up sampling in the decoder since it
restores spatial resolution of the feature maps.

Skip the Connections between the Encoder and the
Decoder

Besides internal residual connection, there is an
additional condensed skip connection between the
layers of the encoder and decoder. These links bridge
the feature maps of the encoder with the upsampled
outputs of the decoder to merge the feature maps of
the encoder with high resolution high-level semantics to
enhance the localization accuracies.
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Table 2: Components of the Proposed DRU-Net Architecture

Component Description

Purpose

Residual Block Two 3x3 Conv layers + Batch
Normalization (BN) + ReLU + Skip

connection

Improves gradient flow, enables deep learning without
degradation

ReLU Activation Applied after each BN layer

Introduces non-linearity and sparsity

Skip Connection (within

Adds input directly to the output of

Learns identity mappings, reduces vanishing gradient

block) residual stack problem
Down sampling 2x2 Max Pooling Reduces spatial resolution, captures coarse features
(Encoder)

Up sampling (Decoder) 2x2 Transposed Convolution

Restores spatial resolution of feature maps

Encoder-Decoder Skip

Connections decoder layers

Horizontal links between encoder and

Preserves high-resolution spatial features for precise
localization

Final Output Layer
(binary) or Softmax (multi-class)

1x1 Convolution followed by Sigmoid

Produces pixel-level segmentation mask with desired
number of output classes

End Segmentation Layer

The result of the last decoder layer is further processed
through a 1 x 1 convolutional layer that converts the
multiple channel feature maps to a single channel
of the specified amount of classes to segment. Table
2the activation to be used when segmenting into two
categories is a sigmoidal one, whereas softmax can be
used in a scenario of multi-class.

Loss Function

The medical imaging tasks sometimes are bogged
down by the challenge of class imbalance wherein the
foreground (e.g., lesion, tumor, or vessel) is much smaller
than the background. Conventional loss functions e.g.
Binary Cross-Entropy (BCE) are biased to the majority
class giving rise to poor segmentation of the minor
(foreground) class. To overcome such a problem, DRU-
Net, as suggested here, incorporates a composite loss
that involves both pixel-wise accuracy and region-based
overlap as a way of improving the boundary integrity and
object awareness.

The loss according to revolutionary principle the
definition of L is stated as:

L=a.BCE+(1-a).(1-Dice Coefficient) (2)

Where:

+ And w1 is a weighting factor that regulates the
trade-off between two elements of loss.

o Binary Cross-Entropy (BCE) measures the S1x52
error between the predicted pixel-wise weights
of the mask, they should be.
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» Dice Coefficient is especially applicable in areas
with a lot of imbalance because it quantifies the
amount of spatial overlap between the predicted
segmentation and the ground truth.

Binary Cross-Entropy (BCE)

BCE would be calculated as

M
BCE = %Z - 108(8) + (1~ y).log(1 ~ )] ()

Where:

« The summation of pixels is N.
e Its value represents the ground truth label
(Oor1).
« Its probability based on prediction is the result.
It is highly faithful at the pixel-level classification, but
it might not reveal size and shape consistencies of small
objects in the underlying shapes.

Dice Coefficient
The coefficient of the dice the dice coefficient the
definition of D is defined as;
_ 22?1:1 vivite 4
. T
E|:1YI+Ej:LYI+EF ( )

Whereis a very small constant to avoid having zero in
denominatorThe loss is then determined as.

This term forces the model to maximize the spatial
overlap, which is critical to the detection of fine objects
in the image and blood vessels, or tumor boundaries.
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Enthusiasm in relation to Composite Loss

Though effective in punishing false decisions at pixel-
level, BCE does not take full advantage of the global
shape information, as it is not sensitive to context. On
the other hand, the Dice loss targets overlap and contour
preservation and tends to disregard local errors. With
the combination, DRU-Net is enjoying:

e Uniform Education under even condition,
» The increased level of boundary specificity

» Better extrapolation when it comes to differences
in anatomy that is not visible.

In our implementation life forms have a maximum
possible mass of 4800 lbs. this parameter is empirically
determined to be 0.5, and it has been pointed out that
this is just to balance out the response between pixel-
wise classification and structural similarity Figure 1.

[ ] e it

0.60

= Composite Loss
=== BCE Loss
=== Dice Loss (1 - D}

Loss Value
=3 o
n n
o w

o
'S
wn

QAD === == e e e -

0.0 0.2 0.4 0.6 0.8 1.0
a (Weight for BCE)

Fig. 1: Composite loss variation with a balancing BCE
and Dice components.

Regularization Data Augustation

Medical imaging data usually are small because
privacy limits, manual labeling is expensive, and some
pathologies are not very frequent. Deep neural networks
trained in this level of data scarcity risk extreme
overfitting, where the model does not perform better
in terms of generalisation to other data sources than
training sets. To overcome it we suggest using a set of
data augmentation methods as well as regularization
strategies in our suggested DRU-Net to add generality,
make the model more robust, and expedite the training
phase.

Data Augmentation

Artificial data augmentation is used to artificially increase
the training data by giving a set of label-preserving
transformations of the training image inputs. This not
only makes the training set much more diverse, but also
teaches the network invariant and robust features to
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learn. The augmentation techniques which we have used
here are the following:

e Random Horizontal and Vertical Flips:
Investigates anatomical position and symmetry
changes, which are handy when you need to
segment a lesion or any part of an organ.

« Random Rotation: Transforming images to a
rotation by small values (e.g., +15deg and
-15deg), can also teach rotational invariance,
which will be necessary in case anatomical
structures are displayed at different angles.

e« Random Zoom and Scaling: By applying small
zoom-in and zoom-out of the model, the model
gets more resistant to the changes in size of
lesions or target structures.

Such transformations are made probabilistically as part
of training the model so that every epoch uses a different
- but slightly - version of the data and minimizes the
chance of memorization.

Techniques de regularisation

Along with augmentation, additional means of
regularization on the architectural and training-levels
are used to further eliminate overfitting:

« Dropout in the Decoder Path: The decoder part
of DRU-Net has dropout layers set to the dropout
rate of 0.3. This randomly disables a randomly
chosen subset of neurons in the course of training,
which is fostered at the cost of redundancy and
thus, co-adaptation of the feature detectors is
avoided.

e L2 Weight Regularization (Weight Decay): L2
penalty is added to the loss function to ensure
that the weights of a network do not grow big.
ThisA council against too fond usage of models,
and towards less problematic and more universal
mappings.

o Early Stopping: This is to prevent over fitting
and unnecessary training using an early stopping
mechanism. The training procedure is stopped
when no more reduction of the validation loss is
evident after a certain amount of epochs (e.g.,
15). This provides model selection on the basis
of generalization accuracy and not the training
accuracy.

Combined Effect

Data augmentation and regularization fill out a strong
background of training DRU-Net on limited data. It can
increase the network generalization capacity, Figure
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2stabilize convergence and decrease the probability of
over-fitting without any up-scale data collection and
external pre-training.

Random Horizontal/Vrticl
Flip

[ Random Rotation ]

[ RandomZoomlScaIing]

|

Data
Augmentatiton

|

DRU-Net

'

Regularization

]

Dropout ]

| L2 Welght Regularization |

[ Early Stopping ]

Fig. 2: Workflow of Data Augmentation and
Regularization Strategies in DRU-Net Training

EXPERIMENTAL SETUP

In order to thoroughly examine the performance of the
presented Deep Residual U-Net (DRU-Net), we performed
experiments on two well established and freely
accessible benchmark datasets. Skin lesion segmentation
was developed using the ISIC 2018 Challenge Dataset
comprising 111 dermoscopic images with binary lesion
and non-lesion labels on them. Some of the challenges
this data set presents are varied dimensions of the
lesions, poor contrast, and cluttered boundaries. The
DRIVE (Digital Retinal Images for Vessel Extraction)
dataset was utilised to segment the vessels with high
resolutions of fundus images of the eye and vessel masks
that are manually annotated. Figure 3 these datasets
were chosen, first of all, to highlight the applicability
of DRU-Net to distinct organs, modalities, and structural
peculiarities. To achieve this goal, it split the complete
benchmark data into training and validation sets in an
80/20 stratified split to balance the classes within each
of the parts. Any leakage of test data was not allowed and
all pre-processing such as normalization, size reduction
to 256256 \times 256256 \times 256 pixels were done in
an identical fashion.

National Journal of Signal and Image Processing | Oct - Dec 2025

[ ISIC / DRIVE DATASET

A

)
J
J

NORMALIZATION
& RESIZE 258x256

DATA SPLIT
80/20 STRATIFIED

MODEL TRAINING
DRU-NET ON PYTORCH
WITH GPU

|

EVALUATION
DICE, 10U, SENSITIVITIY,
L SPECIFICITY, HAUSDORFFF )

Fig. 3: Experimental Workflow for DRU-Net Training
and Evaluation

In order to numerically evaluate the performance
of the segmentation process, we used a rich pool of
measurements, where the pixel-based and shape-based
measurement are both represented. Dice Coefficient
and Intersection over Union (IOU or Jaccard Index)
were also used as major values to compare the spatial
overlay of predicted and ground truth tokens and were
the important measures in medical image segmentation
task. Along with that, sensitivity (true positive rate)
and specificity (true negative rate) were calculated to
evaluate the quality of model distinguishing lesion area
and background tissue. Notably, we have also provided
the Hausdorff Distance, or the greatest gap in distance
between the two boundaries, the predicted and the
actual with respect to the same, which is crucial in
measuring edge accuracy of a medical contour to one
extent. These metrics together offer the best picture
of a model in terms of performance, which includes
consideration of the accuracy of an object detection,
boundaries alighment, ad resilience to class imbalance.
PyTorch was used to carry out all experiments on a
machine with NVIDIA GPUs, and the experiment was
repeated 3 times in an independent fashion to verify a
statistical validation on the results.

RESULTS AND DISCUSSION

In order to evolve the efficiency of the suggested DRU-
Net architecture, we qualitatively evaluated it on ISIC
2018 and DRIVE datasets and then compared it with the
baseline models such as the conventional U-Net and
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Table 3: Quantitative Performance Comparison of Segmentation Models

Model Dice Coefficient (%) loU (%) Sensitivity Hausdorff Distance
U-Net 82.6 75.4 0.84 12.7
ResUNet 85.2 78.6 0.86 10.9
DRU-Net 88.9 81.7 0.89 8.5

ResUNet. DRU-Net performed the best in terms of all
the evaluation metrics that are summarized in Table 3.
Particularly, it scored the Dice of 88.9%, which compares
favorably to that of U-Net (82.6%) and ResUNet (85.2%).
This increase translates to increased overlap of target
lesion regions in predicted and actual regions, which
means the model has a high capability of target
structure delineation. This is also confirmed by the loU
score of 81.7% measuring the spatial match between
segmentation masks. Also, the sensitivity of DRU-Net
was 0.89 which indicates that dataset detects most of
the true positives with a low rate of false negatives.
Most importantly, the Hausdorff distance was lowered
to 8.5 which demonstrated that DRU-Net performs well
in terms of boundary accuracy which, is a paramount
feature when conducting clinical segmentation tasks
where the result of depicting the edges accurately may
have a decisive impact on treatment outcomes.

Besides the quantitative advantages, qualitative
comparisons (see Figure 2) demonstrate the high ability
of DRU-Net in threading small features and maintaining
structural integrity of isolated areas. Traditional models
over-segment (in circumstances where the boundaries
of the lesion are not very clear), or under-segment (in
cases where vascular structures are scattered and have
low thickness). Instead, DRU-Net always generates much
more coherent and plausible anatomical maps in terms
of segmentation. This is mainly because of the synergy
between residual connection and skip pathway, through

DRU-Net

34.6%

32.2% A
U-Net /

/ 33.2%

/ / ResUNet

B S

Fig. 4: Dice Score Comparison among
Segmentation Models
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this, they are assured of the high-level semantics as well
as the low-level spatial characteristics maintenance.
Further to the suppression of noise and rather than
demanding further post-processing, further noise is
suppressed and the true lesion boundaries are reinforced
by the decoder stages that are improved through dropout
and regularization.

Such findings confirm our architectural decisions and
verify that DRU-Net is an extremely efficient and
generalizable structure that can be used to segment
medical images in restricted data settings. When training
on small datasets, the addition of residual blocks has
a very important effect of gradients propagation and
convergence. What is more, the composite loss function
of Binary Cross-Entropy and Dice loss is robust to label
noise and class imbalance two common problems
in medical imaging. Relatively to more complicated
models like Attention U-Net or GAN-based models, the
latter does not introduce any extra computation burden,
ultimately resulting in high figures of improvement, and
thus, it fits well in real-time clinical scenarios, or as
part of an edge-based diagnostic system. In short DRU-
Net offers not only improvements over existing methods
quantitatively but also practical ones in the form of
simplicity, speed and data efficiency.

CONCLUSION

In our work we have proposed a new Deep Residual
U-Net architecture known as DRU-Net that is more apt
to combat the problem of medical image segmentation
outlined in the data scarce setup. The introduction of
residual blocks into the U-Net framework increases the
flow of features, speeds up the convergence and resolves
the most popular problems of vanishing gradients and
overfitting. Extensive experiments on the ISIC 2018
and DRIVE datasets have shown that DRU-Net has a
considerable advantage over conventional U-Net and
ResUNet architecturesinall of the significant performance
metrics including Dice coefficient, loU and sensitivity and
Hausdorff distance. Based on this, these findings reaffirm
that the model effectively identifies both anatomical
details and wide-range contextual details, using even
limited annotated information. In addition, the work
of constructing a composite loss function and selecting
targeted regularization techniques helped the model to
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be sturdy and generalize. In contrast to other methods
based on intensive pretraining or post-processing, DRU-
Net is a simple, yet highly effective way that can easily
run in clinical setting. Future plans In the months to
come, we are going to incorporate attention to focus on
interesting areas, adopt cross-domain transfer learning
to make it more universal across imaging modalities, and
optimize the architecture to make real-time inference
on edge devices possible, thus making it applicable
even in the resource-constrained healthcare facilities in
point-of-care diagnostic settings.
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