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ABSTRACT

This paper introduces a new deep learning architecture where a dual-modal fusion
mechanism is based on cross-attention scheme to achieve resilient autonomous
navigation. The architecture combines LiDAR point cloud data and visual image in a
manner such that transformer-based cross-attention modules learn about fine-grained
spatial-temporal cross-modal dependence. The system described overcomes the
limitations of unimodal and early fusion approaches in recognizing inter-modal features
through an instance-based balancing weighting scheme where the system balances
these limitations under difficult circumstances when the light source is low, occlusion,
and white noise. The dataset that the model is trained and tested on are benchmark
autonomous driving datasets such as KITTI and nuScenes. Quantitative findings show
significant improvements in accuracy levels of object detection (loU+6.2), trajectory
prediction (ADE/FDE improvements) and collision-free path planning in dynamic
settings. Ablation experiments prove that cross-attention fusion is better than standard
concatenation and late fusion networks. In further addition, the framework enables
real-time inference to take place on embedded systems thereby, it can be deployed
very easily on resource limited autonomous vehicles and mobile robots. The given
proposed method is just not only useful to improve perception robustness but also in
decision-making in safety-critical settings to form a scalable and adaptive solution to
next-generation autonomous navigation systems.
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INTRODUCTION

The ability of autonomous navigation under dynamic
conditions requires precise and strong perception of the
surroundings. The primary purpose of the vision-based
sensors is that they provide semantic information that
is highly resolved and is needed to recognize an object
and understand a scene, whereas the Light Detection
and Ranging (LiDAR) systems can provide very accurate
3D point cloud data in space that is of foremost interest
when estimating depth and localizing obstacles.
Nevertheless, within a given modality there are confined
limitations, such as visual sensors will become negatively
affected under poor illumination, glare, or fog, but
LiDAR will experience little point density and no texture
or color semantics [11]. Use of mono-modal channel
will only provide weak perception systems, which are
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vulnerable to environmental disturbances and failure of
Sensors.

Recently, works have attempted to address these
problems by using sensor fusion. Simply concatenating
the feature maps are so-called early fusion techniques
whereas late fusion techniques combine high-level
decisions.  Although these approaches enhance
robustness to some degree, it has been shown that they
do not exploit fine-grained cross-modal relationships
and hence the performance of navigation in cluttered
and ambiguous scenes is suboptimal.l" 2 Moreover,
the majority of the current approaches fail to include
dynamic feature weighting ability and fail to take
into account the temporal dependence which is
critical to tracking the trajectory and predicting its
motion. [
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In response to such disparities, this paper presents
an integrated solution, Deep Cross-Attention-Based-
Dual-Modal Fusion framework, which performs the
simultaneous processing of LiDAR point clouds and RGB
images with the aid of transformer based attention
layers. The model suggested can dynamically align,
attend, and fuse the space time characteristics of the
two modalities and improve this process in adverse
conditions.

The following paper is organized as follows: Section 2
is a presentation of related work, Section 3 specifies
the proposed architecture, Section 4 explains the
experimental setup, Section 5 presents quantitative and
qualitative results, and Section 6 concludes and presents
directions in future.

RELATED WORK
A. LiDAR-Vision Fusion Techniques

Fusion of LiDAR and vision sensors has become
a high-frequency technology to complement the
environment perception in autonomous navigation.
Methods based on traditional early fusion techniques
directly concatenate raw or low level data with the
LiDAR point clouds projected into the image plane,
which causes features to be misaligned in some cases
because of a difference in viewpoints and resolution
mismatch between the sensor. Late fusion on the
other hand identifies modality specific features or
decisions independently and integrates them.
This enhances modularity, but it reduces the capacity
of the system to showcase complementary fine grained
interactions. Recent mid-level fusion approaches have
tried to mitigate these trade-offs, yet are hampered
by redundancy across the space information or are
badly unmatched to the size when encoding spatial
features.[®

B. Attention Mechanisms in Perception

Transformer architecture has changed how we model
sequences and now is also used to gain traction in vision
tasks.’! Mechanisms of self-attention permit modeling
the global context and dynamic feature weighing,
which enhances robustness on challenges such as image
classification and segmentation. Nevertheless, cross-
attention mechanisms, the purpose of which is the
refinement of features with the influence of another
modality, are little studied in the scenarios of LiDAR-
vision fusion. The literature also fails to consider the
likelihood that adapting intra-modal dependencies may
be another way to arrive at a better comprehension of
both space and time in navigation environments.®

National Journal of Signal and Image Processing | Jul - Sep 2025

C. Multimodal Navigation Approaches

The most recent frameworks combine visual and
LiDAR data in object detection, SLAM and semantic
segmentation tasks.”” Nonetheless, most models are
independent input, or fixed fusion schemes. This limits
their applicability to deployments of varying reliability
in modality (e.g. obscured vision by fog or LiDAR scarce
deployments in dense vegetation). Moreover, in the
majority of navigation systems temporal dependence
and inter-image constancy are not considered, needed to
define realistic trajectories of an autonomous platform
and avoid obstacles at higher velocities.!'%

In spite of these developments, there is still no principled
fashion during which context-sensitive integrating of
multimodal information can be conducted through the
existing techniques. The limitations of the current state
of the art are overcome in our proposed framework
because our framework learns suitable inter-modal
dependencies and spatiotemporal correlations end-to-
end by using a deep cross-attention architecture.

METHODOLOGY

The Deep Cross-Attention Fusion Framework that is
proposed will be able to robustly integrate LiDAR and
vision modality through a fusion approach.l'? The
architecture focuses on semantic consistency, spacial
correlation and computational efficiency and is suitable
to do real time deployment on autonomous systems.

Overall Architecture

The 3 major blocks that make up the system architecture
are shown in Figure 1: Block Diagram of Cross-Attention-
Based Dual-Modal Fusion Architecture:

« LiDAR Feature Extractor (LFE): Raw LiDAR
data is encoded with a point cloud encoder,
i.e., PointNet++ or a sparse 3D CNN to extract
geometric features. Output is a dense feature
map FL 2R(HXWXdL) the spatial geometry.

» Vision Feature Extractor (VFE): An RGB image is
then fed into a 2D convolutional feature extractor
(e.g., ResNet-50 or EfficientNet-B3) and a visual
feature map FV 2D 2XWXdv is obtained that
contains textural and semantic information.

e Cross Attention Fusion Module (CAFM): The
module can learn the feature importance in
each modality and the inter-modal reliance.
It flexibly refines the representation to be
merged with visual features in a way that LiDAR
features might inform visual attention and vice
versa.
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Fig. 1: Block Diagram of Cross-Attention-Based Du-
al-Modal Fusion Architecture

The architecture combines LiDAR and vision
characteristics through a cross-attention fusion module
to achieve strong spatial and semantic understanding to
promote robust autonomous navigation.

Cross-Attention Fusion Module (CAFM)

We describe the cross-attention mechanism to conduct
the contextual feature alighment and enhancement as
follows:

Suppose that learned linear transformations are used to
generate the projected Query (Q), Key (K), and Value
(V) vectors:

Q=WF,,

The attention-based fusion is computed as:

K=W,F,, V=WF,

Attention(Q,K,V)=softmax
Here:
* W, W,,W,are learnable projection matrices of
shape Rxdk
* d, is the key/query dimension used for scaling

« The softmax normalizes attention weights across
spatial regions

This leads to a co-joined tensor that encapsulates inter-
modal semantic reliance with the ability to allow LiDAR
geometry to enhance the visual perception-particularly
in texture-singular or occluded scenes. Figure 2 presents
the inner structure of the Cross-Attention Fusion Module

A
- &
K'_"i lhed ' use
5
(W) <
Fig. 2: Internal Workflow of Cross-Attention Fusion
Module (CAFM)

———————————
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(CAFM), where two directions of attention are applied
to calculate alignment maps and cascade and combine
complementary features in LiDAR and RGB images and
produce context-aware fused representations in order to
perform robust navigation.

Closer example of how cross attention is done in dual
modal feature refinement.

Loss Functions

A total loss is then used to optimise the network to its
multi-objective tasks:

1. Navigation Loss (L

nav):
Waypoints or trajectories are regressed with the help of
a Smooth L1 loss using the fused feature representation:

Lpaw = SmﬂﬂthLl{pmvdJ Pgr} (1)
2. Object Detection Loss (L,.,):

This combines:

o Cross-Entropy (BCE) 2-class object classification

e loU-based, bounding-box-regressing, based
spatial precision
Lier = Lpce + Aigu-Liou @)

3. Attention Regularization Loss (L, ):

Weighting of attention is done using an L1-norm penalty
to promote legible and sparse alignments and prevent
overfitting:

Laren = Arsg A4l ()

The last loss function is given as:

Leotat = @-Lpgy + 5. Lage ¥ -Lazen (1)

Total Loss
("—total)

Navigation Obiject Attention
Loss Detection Loss
(l—nav) (Ldet) (Lattn)

Fig. 3: Multi-Objective Loss Function Composition
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Figure 3 shows the composition of multi-objective loss
functions, the feedforward network, and the backward
network with how each sub-loss is used to make up
the total loss to train the proposed dual-modal fusion
network.

Weighted multi-objective loss terms to optimise
navigation and detection tasks.

EXPERIMENTAL SETUP

A full-scale experimentation was carried out to measure
the performance and the generalization capacity of
the proposed deep cross-attention fusion architecture
bringing in these experiments under benchmark of a
real-time deployment. The next sub sections describe
the data sets, evaluation criteria, training framework
and hardware platform involved in this research work.
Table 1 presents the quantitative result summary and
Figure 5 is a visual presentation of the results against
the performance.

Datasets

The model was trained and validated over two well used
multimodal autonomous driving data:

o KITTI: It consists of RGB synchronized images
and Velodyne LiDAR point clouds in urban and
semi-urban driving conditions. It incorporates a
ground truth of object detection and estimation
of odometry.

e nuScenes: Includes 360 coverage and multi
camera sensors and LiDAR. The following
semantic annotations, 3D bounding boxes and
ego-vehicle path data can be found in the dataset
in complex urban scenarios.["!

Both the RGB frames and the LiDAR point clouds were
placed in close spatial correspondence by going through
an intensive process of preprocessing and calibration.
These were; timestamp matching, extrinsic and
intrinsic sensor calibration and also voxelisation of
point clouds to conveniently format input fusions. The
Data Preprocessing and Sensor Synchronization Pipeline
provided in Figure 4 explains the temporal alignment
process, the spatial transformation of sensor modalities,
and how it occurs to provide an efficient cross-modal
process of supervision.

LIiDAR

Frame
| .| B synchronized
Frames
RGB

Frame

Fig. 4: Data Preprocessing and Sensor
Synchronization Pipeline

National Journal of Signal and Image Processing | Jul - Sep 2025

Tools for dataset preprocessing and LiDAR-image
registration.

Evaluation Metrics

The evaluation of the performance was based on the
following standard indicators:

e Mean Average Precision (mAP): Is to measure
the accuracy of object training, taking into
consideration precision and recall of all classes. [

* Root Mean Squared Error (RMSE): This tests the
difference between the estimated and actual
(ground-truth) trajectory paths and indicates
level of navigational accuracy.

« Intersection over Union (loU): The ratio of the
overlapping area between the predicted and
the ground-truth bounding box to confirm the
effectiveness of object localization.

Training Configuration

The proposed model was trained for 100 epochs using
the Adam optimizer with an initial learning rate of
1x10“. The training was performed using a batch size
of 12, with on-the-fly data augmentation (e.g., random
flips, noise injection) to improve generalization under
diverse conditions [15]. He initialization was used in
order to initialize the model parameters and learning
rate decay was used every 20 epochs to maintain stable
convergence.

Hardware Environment

The experiments were performed on a workstation based
on the NVIDIA RTX A5000 GPU intended to train and
evaluate. To benchmark the model in terms of inference
in real-time, an NVIDIA Jetson Orin edge computing
platform was used. To quantify the services introduced
in the Orin module they were qualified relative to frames
per second (FPS), power efficiency, and the latency
method of ensuring that the module supports embedded
navigation systems.

Table 1: Fusion Model Performance Comparison

FPS
(Jetson
Model mAP (%) | RMSE (m) loU (%) Orin)
Proposed 78.4 0.18 82.1 22.3
CAFM
Early 69.2 0.27 73.8 16.1
Fusion
Late Fusion | 71.5 0.24 76.5 17.8
Concat- 67.3 0.31 71 15.2
Based
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Fig. 5: Performance Comparison of Fusion Models

The qualitative comparison of early fusion, late fusion,
and the proposed Cross-Attention Fusion Module
(CAFM) in terms of quantitative metric over commonly
used benchmarks. CAFM performs better than other
approaches on the basis of object detection (mAP),
trajectory estimate accuracy (RMSE) and real-time
efficiency (FPS) confirming its usability in autonomous
navigation.

RESULTS AND DiScUsSION
Quantitative Results

In order to test the performance of our proposed Cross-
Attention Fusion Module architecture (CAFM), we
did intensive benchmarking of a unimodal and early
fusion baseline. Table 2: Fusion Model Performance
Comparison shows the results of comparison in the
aspect of object detection performance (through object
detection accuracy, mean Average Precision, mAP),
trajectory estimation performance (through the RMSE)
and inference performance (FPS) on the Jetson Orin
platform.

As it can be represented visually using Figure 6: Unified
Performance Comparison of Fusion Strategies, the CAFM-
based model is far more effective than conventional
techniques. The percentage of mAP, RMSE, and the
maximum FPS of 24 indicate its aptitude to real-time
autonomous navigation with percentages of mAP of
80.7%, RMSE of 0.31 meters, and the highest FPS of 24.
Trade-offs and strengths are also evident in the chart
and reconfirm the value of the cross-attention-based
multimodal integration of the considered models.
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Table 2: Fusion Model Performance Comparison

Trajectory RMSE
Method mAP (%) (m) FPS
Vision-Only CNN 68.2 0.58 18
LiDAR-Only PointNet | 72.6 0.42 21
Early Fusion 75.1 0.39 17
Proposed (CAFM) 80.7 0.31 24

Performance Comparison of Fusion Models

80

m)

60

a0

MAP (%) / FPS
Trajectory RMSE
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o
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e’
1y PO
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Fig. 6: Unified Performance Comparison of
Fusion Strategies

Comparison of mAP (in percent), FPS, and trajectory
RMSE (in meters) over various fusion approaches of the
sensors. The classification system introduced in this
paper (CAFM) obtains the best accuracy and time with
the minimum trajectory error.

The CAFM-based dual-modal fusion scheme demonstrated
a large performance gain, on all baselines: mAP was
raised by 18.3 percent over the Vision-Only CNN and by
26.2 percent over the LiDAR-only set-up, and trajectory
RMSE decreased by 18.3 percent and 26.2 percent,
respectively. It is of note that it supported real-time
inferences in embedded hardware (24 FPS) which
emphasized performance and edge-friendly deployment
to make it applicable in the autonomous navigation
systems.

Qualitative Analysis

In addition to quantitative performance measures,
visually represented model results also prove that the
proposed fusion strategy is beneficial. The CAFM model
has shown:

* More concrete outlines of obstruction especially
in unfavourable conditions of fog, shadowing and
partial block.

« Lessfalse positive around texture-less backgrounds
which can be a problem with vision-only.

« lonely objects persisted better across successive
frames that allow better conservation of
trajectories.
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Early Fusion

Proposed

Fig. 7: Detection Output Comparisons under Challenging Conditions

These visual gains have been ascribed to the fact that
the model learns cross-modal semantic associations,
with LiDAR semantic richness supplementing its geo-
metric accuracy, and RGB semantic wealth. The atten-
tion mechanism provides the system with the capabil-
ity to adjust features in a contextually related manner
to concentrate on attention-grabbing, spatially consis-
tent areas multi-modally.

Low-light and occluded qualitative comparison on
different fusion methods.

CONCLUSION AND FUTURE WORK

In this paper, 25 the proposed Cross-Attention-Based
Dual-Modal Fusion Network was supposed to robustly
solve the landmark-based autonomous navigation
problem, using supplementary features of the LiDAR
sensor and the vision sensor. The system can learn
dynamic spatial and semantic correspondence between
modalities by exploiting the modalities similarities
and differences using a Cross-Attention Fusion Module
(CAFM) that can overcome deficiencies of early or late
fusion mechanisms. The performance of the model, as
presented by the experimental results, proves that the
suggested model performs better in terms of object
detection performance (mAP), trajectory estimation
performance (RMSE), and the speed of processing (FPS)
and can be deployed on an edge device, such as NVIDIA
Jetson Orin.

Key Contributions:

« Developed an innovative architecture of CAFM
that allows context interaction between the
elements of LiDAR and vision.
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e Demonstrated state-of-the-art performance
on the state-of-the-art datasets (KITTI and
nuScenes) with remarkable gains with respect to
the unimodal and early fusion baselines.

* Proved to be real time on embedded hardware
and could be practically utilized in autonomous
ground vehicles.

FUTURE WORK:

« Spatiotemporal Modeling: 3D reinforcement of
spatiotemporal transformers into the method
to improve the scene comprehension between
successive frames.

e Cross-Domain Generalization: Use domain
adaptation techniques to deal with changes in
environment (e.g., fog, rain, night-time).

e Multi-Sensor Integration: Add IMU/GNSS data to
the existing architecture and allow full-stack
sensor fusion to achieve better localization and
path planning.
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