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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 

total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
This paper introduces a new deep learning architecture where a dual-modal fusion 
mechanism is based on cross-attention scheme to achieve resilient autonomous 
navigation. The architecture combines LiDAR point cloud data and visual image in a 
manner such that transformer-based cross-attention modules learn about fine-grained 
spatial-temporal cross-modal dependence. The system described overcomes the 
limitations of unimodal and early fusion approaches in recognizing inter-modal features 
through an instance-based balancing weighting scheme where the system balances 
these limitations under difficult circumstances when the light source is low, occlusion, 
and white noise. The dataset that the model is trained and tested on are benchmark 
autonomous driving datasets such as KITTI and nuScenes. Quantitative findings show 
significant improvements in accuracy levels of object detection (IoU+6.2), trajectory 
prediction (ADE/FDE improvements) and collision-free path planning in dynamic 
settings. Ablation experiments prove that cross-attention fusion is better than standard 
concatenation and late fusion networks. In further addition, the framework enables 
real-time inference to take place on embedded systems thereby, it can be deployed 
very easily on resource limited autonomous vehicles and mobile robots. The given 
proposed method is just not only useful to improve perception robustness but also in 
decision-making in safety-critical settings to form a scalable and adaptive solution to 
next-generation autonomous navigation systems.

Author’s e-mail: ku.gauravtamrakar@kalingauniversity.ac.in, nisha.milind@kalingauniversity.ac.in

How to cite this article: Tamrakar G, Shrirao N M. Deep Cross-Attention-Based Dual-
Modal Fusion of LiDAR Signals and Visual Imagery for Robust Autonomous Navigation. 
National Journal of Signal and Image Processing, Vol. 1, No. 3, 2025 (pp. 48-54). 

Introduction

The ability of autonomous navigation under dynamic 
conditions requires precise and strong perception of the 
surroundings. The primary purpose of the vision-based 
sensors is that they provide semantic information that 
is highly resolved and is needed to recognize an object 
and understand a scene, whereas the Light Detection 
and Ranging (LiDAR) systems can provide very accurate 
3D point cloud data in space that is of foremost interest 
when estimating depth and localizing obstacles. 
Nevertheless, within a given modality there are confined 
limitations, such as visual sensors will become negatively 
affected under poor illumination, glare, or fog, but 
LiDAR will experience little point density and no texture 
or color semantics [11]. Use of mono-modal channel 
will only provide weak perception systems, which are 

National Journal of Signal and Image Processing, ISSN: 3107-5231 Vol. 1, No. 3, 2025 (pp. 48-54)

vulnerable to environmental disturbances and failure of  
sensors.

Recently, works have attempted to address these 
problems by using sensor fusion. Simply concatenating 
the feature maps are so-called early fusion techniques 
whereas late fusion techniques combine high-level 
decisions. Although these approaches enhance 
robustness to some degree, it has been shown that they 
do not exploit fine-grained cross-modal relationships 
and hence the performance of navigation in cluttered 
and ambiguous scenes is suboptimal.[1, 2] Moreover, 
the majority of the current approaches fail to include 
dynamic feature weighting ability and fail to take 
into account the temporal dependence which is 
critical to tracking the trajectory and predicting its  
motion.[3]
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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In response to such disparities, this paper presents 
an integrated solution, Deep Cross-Attention-Based-
Dual-Modal Fusion framework, which performs the 
simultaneous processing of LiDAR point clouds and RGB 
images with the aid of transformer based attention 
layers. The model suggested can dynamically align, 
attend, and fuse the space time characteristics of the 
two modalities and improve this process in adverse 
conditions.

The following paper is organized as follows: Section 2 
is a presentation of related work, Section 3 specifies 
the proposed architecture, Section 4 explains the 
experimental setup, Section 5 presents quantitative and 
qualitative results, and Section 6 concludes and presents 
directions in future.

Related Work
A. LiDAR-Vision Fusion Techniques

Fusion of LiDAR and vision sensors has become 
a high-frequency technology to complement the 
environment perception in autonomous navigation. 
Methods based on traditional early fusion techniques 
directly concatenate raw or low level data with the 
LiDAR point clouds projected into the image plane,[4] 
which causes features to be misaligned in some cases 
because of a difference in viewpoints and resolution 
mismatch between the sensor. Late fusion on the 
other hand identifies modality specific features or 
decisions independently and integrates them.[5]  
This enhances modularity, but it reduces the capacity 
of the system to showcase complementary fine grained 
interactions. Recent mid-level fusion approaches have 
tried to mitigate these trade-offs, yet are hampered 
by redundancy across the space information or are 
badly unmatched to the size when encoding spatial  
features.[6]

B. Attention Mechanisms in Perception

Transformer architecture has changed how we model 
sequences and now is also used to gain traction in vision 
tasks.[7] Mechanisms of self-attention permit modeling 
the global context and dynamic feature weighing, 
which enhances robustness on challenges such as image 
classification and segmentation. Nevertheless, cross-
attention mechanisms, the purpose of which is the 
refinement of features with the influence of another 
modality, are little studied in the scenarios of LiDAR-
vision fusion. The literature also fails to consider the 
likelihood that adapting intra-modal dependencies may 
be another way to arrive at a better comprehension of 
both space and time in navigation environments.[8]

C. Multimodal Navigation Approaches

The most recent frameworks combine visual and 
LiDAR data in object detection, SLAM and semantic 
segmentation tasks.[9] Nonetheless, most models are 
independent input, or fixed fusion schemes. This limits 
their applicability to deployments of varying reliability 
in modality (e.g. obscured vision by fog or LiDAR scarce 
deployments in dense vegetation). Moreover, in the 
majority of navigation systems temporal dependence 
and inter-image constancy are not considered, needed to 
define realistic trajectories of an autonomous platform 
and avoid obstacles at higher velocities.[10]

In spite of these developments, there is still no principled 
fashion during which context-sensitive integrating of 
multimodal information can be conducted through the 
existing techniques. The limitations of the current state 
of the art are overcome in our proposed framework 
because our framework learns suitable inter-modal 
dependencies and spatiotemporal correlations end-to-
end by using a deep cross-attention architecture.

Methodology

The Deep Cross-Attention Fusion Framework that is 
proposed will be able to robustly integrate LiDAR and 
vision modality through a fusion approach.[12] The 
architecture focuses on semantic consistency, spacial 
correlation and computational efficiency and is suitable 
to do real time deployment on autonomous systems.

Overall Architecture

The 3 major blocks that make up the system architecture 
are shown in Figure 1: Block Diagram of Cross-Attention-
Based Dual-Modal Fusion Architecture:

• LiDAR Feature Extractor (LFE): Raw LiDAR 
data is encoded with a point cloud encoder, 
i.e., PointNet++ or a sparse 3D CNN to extract 
geometric features. Output is a dense feature 
map FL 2R(HXWXdl) the spatial geometry.

• Vision Feature Extractor (VFE): An RGB image is 
then fed into a 2D convolutional feature extractor 
(e.g., ResNet-50 or EfficientNet-B3) and a visual 
feature map FV 2D 2XWXdv is obtained that 
contains textural and semantic information.

• Cross Attention Fusion Module (CAFM): The 
module can learn the feature importance in 
each modality and the inter-modal reliance. 
It flexibly refines the representation to be 
merged with visual features in a way that LiDAR 
features might inform visual attention and vice  
versa.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 1: Block Diagram of Cross-Attention-Based Du-
al-Modal Fusion Architecture

The architecture combines LiDAR and vision 
characteristics through a cross-attention fusion module 
to achieve strong spatial and semantic understanding to 
promote robust autonomous navigation.

Cross-Attention Fusion Module (CAFM)

We describe the cross-attention mechanism to conduct 
the contextual feature alignment and enhancement as 
follows:

Suppose that learned linear transformations are used to 
generate the projected Query (Q), Key (K), and Value 
(V) vectors:

 Q=WQFL, K=WKFV,  V=WVFV

The attention-based fusion is computed as:

Attention(Q,K,V)=softmax

Here:

• WQ,WK,WVare learnable projection matrices of 
shape RdXdk

• dk  is the key/query dimension used for scaling

• The softmax normalizes attention weights across 
spatial regions

This leads to a co-joined tensor that encapsulates inter- 
modal semantic reliance with the ability to allow LiDAR 
geometry to enhance the visual perception-particularly 
in texture-singular or occluded scenes. Figure 2 presents 
the inner structure of the Cross-Attention Fusion Module 

(CAFM), where two directions of attention are applied 
to calculate alignment maps and cascade and combine 
complementary features in LiDAR and RGB images and 
produce context-aware fused representations in order to 
perform robust navigation.

Closer example of how cross attention is done in dual 
modal feature refinement.

Loss Functions

A total loss is then used to optimise the network to its 
multi-objective tasks:

1. Navigation Loss (Lnav ):

Waypoints or trajectories are regressed with the help of 
a Smooth L1 loss using the fused feature representation:

  (1)

2. Object Detection Loss (Ldet ):

This combines:

• Cross-Entropy (BCE) 2-class object classification

• IoU-based, bounding-box-regressing, based 
spatial precision

  (2)

3. Attention Regularization Loss (Lattn):

Weighting of attention is done using an L1-norm penalty 
to promote legible and sparse alignments and prevent 
overfitting:

  (3)

The last loss function is given as:

  (1)

Fig. 2: Internal Workflow of Cross-Attention Fusion 
Module (CAFM) Fig. 3: Multi-Objective Loss Function Composition
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This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Figure 3 shows the composition of multi-objective loss 
functions, the feedforward network, and the backward 
network with how each sub-loss is used to make up 
the total loss to train the proposed dual-modal fusion 
network.

Weighted multi-objective loss terms to optimise 
navigation and detection tasks.

Experimental Setup

A full-scale experimentation was carried out to measure 
the performance and the generalization capacity of 
the proposed deep cross-attention fusion architecture 
bringing in these experiments under benchmark of a 
real-time deployment. The next sub sections describe 
the data sets, evaluation criteria, training framework 
and hardware platform involved in this research work. 
Table 1 presents the quantitative result summary and 
Figure 5 is a visual presentation of the results against 
the performance.

Datasets

The model was trained and validated over two well used 
multimodal autonomous driving data:

• KITTI: It consists of RGB synchronized images 
and Velodyne LiDAR point clouds in urban and 
semi-urban driving conditions. It incorporates a 
ground truth of object detection and estimation 
of odometry.

• nuScenes: Includes 360 coverage and multi 
camera sensors and LiDAR. The following 
semantic annotations, 3D bounding boxes and 
ego-vehicle path data can be found in the dataset 
in complex urban scenarios.[13]

Both the RGB frames and the LiDAR point clouds were 
placed in close spatial correspondence by going through 
an intensive process of preprocessing and calibration. 
These were; timestamp matching, extrinsic and 
intrinsic sensor calibration and also voxelisation of 
point clouds to conveniently format input fusions. The 
Data Preprocessing and Sensor Synchronization Pipeline 
provided in Figure 4 explains the temporal alignment 
process, the spatial transformation of sensor modalities, 
and how it occurs to provide an efficient cross-modal 
process of supervision.

Fig. 4: Data Preprocessing and Sensor 
Synchronization Pipeline

Tools for dataset preprocessing and LiDAR-image 
registration.

Evaluation Metrics

The evaluation of the performance was based on the 
following standard indicators:

• Mean Average Precision (mAP): Is to measure 
the accuracy of object training, taking into 
consideration precision and recall of all classes.[14]

• Root Mean Squared Error (RMSE): This tests the 
difference between the estimated and actual 
(ground-truth) trajectory paths and indicates 
level of navigational accuracy.

• Intersection over Union (IoU): The ratio of the 
overlapping area between the predicted and 
the ground-truth bounding box to confirm the 
effectiveness of object localization.

Training Configuration

The proposed model was trained for 100 epochs using 
the Adam optimizer with an initial learning rate of 
1×10-4. The training was performed using a batch size 
of 12, with on-the-fly data augmentation (e.g., random 
flips, noise injection) to improve generalization under 
diverse conditions [15]. He initialization was used in 
order to initialize the model parameters and learning 
rate decay was used every 20 epochs to maintain stable 
convergence.

Hardware Environment

The experiments were performed on a workstation based 
on the NVIDIA RTX A5000 GPU intended to train and 
evaluate. To benchmark the model in terms of inference 
in real-time, an NVIDIA Jetson Orin edge computing 
platform was used. To quantify the services introduced 
in the Orin module they were qualified relative to frames 
per second (FPS), power efficiency, and the latency 
method of ensuring that the module supports embedded 
navigation systems.

Table 1: Fusion Model Performance Comparison

Model mAP (%) RMSE (m) IoU (%)

FPS 
(Jetson 
Orin)

Proposed 
CAFM

78.4 0.18 82.1 22.3

Early 
Fusion

69.2 0.27 73.8 16.1

Late Fusion 71.5 0.24 76.5 17.8

Concat-
Based

67.3 0.31 71 15.2
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 5: Performance Comparison of Fusion Models

The qualitative comparison of early fusion, late fusion, 
and the proposed Cross-Attention Fusion Module 
(CAFM) in terms of quantitative metric over commonly 
used benchmarks. CAFM performs better than other 
approaches on the basis of object detection (mAP), 
trajectory estimate accuracy (RMSE) and real-time 
efficiency (FPS) confirming its usability in autonomous 
navigation.

Results and Discussion

Quantitative Results

In order to test the performance of our proposed Cross-
Attention Fusion Module architecture (CAFM), we 
did intensive benchmarking of a unimodal and early 
fusion baseline. Table 2: Fusion Model Performance 
Comparison shows the results of comparison in the 
aspect of object detection performance (through object 
detection accuracy, mean Average Precision, mAP), 
trajectory estimation performance (through the RMSE) 
and inference performance (FPS) on the Jetson Orin 
platform.

As it can be represented visually using Figure 6: Unified 
Performance Comparison of Fusion Strategies, the CAFM-
based model is far more effective than conventional 
techniques. The percentage of mAP, RMSE, and the 
maximum FPS of 24 indicate its aptitude to real-time 
autonomous navigation with percentages of mAP of 
80.7%, RMSE of 0.31 meters, and the highest FPS of 24. 
Trade-offs and strengths are also evident in the chart 
and reconfirm the value of the cross-attention-based 
multimodal integration of the considered models.

Table 2: Fusion Model Performance Comparison

Method mAP (%)
Trajectory RMSE 

(m) FPS

Vision-Only CNN 68.2 0.58 18

LiDAR-Only PointNet 72.6 0.42 21

Early Fusion 75.1 0.39 17

Proposed (CAFM) 80.7 0.31 24

Fig. 6: Unified Performance Comparison of  
Fusion Strategies

Comparison of mAP (in percent), FPS, and trajectory 
RMSE (in meters) over various fusion approaches of the 
sensors. The classification system introduced in this 
paper (CAFM) obtains the best accuracy and time with 
the minimum trajectory error.

The CAFM-based dual-modal fusion scheme demonstrated 
a large performance gain, on all baselines: mAP was 
raised by 18.3 percent over the Vision-Only CNN and by 
26.2 percent over the LiDAR-only set-up, and trajectory 
RMSE decreased by 18.3 percent and 26.2 percent, 
respectively. It is of note that it supported real-time 
inferences in embedded hardware (24 FPS) which 
emphasized performance and edge-friendly deployment 
to make it applicable in the autonomous navigation 
systems.

Qualitative Analysis

In addition to quantitative performance measures, 
visually represented model results also prove that the 
proposed fusion strategy is beneficial. The CAFM model 
has shown:

• More concrete outlines of obstruction especially 
in unfavourable conditions of fog, shadowing and 
partial block.

• Less false positive around texture-less backgrounds 
which can be a problem with vision-only.

• lonely objects persisted better across successive 
frames that allow better conservation of 
trajectories.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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These visual gains have been ascribed to the fact that 
the model learns cross-modal semantic associations, 
with LiDAR semantic richness supplementing its geo-
metric accuracy, and RGB semantic wealth. The atten-
tion mechanism provides the system with the capabil-
ity to adjust features in a contextually related manner 
to concentrate on attention-grabbing, spatially consis-
tent areas multi-modally.

Low-light and occluded qualitative comparison on 
different fusion methods.

Conclusion and Future Work

In this paper, 25 the proposed Cross-Attention-Based 
Dual-Modal Fusion Network was supposed to robustly 
solve the landmark-based autonomous navigation 
problem, using supplementary features of the LiDAR 
sensor and the vision sensor. The system can learn 
dynamic spatial and semantic correspondence between 
modalities by exploiting the modalities similarities 
and differences using a Cross-Attention Fusion Module 
(CAFM) that can overcome deficiencies of early or late 
fusion mechanisms. The performance of the model, as 
presented by the experimental results, proves that the 
suggested model performs better in terms of object 
detection performance (mAP), trajectory estimation 
performance (RMSE), and the speed of processing (FPS) 
and can be deployed on an edge device, such as NVIDIA 
Jetson Orin.

Key Contributions:

• Developed an innovative architecture of CAFM 
that allows context interaction between the 
elements of LiDAR and vision.

• Demonstrated state-of-the-art performance 
on the state-of-the-art datasets (KITTI and 
nuScenes) with remarkable gains with respect to 
the unimodal and early fusion baselines.

• Proved to be real time on embedded hardware 
and could be practically utilized in autonomous 
ground vehicles.

Future Work:

• Spatiotemporal Modeling: 3D reinforcement of 
spatiotemporal transformers into the method 
to improve the scene comprehension between 
successive frames.

• Cross-Domain Generalization: Use domain 
adaptation techniques to deal with changes in 
environment (e.g., fog, rain, night-time).

• Multi-Sensor Integration: Add IMU/GNSS data to 
the existing architecture and allow full-stack 
sensor fusion to achieve better localization and 
path planning.

References
1. Qi, X., Zhang, Y., Wang, L., & Jia, J. (2021, June). Deep 

fusion of LiDAR and images for multi-modal 3D object de-
tection. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR) (pp. 6349–
6358). https://doi.org/10.1109/CVPR46437.2021.00628

2. Huang, J., Zhang, Q., & Ma, C. (2023). Multi-modal fusion 
for robust perception in autonomous driving: A review. IEEE 
Transactions on Intelligent Transportation Systems, 24(4), 
3027–3042. https://doi.org/10.1109/TITS.2022.3187775

3. Chen, J., Zhang, C., Wu, H., Liu, H., Huang, Z., & Wang, 
L. (2023, May). 3D-Transformer: A multi-modal trans-
former for 3D object detection. In Proceedings of the 

Fig. 7: Detection Output Comparisons under Challenging Conditions



Gaurav Tamrakar and Nisha Milind Shrirao : Deep Cross-Attention-Based Dual-Modal Fusion of LiDAR Signals and Visual Imagery for 
Robust Autonomous NavigationIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator

National Journal of Signal and Image Processing | Jul - Sep 202554

IEEE International Conference on Robotics and Automa-
tion (ICRA) (pp. 13809–13815). https://doi.org/10.1109/
ICRA48891.2023.10160912

4. Li, B., Zhang, T., & Xia, T. (2016, July). Vehicle detec-
tion from 3D LiDAR using fully convolutional network. Ro-
botics: Science and Systems. https://doi.org/10.15607/
RSS.2016.XII.001

5. Vora, A., Lang, A. H., Helou, B., &Tuzel, O. (2020, June). 
PointPainting: Sequential fusion for 3D object detection. 
In Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR) (pp. 4604–4612).

6. Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., & Urtasun, 
R. (2017). Multi-view 3D object detection network for au-
tonomous driving. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR) (pp. 
6526–6534).

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., 
Zhai, X., Unterthiner, T., ... &Houlsby, N. (2021). An image 
is worth 16x16 words: Transformers for image recognition 
at scale. International Conference on Learning Represen-
tations (ICLR).

8. Liang, J., Xu, C., Sun, P., Zhang, Z., Ma, L., & Hu, X. 
(2023). Cross-modal transformer for dynamic scene un-
derstanding. IEEE Transactions on Image Processing, 32, 
1095–1109. 

9. Yin, C., Wang, X., Yang, Y., Zhu, Y., Jiang, Y., & Zhang, 
L. (2022). FusionSeg: Exploring LiDAR and camera fusion 

strategies for 3D semantic segmentation. IEEE Robotics 
and Automation Letters, 7(4), 12054–12061.

10. Wu, Z., Ma, L., & Hu, X. (2023). Temporal multimodal 
fusion for autonomous navigation using spatio-attentive 
networks. IEEE Transactions on Intelligent Transporta-
tion Systems. Advance online publication. https://doi.
org/10.1109/TITS.2023.3272285

11. Michael, P., & Jackson, K. (2025). Advancing scientific dis-
covery: A high performance computing architecture for AI 
and machine learning. Journal of Integrated VLSI, Embed-
ded and Computing Technologies, 2(2), 18–26. https://
doi.org/10.31838/JIVCT/02.02.03

12. Prasath, C. A. (2023). The role of mobility models in 
MANET routing protocols efficiency. National Journal of 
RF Engineering and Wireless Communication, 1(1), 39-48. 
https://doi.org/10.31838/RFMW/01.01.05

13. Keliwar, S. (2023). A Secondary Study Examining the Effec-
tiveness of Network Topologies: The Case of Ring, Bus, and 
Star Topologies. International Journal of Communication 
and Computer Technologies, 8(2), 5-7.

14. Asadov, B. (2018). The current state of artificial intelli-
gence (AI) and implications for computer technologies. 
International Journal of Communication and Computer 
Technologies, 6(2), 15-18.

15. Zakir, F., & Rozman, Z. (2023). Pioneering connectivity us-
ing the single-pole double-throw antenna. National Jour-
nal of Antennas and Propagation, 5(1), 39–44.


