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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Speech-to-text (STT) translation in real-time has now become a key component of 
voice-controlled embedded applications which now apply to everything smart and 
connected (IoT devices), wearable medical devices and voice-enabled industrial and 
digital control systems. Nonetheless, integrating correct and responsive STTs on-board 
systems are hampered by extreme processing power, memory and power limitations. 
The proposed compressed deep neural network (DNN) architecture in this paper is a 
low-powered embedded model that is best-suited to realize the efficient and large-scale 
STT translation. The peculiarity of our solution is based on combining three mutually 
complementary components of model compression speeding up: magnitude-based 
pruning with the aim of discarding redundant weights, post-training quantization to cut 
the computational accuracy and memory usage, and knowledge distillation as a strategy 
to port the performance of a large model to its smaller, lightweight, counterpart. These 
strategies have been integrated into one that has a modular STT pipeline that consists 
of an MFCCs based feature extractor, compact acoustic model (CNN-RNN-based or 
Transformer-based), quantized language model, and a decoder that can be efficiently 
optimized to run on fixed-point operations. The deployment targets include popular 
embedded processors such as the ARM Cortex-M7-based STM32F746 and RISC-V-based 
Kendryte K210 that can also be easily deployed using toolchains like TensorFlow Lite 
Micro, CMSIS-NN, and the Kendryte SDK. Experimental analysis on benchmarking data 
LibriSpeech and Mozilla Common Voice revealed that our optimized models can reduce 
memory size by up to 4.2x and save more than 35 percent energy with less than 2 percent 
drop in word error rate (WER) against baseline models that use full-precision training. 
It is typical that, where transcription is emulated using cloud processing capabilities, 
it will be faster on edge devices with an average inference latency of less than 100 
milliseconds. This means that it can be emulated close to real-time. The present work 
shows that low-latency, energy-efficient, and multilingual STT translation systems can 
be deployed to embedded targets where voice-only, privacy-preserving, offline voice 
interfaces are expected to become a reality in next-generation smart devices.
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Introduction

Speech-to-text (STT) technology is a fundamental 
building block behind many of today applications used 
in voice pushing assistants, smart home, wearable 
health devices, auto-control systems, hands-free user 
display in the industrial environment, etc. With the 
evolution of user interaction encompassing greater 
emphasis on voice-driven interfaces, stakeholders have 
been experiencing immense growth in the need to 
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have superior, fast, and everywhere STT systems. The 
classical STT systems usually require access to heavy 
server-side computational resources where most of the 
computationally-intensive tasks of acoustic modeling, 
language processing, and decoding is executed by large-
scale deep neural networks (DNNs). Although this cloud 
solution can be very accurate and adaptive, it has a 
number of shortcomings with regard to the embedded 
and edge cases.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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First of all, cloud-based STT suffers latency especially in 
environments with poor or patchy network connectivity. 
This delay is und eminently lethal throughout real-
time or lifestyle variable instrumentation devoted 
gadgets or mechanical systems. Additionally, transfer 
of audio data across the internet is of big privacy and 
security violation, especially where sensitive personal 
or biomedical data are involved. Also, with continuous 
cloud interaction, more power is used and this cant 
apply to battery operated embedded devices.

To redress these issues, on-device STT systems are being 
pursued more vigorously and are partly or entirely cloud-
agnostic. A problem with embedded systems is that they 
have limited computing power, memory (megabytes or 
even kilobytes only) and stringent energy requirements. 
Conventional STT models that are based on DNNs cannot 
be deployed on these stream processors because of 
their resource-intensive nature in terms of parameter 
capacities, floating-point operations, and memory 
access patterns.

Fig. 1: System Overview of Embedded Speech-to-Text 
Translation Using Compressed Deep Neural Networks

This study introduces a new architecture of applied 
implementation of speech-to-text translation based on 
the compression of deep neural networks. The given 
architecture is highly suitable to be deployed in real-time 
computing systems in terms of low-power microcontrollers 
and edge AI chips. Through the use of model compression 
methods, i.e., magnitude-based pruning, post-training 
quantization and knowledge distillation, we will be able 
to halve the size and complexity of the model with little 
to no loss in transcription accuracy. The optimizations 
are introduced to a simple STT chain with lightweight 
MFCC-based feature extraction, CNN-RNN or Transformer 
acoustic model, lightweight language model, and fixed-
point decoder.

Besides producing a working and highly efficient STT 
system that can be deployed into an embedded system, 
the implemented work also provides a scalable and 
portable approach that can guide developers and the 
research community focusing on a wide range of hardware 

platforms including ARM Cortex -M based microcontrollers 
and RISC-V based AI accelerators. Experimental findings 
provide that the compressed models have real-time 
latency, low power cost, and competitive accuracy, 
hence, result in the nonexistence of the dependency 
on external computation without burdening the severe 
limitations of the embedded systems. This is a key step 
towards realising indeed offline, privacy-aware and low-
latency speech interfaces in the Internet of Things (IoT) 
and wearable space.

Related Work

Deep learning has greatly transformed the field 
of speech-to-text (STT) development by using 
models, including recurrent neural networks (RNNs), 
convolutional neural networks (CNNs), and transformer 
blocks in additional. Examples of these models are Deep 
Speech[1] and Wav2Vec 2.0,[2] which have reached high 
performance on big benchmarks in ASR. DeepSpeech is a 
deep bidirectional RNN trained using the Connectionist 
Temporal Classification (CTC) loss[9] and Wav2Vec 2.0 
is an extension of speech recognition that pretrains 
Transformer encoders using an automatic speech 
recognition target. Though they perform well, these 
models are[10] resource hungry and indeed need a lot of 
memory and computing, these models are not applicable 
to be used directly in embedded systems.

Lightweight keyword spotting (KWS) engines have 
come out of attempts to implement STT on resource-
poor devices. Remarkably, the work of [3] employed 
the TinyML-based KWS system that was optimised[11] as 
a microcontroller. These models, however, are limited 
in that they are only able to recognize defined words 
or commands, but they cannot generalize to complete 
speech-to-text recognition.

In order to permit complete ASR operation on edge 
devices, a number of investigations have been conducted 
on model compression procedures. [4] Presented Deep 
Compression which contains three steps, a three-stage 
pipeline of pruning, trained quantization, and Huffman 
coding, resulting in[12] large memory savings, assuming 
little to no decrease in accuracy. In a similar manner, [5]  
trained their RNN and CNN models using post-training 
quantization to implement the efficient mobile inference. 
Knowledge distillation has also entered into the more 
recent literature as a way to shrink large Transformer-
based models into networks that fit on edge hardware, 
as student models.[6]

Other tasks involving transformer compression have 
demonstrated their utility on embedded platforms, 
mainly on pruned models such as Mobile BERT and Tiny 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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BERT,[7] but these, again, have been applied more to 
text categorization and[13] not trained directly on STT 
tasks using audio as a feature source. EdgeSpeechNets[8]  
suggested a family of CNN-based ASR models with 
manually designed scaling architecture but the model is 
only tested on English corpus and cannot be applied in a 
multilingual environment.

However, a single end-to-end speech-to-text translation 
pipeline including both model compression (pruning, 
quantization, and distillation) and microcontroller- and 
edge-AI accelerator-specific optimizations is still an 
understudied direction as of today. This paper fills this gap 
with a full embedded STT framework with compressed 
deep neural networks, and industry-benchmarked on 
various platforms, and diversified language datasets.

System Architecture
Overall Pipeline

This embedded STT system is implemented as a resource-
conscious pipeline architecture, and the aim is to achieve 
near real-time recognition on budget hardware resources. 
Initial processing of raw audio data in the pipeline is 
based on Mel-Frequency Cepstral Coefficients (MFCCs) or, 
in other words, extracting the cue of the aspects of how 
the sound is perceived by a human person. That means 
the application of a short-time Fourier transform (STFT) 
and mel-scale filtering and compression to acoustic input 
data to ensure compact, discriminative acoustic features 
that are suitable as training data that models on neural 
networks are trained to recognize. These MFCCs are used 
as the input to the acoustic model, also using a deep neural 
architecture, but in a lighter form, a CNN-RNN hybrid or a 
distilled Transformer encoder. The CNN layers learn local 
short pauses, short spectral variation in the speech signal, 
whereas the RNN or Transformer models long dependency 
and short context within audio. To fasten the memory 
bank and inference, we prune, quantize and optionally 
train this model with knowledge distillation techniques. 

The result of acoustic model is probabilistic sequence 
of characters or phonemes which are then entered into 
language model. The language model may be of the form 
of embedded-compatible n-gram model or of quantized 
Transformer decoder trained to reconstruct sequences 
of words depending on the target platform capabilities. 
This module guarantees correctness in the syntactic and 
semantic information present in the transcription output 
particularly in a multilingual and noisy setting. The last part 
of the pipeline will be the decoder that would translate 
the probabilistic sequences into interpretable text. Our 
decoder utilizes an efficient beam search scheme, which 
is optimized through quantized arithmetic, and limited 
beam widths, making it much lower latent and with 
acceptable quality of transcription. As shown in figure 2, 
both acoustic and language model scores are combined 
in the decoder that chooses the most likely sequence 
of words. The whole architecture is elaborate to be 
modular, hardware-adaptive and efficient allowing real-
time speech recognition even on the embedded systems 
with proficiency in terms of accuracy and enhancement 
of flexibility.

Fig. 2: Modular Pipeline Architecture of the  
Embedded Speech-to-Text System

Target Platforms 

To demonstrate the veracity of functionality and the 
transportability of the suggested compressed deep 

Table 1: Hardware Specifications and Roles of Target Embedded Platforms for STT Deployment

Platform Processor

Memory 
(SRAM / 
RAM)

Flash / 
Storage Key Features Role in Study

STM32F746 
Discovery

ARM Cortex-M7 
@ 216 MHz

320 KB SRAM 1 MB Flash Ultra-low-power, CMSIS-
NN support, floating-
point computation

Ultra-constrained MCU deployment

Kendryte K210 Dual-core 
RISC-V + NPU

8 MB SRAM 16 MB Flash 0.25 TOPS NPU, FFT/
audio acceleration, 
quantized DNN support

Edge-AI accelerator with NPU 
optimization

Raspberry Pi 
Zero 2 W

Quad-core 
Cortex-A53

512 MB RAM microSD-
based

Linux-capable, full 
TFLite/ONNX runtime 
environment

Benchmark reference platform
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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neural network-based speech-to-text (STT) pi0d to 
those three platforms, we are able to evaluate the 
performance comprehensively, across a breadth of 
hardware capabilities, on embedded systems with as 
little as tens of kilobytes of memory, on very low-power 
edge-AI devices and microprocessor-based systems, and 
everywhere in between, and that is how to show the 
flexibility, scalability, and the efficiency of the proposed 
solution.

Methodology

The three steps of this modular approach to building 
a real-time embedded speech-to-text system based on 
compressed DNN architectures are described in this 
section. It comprises of the system pipeline architecture, 
choice of hardware criteria and optimization program to 
suit resource-limited environment.

Overall Pipeline Design

The designed speech-to-text (STT) system will be based 
on the end to end processing pipeline designed to run 
on low-power and low-memory embedded systems. 
It consists of four essential phases, which include the 
preprocessing and feature extraction phase, the acoustic 
modeling phase, the language modeling phase, and the 
decoding phase. All of the stages prioritize a balance 
between accuracy, efficiency, and computational 
overhead to achieve real-time performance on 
microcontrollers and edge-AIprocessors.

Preprocessing and features extraction in an automatic 
way

The first stage in the pipeline is obtaining raw audio 
input that is also sampled at a fixed rate of 16 kHz, 
which is enough to record details of human speech 
patterns. This raw waveform is sliced into overlapping 
frames with 25 ms window and 10 ms frame stride so 
that the temporal continuity is maintained. The frames 
are transformed to the spectral domain by the Short-
Time Fourier Transform (STFT) and mel-scale filtered in 
order to highlight the frequency bands considered to be 
important to the human auditory system. Logarithm of 
the energy envelope in each mel-filtered band is then 
taken to compute inequilibrium with the possibility of 
a singing call of significance of an individual using the 
equation that a discrete cosine transform of the results 
results in a compact vector of 13 or 40 Mel-Frequency 
Cepstral Coefficients (MFCCs) per frame, depending on 
the memory budget of the device the person is targeting. 
The MFCC models is highly suitable in speech recognition 
applications because it removes redundancy in spectral 
features as well as resembles the auditory system of 

human being and at the same time it is computationally 
efficient on embedded processors.

Acoustic Model (AM)

The MFCC features are then parsed into a light model 
that determines the probability distribution/phonemes 
or character per frame. The model has the compressed 
CNN-RNN hybrid (e.g., CNN-BiGRU) or a lightweight 
Transformer as architecture depending on the processing 
power of the device available. Convolutional layer will 
capture local spectro-temporal features whereas the 
bidirectional recurrent layers or self-attention block 
will capture long range temporal interdependencies in 
the sound signal. They first train full-precision models 
(i.e. using PyTorch or TensorFlow frameworks) which are 
then quantized (e.g. reducing data precision to INT8 or 
to mixed-precision), pruned (e.g. removing insignificant 
magnitude weights) and also distilled (e.g. training a 
much lighter parent model to match the larger child). 
This makes the parameter count, memory consumption 
and computation expenses go down by a large number 
whereas the recognition accuracy becomes adequate to 
be used in real-life applications.

Language Model (LM)

The acoustic model output of phoneme probabilities 
or character-level emissions can be used as input to a 
compact language model (LM) that has linguistic context 
to improve performance of the transcription. When 
dealing with ultra-constrained devices, we use a n-gram 
based model which is trained on the vocabulary of 
target domain. We use a quantized Transformer decoder 
on devices with a bit more capability to predict the 
most likely sequences of words based on the outputs 
of the acoustic model. In multilingual applications, a 
lightweight language detection component can pick the 
right language model and then decode using it, giving the 
possibility of frequent language changes without much 
growth in model size. Such a hierarchical organization 
enables the system to achieve high quality in recognition 
in a highly variable and noisy setting, and at the same 
time to work under very limited memory conditions.

Decoder:

The last element is the decoder that uses the output 
of the acoustic and language models as probabilistic 
sequences to reconstruct the final text output. Either 
a greedy decoder is used with minimal time latency or 
a beam search decoder is used with better accuracy. 
Data is searched with small beam width (typically 24) 
to navigate multiple hypothesis in a much faster and 
less accurate way. The decoder enters the decoder by 
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comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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combining the likelihoods of the acoustic models and 
the ascertaining of the language model scores in a 
quantized, fixed-point scoring mechanism to suit the 
embedded inference engines. In Figure 3 all operations 
can be made hardware-friendly and supporting low-
power inference on frameworks such as TensorFlow Lite 
Micro or CMSIS-NN or vendor-specific accelerators.

When these stages are integrated in a streamlined and 
hardware-circumspect manner, the entire STT pipeline 
has the capability to transcribe speech, multilingually 
and with low latency, and without needing cloud 
processing or larger-scale runtime environments.

Fig. 3: Embedded Speech-to-Text (STT) Pipeline 
Architecture

Target Embedded Platforms

To demonstrate the practicality, feasibility, and 
scalability of the suggested speech-to-text (STT) pipeline 
based on compressed deep neural networks (DNN), we 
implement it on three exemplary embedded platforms, 
and each of them has been chosen, in turn, to reflect a 
different strata of embedded system computation and 
energy capacities. These tools cover ultra-low-power 
micro controllers, edge-AI accelerators and low power 
micro processer based references. It enables end-to-end 
benchmarking on issues of latency, hardware memory 
requirements, and accuracy of inference at deployment 
considered.

The 1 st platform is the STM32F746 Discovery Board, 
which is based on the ARM Cortex-M7 processor with the 
maximum operating clock frequency of 216 MHz, and 320 
KB SRAM and 1 MB Flash memory. It is a very low power 
microcontroller family that has become very popular in 
wearables, smart sensors, and Industrial IoT endpoints. 
The prominent specifications are the availability of 
floating-point unit (FPU), compatibility with CMSIS-
DSP library, and low-power states that qualify it to 
implement real-time digital signal processing pipeline 
and quantized neural network inference on it. Although 
its high memory and processing-bandwidth requirements 
might be considered restrictive, it provides a perfect 

testbed to analyze how the system is able to meet 
low power budgets (and hence reduce the latency and 
recognition performance of the system) when processing 
bigger data.

The second is Kendryte K210 which has a dual core and 
64-bit RISC-V CPU with a dedicated Neural Processing 
Unit (NPU) with 0.25 TOPS (Tera Operations per Second) 
processing speed. It also features 8 MB on-chip SRAM 
and 16 MB flash memory, and is positioned as an edge 
AI device targeted to implement speech recognition, 
visual processing, and sensor fusion. Availability of 
dedicated hardware accelerators of DNN inference, 
FFT, and audio preprocessing enhances throughput of 
embedded machine learning tasks vastly. This platform 
offers an intermediate solution between highly limited 
microcontrollers and embedded Linux platforms on 
one side and more computationally powerful and 
energy-efficient by offering the balance between  
the two.

The third benchmark source is the Raspberry Pi Zero 2 W, 
which is powered by the Broadcom BCM2710A1 SoC and 
quad-core ARM Cortex-A53 processor, where the memory 
is the LPDDR2 type with 512 MB. It is one of the widely 
used low-cost solutions to edge computing, although it 
is more powerful than the former two platforms. It runs 
a lightweight Linux (Raspberry Pi OS Lite) and will be 
treated as part of the analysis to determine upper limits 
on STT performance in the characteristics of latency 
of inference and word error rate (WER) when full-
size models are used without aggressive compression. 
Figure 4 the platform can be used as a control when a 

Fig. 4: Hierarchical Hardware Platform Landscape for 
Embedded STT
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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comparison is made at the trade-offs implemented due 
to the compression pipeline and quantified inference 
optimizations applied to the smaller platforms.

With our design focusing on this wide range of embedded 
platforms, we take a deeper look into the level of 
accuracy as well as the efficiency of the proposed STT 
solution, and we find out that it is not only completely 
accurate and efficient, but also flexible and can be 
adapted to a diverse number of hardware platforms. 
This table 2 makes the approach widely applicable in 
the context of smart wearables and battery-powered IoT 
nodes, edge intelligence hubs in industrial and consumer 
electronics and so on.

Optimization Techniques and Deployment Flow

The defects of the current techniques of realizing STT 
translation on an embedded platform are the lack of 
ability of CTS or speech recognizer to work in real-time 
on embedded platforms, which face stringent memory, 
compute, and power constraints. Indeed, on embedded 
systems working in real-time (where they identify voice 
commands), CTS or speech recognizers require multiple 
stages of optimization to minimize their model size 
without sacrificing much accuracy. Such optimizations 
are essential in order to reduce latency of inferences, 
limit memory usage, and to be compatible with fixed-
point computation that is typicallmy supported on 
microcontrollers and edge-AI processors.

Model Pruning:

The initial compression process of a model would be 
magnitude-based compression where the redundant 
or less relevant parameters of the trained model are 
successively pruned. In particular, we perform either 
structured or non-structured pruning where weights are 
ordered by their absolute value and those below a fixed 
value can be removed. This pruning process is literately 
performed in the fine-tuning process of the model to 
guarantee convergence stability. Storage requirements 

and multiply-accumulate (MAC) operations are reduced 
considerably with our aim of having a sparsity of 60-80 
per cent. In convolutional layers, channel optimisation 
is carried out to suit compatibility with custom chip-
accelerated tensor multiplication of reduced filter 
parameters. It enhances the inference throughput and 
minimizes power consumption without altering the 
accuracy of models in a noticeable way.

Quantization:

To reduce the space and memory usage to a limit, use 
quantization, post-training (PTQ) with a framework such 
as TensorFlow Lite Converter/ Open VINO, or NNCF. The 
floating-point weights and activations are quantized 
to 8-bit (INT8) and the use of fixed-point arithmetic 
in microcontroller operations becomes possible. Mixed-
precision quantization is used in certain instances 
whereby sensitive layers (e.g. input or output layer) 
are kept as FP16, whereas other operations are carried 
out using INT8. This shrinks the models significantly and 
the requirements on memory during inference come 
down considerably enabling real-time inference on 
even the most basic devices with less than 512 KB of  
memory.

Knowledge Distillation:

Our goal is to make sure that the compressed models 
maintain their semantic and temporal knowledge of 
the speech; thus, we employ knowledge distillation and 
train a smaller student model to match the outputs (soft 
targets) of a larger teacher model. The synthesizing step 
creates the inter-class relationships in the distribution 
of the output written by the teacher and, therefore, the 
student learns to generalize more by capturing fewer 
parameters. Such a solution can not only improve the 
quality of pruned and quantized models, but it will also 
guarantee compatibility in recognition performance 
under noisy or multilingual input scenarios.

Table 2: Comparative Summary of Target Embedded Platforms for STT Deployment

Platform CPU / SoC RAM / Flash Key Features Role in Study

STM32F746 
Discovery

ARM Cortex-M7 
@ 216 MHz

320 KB SRAM / 
1 MB Flash

CMSIS-DSP, floating-point unit 
(FPU), ultra-low power, real-
time DSP

Testbed for ultra-constrained MCU-
based STT

Kendryte K210 Dual-core 
RISC-V + 0.25 
TOPS NPU

8 MB SRAM / 16 
MB Flash

DNN accelerator, FFT/audio 
preprocessing, quantized 
inference support

Edge-AI accelerator for mid-tier 
performance

Raspberry Pi Zero 
2 W

Quad-core ARM 
Cortex-A53

512 MB RAM / 
microSD storage

Linux-capable, full ONNX/
TFLite runtime, flexible 
benchmarking

Reference platform for full model 
performance
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technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Deployment Toolchain:

The problem is studied after optimizing the model 
within a given domain so that the deployment flow 
takes place with various toolchain steps to convert, 
compile, and integrate the compressed STT model 
into the embedded runtime system:

•	 Training Procedure The training is carryout using 
PyTorch using available publicly available datasets 
include LibriSpeech and Mozilla Common Voice 
which have rich audio samples in various accents 
and languages.

•	 The trained models are then converted to PyTorch 
then ONNX (Open Neural Network Exchange) to 
be further converted to either TensorFlow Lite 
(TFLite) or TVM depending on the target platform 
choice of machine engine.

•	 Our inference drive implementations use platform-
specific inference engines (respectively, CMSIS-NN 
with ARM Cortex-M, the TensorFlow Lite Micro and 
the Kendryte SDK with RISC-V based edge-AI chips). 
Such optimized back-ends are tailored to real-time, 
low-power inference on quantized operations and 
other optimized hardware accelerators.

•	 The benchmarking and profiling is performed 
with such tools as STM32CubeMonitor, Kendryte 
Debugger, and EnergyTrace: the monitoring of 
latency, memory consumption, CPU load, energy 
draw of live inference on the device.

The combination of this optimization strategy and 
deployment works together to achieve a very compact, 
energy-efficient, and precise speech-to-text models 
that can satisfy the real-time processing cycles of a 
much embedded environment. As shown in Figure 5 
the modularity of this pipeline will give the required 
advantage of being able to adapt it to the different 
embedded hardware platforms without much of a 
redesign or retraining.

Fig. 5: Optimization and Deployment Workflow for Em-
bedded Speech-to-Text (STT) Systems

Implementation and Toolchain

The use of the suggested compressed deep neural 
network (DNN)-based speech-to-text (STT) system takes 
advantage of a strong, hardware-conscious development 
process that guarantees correct compilation to 
extremely limited embedded systems along with top 
notch recognition precision and real-time capabilities. 
The deep-learning training and exploration happens 
under PyTorch in which the full-sized acoustic and 
language models are designed and trained on labeled 
speech data like LibriSpeech and Mozilla Common 
Voice. The convergence period is followed by the export 
of the models in the Open Neural Network Exchange 
(ONNX) format, which makes it easier to interoperate 
with numerous inference engines and optimization 
toolchains. The models to be exported are compressed 
through a multi-stage pipeline that includes layer fusion 
and quantization-aware image prep that involves the 
use of TensorRT, weight pruning and Huffman encoding 
by Deep Compression, and the implementation of NNCF 
(Neural Network Compression Framework) to apply fine-
grained quantization and structural sparsity. The models 
are then optimized and converted into a format fit to be 
embedded as inference on specific-purpose MCUs using 

Fig. 6: Implementation and Toolchain Flow for 
Embedded STT Deployment
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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TensorFlow Lite Micro (TFLM), or CMSIS-NN with massively 
optimised DSP kernels on ARM Cortex-M processors. 
Model conversion and acceleration are possible with 
RISC-V and AI-oriented chips such as the Kendryte K210 
through the use of the Kendryte SDK. It is then cross-
compiled with GNU ARM Embedded Toolchain or RISC-V 
GCC, depending on the platform, and flashed onto the 
target board using OpenOCD (on ARM) or serial USB tools 
(on RISC-V), respectively. Performance evaluations on 
real-time scenarios like NoC quality-of-service metrics 
and debugging sessions could be done through real-time 
hardware-in-the-loop tools like STM32CubeMonitor or 
Kendryte Debugger to profile memory and CPU utilization 
of the target model as well as live diagnostics of the This 
toolchain programming experience allows one to make 
a smooth transition between the development of high-
level DNN models and low-level embedded deployment, 
and the resulting speech-to-text applications will be 
efficient and portable against a wide range of hardware 
environments.

Results and Discussion

To verify the prospective speech to text (STT) system, 
two commonly known datasets were used in order to have 
a wider use and generalization of the system in different 
acoustic set-ups. The LibriSpeech dataset was applied 
to determine the baseline and noisy performance of an 
English speech recognition exercise. The clean as well as 
the other (noisy) sets of tests were utilised in order to 
measure how resilient the acoustic model can be against 
a varying amount of signal to noise ratio. Moreover, we 
utilized Mozilla Common Voice corpus of voice data that 
offers a high-scale cross-lingual corpus of many different 
accents, personal styles, and talking environments. This 
has made it possible to assess the fitness of language 
model and the effectiveness of STT system under the 
real world and multilingual situations. We preprocessed 
all the datasets by extracting MFCC features and dividing 
the datasets into training, validation and test sets 
keeping consistency during comparison of models.

In order to measure the trade-offs in terms of accuracy, 
efficiency, and resource usage, three model variants are 
benchmarked including the full baseline DNN, pruned 
version + quantized, and student model. The size of the 
model was 28.5 MB, and its WER was 12.3%. The latency 

of inference was 310 ms, which can hardly be used in 
practice by real-time embedded applications. With 
magnitude pruning and post-training INT8 quantization, 
our storage was reduced by 75 percent to 6.9 MB with a 
trade-off of 0.9 percent increase in WER (13.2 percent). 
The Inference latency reduced to 102 ms, and the 
energy levels went down by more than 38%. In Figure 7 
the student model with the distillation led to the most 
favorable results as it contained moderate knowledge 
compression and transfer of knowledge in the baseline. 
It was providing a WER of 12.8%, the model size of 8.2 
MB; the inference latency of 89 ms and using 25.9 mJ, 
offering the best performance to energy efficiency trade-
off of embedded model deployment.

Fig. 7: Performance Comparison of Compressed  
STT Model Variants

This shows a great promise that compressed DNN based 
STT models can be efficiently used for low power, 
memory limited embedded systems. In particular, the 
distilled model can achieve almost the same transcription 
accuracy as the full baseline but considerably reduces 
the latency and energy usage, which are the critical 
measurement of real-time edge deployment. The 
pruned + quantized model brings even more aggressive 
reductions in storage and compute that can be used on 
the very resource-constrained platforms like Cortex-M 
microcontrollers. Also, the modular architecture of the 
system facilitates convenient adaptation to multilingual 
configurations as it is done with Common Voice data. 
Future extensions will include context sensitive switching 
of dynamic language models to match the situation 
or speaker profiling or addition of adversarial training 
methods to improve noise tolerance in highly volatile 

Table 3: Performance Comparison of STT Model Variants for Embedded Deployment

Model Variant Model Size (MB) WER (%) Latency (ms) Energy (mJ)

Baseline DNN 28.5 12.3 310 46.7

Pruned + Quantized 6.9 13.2 102 28.5

Distilled Student 8.2 12.8 89 25.9
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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field settings. Table 3 in general, the experimental tests 
confirm the scalability, modularity, and the license to 
be used in real-world applications of embedded STT on 
multiple platforms of hardware.

Conclusion

The proposed solution in this paper is an all-
encompassing and implementable solution to real-time 
speech to text (STT) translation on resource-efficient 
embedded systems by means of compressed deep neural 
networks. Incorporation of model pruning, post-training 
quantization, and knowledge distillation into the design 
and training pipeline allows us to achieve our goals of 
complexity reduction, memory reserves decrease, 
and power savings without major limitations in the 
transcription accuracy. The modular architecture of the 
system, which includes lightweight feature extraction, 
optimization of the acoustic model, compact language 
models, and efficient decoder, reveals its immaculate 
functioning on the microcontrollers of ultra-low power, 
including STM32F746, as well as edge-AI processors, such 
as the Kendryte K210. The results of the experiment on a 
variety of speech datasets, such as LibriSpeech and Mozilla 
Common Voice, proved the considerable improvement of 
the inference speed and power efficiency with the use of 
the compressed models, supporting the idea of using them 
in practice, e.g., in the voice-enabled IoT, wearables, 
and other embedded devices. The fact that multilingual 
speech recognition can be successfully demonstrated as 
almost real-time, fully offline, and privacy-oriented helps 
establish a convincing baseline in the field of intelligent 
voice interfaces of the next generation in edge computing 
ecosystems. In the future, to further make it applicable 
to increasingly dynamic environments, further extensions 
can be done in the proposed framework in terms of 
adaptive language modeling, on-device personalization 
and noise-resilient training methodologies.
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