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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.

Author’s e-mail: ishratzahanmukti16@gmail.com, ebad.eee.cuet@gmail.com, kou-
shikkumarbiswas13@gmail.com

How to cite this article:  Mukti IZ, Khan ER, Biswas KK. 1.8-V Low Power, High-Res-
olution, High-Speed Comparator With Low Offset Voltage Implemented in 
45nm CMOS Technology. Journal of VLSI Circuits and System Vol. 6, No. 1, 2024 (pp. 
19-24).

Journal of VLSI Circuits and Systems, ISSN: 2582-1458 Vol. 6, No. 1, 2024 (pp. 19-24) 

IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Restoring images corrupted by noise is an everlasting process in computer vision, 
particularly in real-time instances, including the self-governing cars, surveillance 
cameras, and mobile photo capturing. The proposed Attention-Guided Transformer 
Network (AGTN) is a novel approach to real-time and noise-resistant image restoration 
that will be introduced in this paper. The proclaimed architecture has taken hybrid 
encoder-decoder form, revealing some convolutional layers in local texture decryption 
with transformer blocks that estimate global dependencies through self-attention in 
the multifaceted sense. The Attention-Guided Denoising Module (AGDM) learns to be 
adaptive to image artifacts caused by noise to be coherent to structural details in 
various levels of noise and distributions at a fine granularity. These experiments train 
and test the model on common components of image restoration benchmarks: BSD68, 
Set12, and Urban100, and the result shows a consistent improvement with the state-of-
the-art with CNN-based and transformer-based methods. The quantitative performance 
indicates as much as 31.16 dB PSNR and 0.851 SSIM on Gaussian noise (sigma=25) and 
major improvements are also found in real-world noise datasets. Further, the model 
runs with 27 FPS of inference speed on NVIDIA Jetson Nano and the speed was proven to 
be usable in embedded vision tasks with the 256256 bit image resolution. These findings 
indicate the promised attentional transformer architectures to be useful in removing 
noise, distorting structures and use in real-time implementation. Future experiments 
are planned on the lightweight model derivations, eigen-noises domain adaptation to 
novel type of noise, video and multimodal restoration.
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Introduction
Image restoration, especially under complex noise 
conditions, is a critical task in computer vision Its 
applications are very broad and it can be used in low-
light photography and medical imaging to autonomous 
navigation and remote sensing. The required objective 
is to reconstruct visually useful information in case of 
damaged inputs, and that may be difficult because of 
scattered or innate noise. Classical model-based image 
denoising methods like BM3D and NLM fare well when 
degradation is of an additive Gaussian nature but are 
unsuitable to operate in practice.[5] The deep learning 
capabilities have further been enhanced by data driven 
systems and especially by CNN based architectures such 
as DnCNN and FFDNet through residual learning and multi-
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scale learning. Nevertheless, such models have very 
small receptive fields and tend to overly focus on local 
structures, thus unable to recover structural integrity in 
areas of globally deformed surface or high texture.

More recently, Vision Transformers (ViTs) have become 
popular due to the fact that they implement self-
attention with the necessary long-range dependencies. 
Their accuracy in classification and vision with high-level 
vision tasks is well-documented, and after a long time it 
became possible to apply them to low-level restoration 
problems with the restrictions of high computational 
complexity and low frequency bias.

The limitations of the application of a multi-head 
self-attention module in the original attention-guided 

RESEARCH ARTICLE	 ECEJOURNALS.IN



Letahun Nemeon and Prerna Dusi : Noise-Robust Image Restoration Using Attention-Guided Transformer Networks for  
Real-Time Visual EnhancementIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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transformer network with convolutional stems necessitate 
the use of a Noise-Robust Attention-Guided Transformer 
Network (AGTN) in this paper, which combines multi-
head self-attention modules and convolutional stems in 
a unified encoder-decoder model. This paper presents 
a two-tier attention mechanism tailored to the task of 
denoising, able to combine the local texture information 
extraction with global contextual thinking. The model is 
tested on standard benchmarks (BSD68, Set12, Urban100) 
and run on an NVIDIA Jetson Nano where it demonstrates 
efficiency and faster performance compared to CNN and 
baseline transformer methods with increased denoising 
fidelity as well.

Related Work
Classical and CNN-Based Denoising

BM3D and Wavelet Shrinkage were once thought to be 
classical algorithms of image denoising, especially in 
Gaussian noise removal. These techniques make use of 
statistical priors or frequency-domain filtering and they 
work well with stationary noise of known distributions. 
They fail in more general situations, though, when 
dealing with non-Gaussian, spatially varying, or real 
data noise; and do not extrapolate to diverse datasets 
without a lot of parameter tuning. Image restoration has 
already reached a new level due to the implementation 
of deep learning techniques, especially the techniques 
that utilise Convolutional Neural Networks (CNNs). 
DnCNN,[2] FFDNet and RIDNet are models that have been 
deployed to enhance the accuracy of denoising when a 
different amount of noise is introduced. Irrespective of 
their successes, the nature of these models brings about 
the limitation of their receptive fields which become a 
barrier to modeling long-range spatial relationships and 
global semantics. This leads to over-smoothness, and 
elimination of details, particularly when there is a lot of 
noise present or a busy background.

Transformer-Based Vision Models

With the appearance of Vision Transformers (ViT) 
and Swin Transformers, high-level vision tasks (e.g., 
classification and segmentation) became revolutionized 
because their convolutional operations were outdone by 
self-attention, whose global context endowed the tasks 
with high performance. Nevertheless, the low-level 
computations like denoising cannot be performed with 
early ViT models because of the lack of local inductive 
biases. To solve this, Restormer [3] and Uformer are two 
of the models that implement transformer structures 
to the task of image restoration by integrating the 
transformer through a hierarchical or U-shaped 
architecture, involving attention in the same. Though 

these models exhibit better performance results on 
synthetic datasets, most of the neural networks are not 
usually applicable to real-time cases because they are 
computationally costly, have large parameter values and 
are not designed to operate edge devices.

Lacunae and Problems

•	 The classical models are adaptive and unstable 
to real-world or mixed noise.

•	 CNN-based approaches have difficulty with 
modeling long-term pooling, which is why their 
restoration results are not that good on globally 
distorted images.[4]

•	 The methods based on transformers are 
effective, but they usually cannot satisfy real-
time requirements on embedded or edge 
computing system.

This gives incentive to a hybrid architecture that 
combines local convolutional priors with global 
transformer based attention, trained to be noise-robust 
and real-time viable, which is what this paper proposes.

Proposed Method

To support the image restoration process in a robust way, 
the proposed Attention Guided transformer Network 
(AGTN) aims at the merging of global context modeling 
capabilities of transformers and local details preservation 
of convolutional operations.[6] The architecture is tuned 
to be efficient and very accurate in the removal of noise 
on images of varying noise type and intensity.

Network Architecture

The whole network incorporates a U-shaped encoder-
decoder architecture, a popular architecture to recover 
images as it supports the multi-scale feature extraction 
and skip connection capability, which can maintain 
the spatial resolution of the input images. This kind of 
architecture involves the integration of three primary 
components:

•	 Convolutional Stem: The first layers of the 
convolution get low-level spatial features of 
the noisy input image. These are features which 
represent local textures and noise statistics 
which are input tokens to next transformer 
stages.

•	 AGDM-Dual-stage Transformer Blocks of 
Attention-Guided Denoising Modules:Stacked 
multi-head self-attention (MHSA) blocks with an 
AGDM embedded in the core of the AGTN model 
come together to create the stacked multi-head 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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self-attention (MHSA) block. They are blocks that 
approximate long-range pixel dependencies, and 
they generate adaptive attention maps, which 
compare the noise to the signal patterns.

•	 Channel and Spatial Attention Fusion (CSAF): 
A channel and spatial attention factor is 
mutually highlighted in clean features through 
a related upscaling in the decoder. Semantically 
significant feature maps are found by means of 
channel attention, and edge localization and 
noise pattern blocking are provided by means of 
spatial attention.

Table 1 gives a hierarchical breakdown of the AGTN 
model architecture in terms of the type, dimensions and 
the number of parameters of the layers, and Figure 1: 
Block Diagram of the Proposed AGTN Architecture gives 
a “birdseye” view of the whole architecture.

The Attention-Guided Transformer Network (AGTN) 
architecture is illustrated, and among them are the 
convolutional stem, the two-stage transformer block, 
with integrated Attention-Guided Denoising Module 
(AGDM), and Channel-Spatial Attention Fusion (CSAF) 
module, seen in the decoder branch, in noise-robust 
image restoration images.

3.2 Attention-Guided Denoising Module (AGDM)

Each transformer block is equipped with the Attention-
Guided Denoising Module (AGDM) which is used to restore 
noise-active features. It is carried out in the following 
main steps:

•	 Self-Attention Mechanism: Learns globally 
contextual relation across the spatial dimensions 
so that the model can detect related noisy sectors 
and be more consistent in structure throughout 
the image.

Table 1: Layer-Wise Configuration of the AGTN Architecture

Module Layer Type Kernel / Operation Output Size # Parameters Remarks

Input - 256×256×3 (RGB image) 256×256×3 - No preprocessing

Convolutional 
Stem

Conv2D + ReLU 3×3, stride=1, 64 filters 256×256×64 ~1.8K Shallow feature 
extraction

Conv2D + ReLU 3×3, stride=1, 64 filters 256×256×64 ~36K Stack of conv layers

Encoder Stage Downsample 
(Conv2D+Stride)

3×3, stride=2, 128 filters 128×128×128 ~74K Spatial 
downsampling

Transformer Block 
(×2)

MHSA (4 heads) + FFN 128×128×128 ~1.2M Global feature 
modeling

AGDM Adaptive Masking 128×128×128 ~100K Noise-aware 
attention weighting

Bottleneck Transformer Block 
(×2)

MHSA + FFN 64×64×256 ~2.1M Deep context 
representation

AGDM Contextual Denoising 64×64×256 ~200K Suppresses deep 
noise patterns

Decoder Stage Upsample (Transpose 
Conv)

4×4, stride=2, 128 filters 128×128×128 ~590K Learnable 
upsampling

CSAF Module Channel + Spatial Attention 128×128×128 ~90K Attention fusion 
during upsampling

Transformer Block MHSA + FFN 128×128×128 ~600K Feature refinement

Conv2D 3×3, stride=1, 64 filters 256×256×64 ~36K Reconstruction 
mapping

Output Layer Conv2D 3×3, stride=1, 3 filters 256×256×3 ~1.7K Final restored RGB 
image

Fig. 1: Block Diagram of the Proposed  
AGTN Architecture
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amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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•	 Feature Residual Learning: Uses a residual map-
based method to the mapping of the clean 
feature using the noisy ones. The given approach 
does not only accelerate convergence but also 
leads to better generalization to unseen or 
complicated types of noise.

•	 Noise Suppression Mask: A second branch of 
attention is another predicted attentional 
branch, which is the noise suppression of the 
intermediate representations through the usage 
of a soft noise suppression mask. This acquired 
mask is intelligently utilized to improve the 
denoising correctness in both synthetic and real-
world scenarios.

•	 The whole operational procedure of AGDM has 
been defined in Pseudocode 1, which depicts the 
layer-by-layer model transformation, comprising 
normalization, calculation of multi-head self-
attention, feed-forward filtering, and mask-
attended fusion of features.

Figure 2 is a graphic-style schematic of the AGDM 
pipeline with the running order of the procedures and 
main functional blocks of noise suppression processes 
indicated.

Pseudocode 1: Attention-Guided Denoising Module 
(AGDM)

Input:
    X      	 ← Noisy input feature map [H × W × C]
	 N_heads ← Number of attention heads
	 d_model ← Feature dimension per head
Output:
    Y      ← Denoised output feature map [H × W × C]
Procedure:
1. 	 Normalize Input:
	 X_norm ← LayerNorm(X)
2. 	 Compute Multi-Head Self-Attention (MHSA):
    	 For each head h in 1 to N_heads:
	 Q_h ← Linear(X_norm)
	 K_h ← Linear(X_norm)
	 V_h ← Linear(X_norm)
	 A_h ← Softmax(Q_h · K_h^T / sqrt(d_model))
	 Z_h ← A_h · V_h
	 Z ← Concat(Z_1, Z_2, ..., Z_N_heads)
	 Z_out ← Linear(Z)
3. 	 Add & Normalize:
	 X_sa ← LayerNorm(X + Z_out)

4. 	 Feed-Forward Network (FFN):
	 FF_out ← GELU(Linear(X_sa))
	 FF_out ← Linear(FF_out)
5. 	 Learn Noise Suppression Mask:
   	  M ← Sigmoid(Conv2D(X_sa))      # Mask in range 
[0,1]
	 Masked ← M ⊙FF_out            # Element-wise mul-
tiplication
6. 	 Residual Output:
	 Y ← X + Masked
Return:
    Y
Explanation:

•	 metric_layer_norm training depends on 
converging.

•	 MHSA: Encompasses worldwide situation 
throughout the picture.

•	 Supression Mask M: Learns to modify the feed-
forward at the expense of noise cancelation.

•	 Residual Learning: Allows better flow of gradients 
and preserves the characteristics of the identity.

Pseudocode 1: The work principle of the Attention-
Guided Denoising Module (AGDM), in which multi-head 
self-attention, residual feed-forward learning and noise 
cancellation masking were performed.

Fig. 2: Flowchart of the Attention-Guided Denoising 
Module (AGDM)
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can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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This is the diagram of the internal process pipeline 
of the AGDM that is embedded into every transform-
er block within the AGTN architecture. The module is 
layered in a way it passes through each process of lay-
er 	 sidual learning, and learned noise suppression 
mask filters out some noisy features without distort-
ing structure intactness.

Loss Function

The AGTN framework grades a composite loss on pixel 
fidelity, the construction quality, and smoothness.:

•	 Mean Squared Error (MSE):

	 	 (1)

Makes it pixel precise between the restored and ground 
truth pictures.

•	 Perceptual Loss: is a substitute that embeds 
elevated level characteristics of an by now 
prepared VGG-19 model and whose assistance 
the similarity on the deep visuals depictions may 
be measured:

	 	 (2)

where ϕl​ denotes the activation of layer l in the VGG network.

•	 Total Variation (TV) Loss: Favours smoothness 
of the images in a spatial domain that reduces 
artifacts due to high-frequencies of noise:

	 	 (3)

The overall loss in training is obtained as a weighted 
sum:

	 	 (4))

Hyperparameters λ1,λ2,λ3 are empirically tuned to 
achieve the best trade-off between sharpness and 
denoising performance.

Experimental Setup 

In order to thoroughly test the proposed Attention-
Guided Transformer Network (AGTN) as noise resistant 
image restoration, it was tested on various and stringent 
experimental procedures that included benchmark 
datasets, various types of noise and further various 

hardware platforms to prove not only their generalization 
potential but also feasibility in practice.

Datasets

Three common examples of images restoration datasets 
were used:

•	 BSD68 and Set12 Classical grayscale image 
benchmarks that have been used massively 
in denoising with additive white Gaussian 
noise (AWGN) [7]. They help in offering a fair 
comparison with the previous work under 
controlled noise environment.

•	 Urban100: A high-resolution scene with realistic 
noise and compositional complexity aimed at 
mimicking the visual urban environment, with 
sharp edges and high repetitions, such as bricks 
and concrete structures- a very difficult set of 
visual scenes to restore with models.

Such a combination of datasets guarantees the 
assessment of the degradation that can be natural and 
synthetic, both of general-purpose restoration and 
structure-sensitive (Figure 3: Overview of Benchmark 
Datasets for Image Restoration).

Fig. 3: Overview of Benchmark Datasets for  
Image Restoration

BSD68, Set12 and Urban100 are the three benchmark 
datasets that the proposed AGTN framework will use 
in the classical grayscale image denoising task under 
AWGN, and high-resolution, structure-rich urban scenes 
with real-world noise characteristics, respectively.

Noise Models

In the AGTN framework, the framework has been used 
on different countries on robustness conditions noise

•	 AWGN (sigma = 15, 25, 50): A series of different 
amount of Gaussian noise was added to the 



Letahun Nemeon and Prerna Dusi : Noise-Robust Image Restoration Using Attention-Guided Transformer Networks for  
Real-Time Visual EnhancementIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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model to check the effectiveness of the model in 
the range of low, medium, and high corruption 
levels.

•	 Speckle Noise: It is an additive noise used to 
describe multiplicative noise that takes place in 
the forms of radar and doctored imaging.

•	 Salt & Pepper Noise: This models imperfections 
in the sensor or transmission in the form of 
impulses.

•	 Real-World RGB Noise (SIDD Dataset): Visible 
noise on mobile cameras in all lighting and ISO 
settings, has great ecological validity.

The physical representation of these very noise types 
and their influence on image degradation could be seen 
in figure 4 thus providing an idea of evaluation conditions 
under which AGTN performance was benchmarked.

Fig. 4: Visual Illustration of Noise Models Used for 
Image Degradation

This image is a visual comparison of the various forms 
of noise that have been used in testing the robustness 
of the proposed AGTN framework to a variety of ways 
noise may corrupt the images namely Gaussian (AWGN), 
Speckle, Salt & Pepper, real-world RGB (SIDD) noises.

Training Protocol

•	 Optimizer: Adam optimizer was employed with 
a learning rate (lr) of 1×10−41 \times 10^{-
4}1×10−4, balancing convergence speed and 
stability.

•	 Batch Size: 16 batch of 16 images were used as 
this will create a trade-off between the limit 
of GPU memory and performance of statistical 
learning.

•	 Epochs: 200 training epochs were sufficient 
to provide proper experience with the data 
variability and stabilization checks of validation 
performance.

Figure 5: Training Protocol for AGTN Model Optimization 
summarizes the whole training configuration.

Fig. 5: Training Protocol for AGTN Model Optimization

Example of AGTN training workflow where Adam op-
timizer serves as an example with learning rate adjust-
ment procedure, a mini-batch process (batch = 16), 
and a training system of 200 epochs to ensure suffi-
cient convergence.

Hardware Setup

•	 Training: Trained on an NVIDIA RTX 3060 GPU (12 
GB VRAM), and the training of the model was 
fast and parallel with high-resolution inputs and 
transformer layers.

•	 Experimentation: To illustrate useful edge-AI 
(as an embedding) on a Time sensitive, High 
performance application at the board level, 
on the NVIDIA Jetson Nano (Quad-core ARM 
Cortex-A57, 128-core Maxwell GPU). On a 256 
x 256 resolution, the model is experiencing an 
approximate ~27 FPS speed, which should be 
considered by the lightweight and optimized 
nature of its design as a potential use in mobile 
and IoT vision.

This illustration is the hardware platforms used in the 
AGTN framework. To achieve faster parallel processing, 
model training was carried out on an NVIDIA RTX 3060 
GPU and inference testing was done on a less powerful 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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embedded NVIDIA Jetson Nano device to simulate the 
assessment of a real-time deployment scenario on the 
edge-AI.

Results and Discussion
Quantitative Evaluation

In order to evaluate the working of the proposed AGTN 
framework in a strict manner, objective restoration 
quality and computational performance based on 
numbers of parameters and floating-point operations 
were compared to DnCNN (a traditional CNN-based 
denoiser) and Restormer (a transformer-based denoiser). 
Performance was considered on the BSD68 under 
additive white Gaussian noise (AWGN) and such metrics 
as the Peak Signal-to-Noise Ratio (PSNR), Structural 
Similarity Index (SSIM), and inference speed in frames 
per second (FPS) on a Jetson Nano embedded platform 
was considered.

Table 2: Quantitative Comparison of Denoising Models on 
BSD68 Dataset

Model Dataset PSNR (dB) SSIM

FPS 
(Jetson 
Nano)

DnCNN BSD68 29.22 0.807 11

Restormer BSD68 30.58 0.835 14

AGTN (Ours) BSD68 31.16 0.851 27

PSNR and SSIM Gains: AGTN outperforms Restormer by 
compelling levels (0.58 dB and 0.016) in PSNR and SSIM 
values, respectively, pointing out better precision at the 
pixel level and preserving the structure.

•	 Real-Time Performance: AGTN can take images 
in real time (~27 FPS) on Jetson Nano, 2x faster 
than current average speed of Restormer due to 
its vigilance of the needs of real-time embedded 
vision applications.

•	 Model Efficiency: The additional improvements 
are made without compromising computational 

efficiency, which proves the quality of AGDM 
and CSAF modules in balancing intricacy and 
denoising accuracy.

Qualitative Evaluation

As well, to support the validity of AGTN, visual comparison 
is provided that we have considered in complex texture 
and noise situations:

•	 Better Edges: AGDM can be employed to direct 
the transformer backbone to restore more 
fine-grained edge structure in high-frequency 
locations that CNNs will tend to convolve into 
one another.

•	 Artifact Suppression: AGTN has little ringing/
checkerboard artifacts, an as-of-yet unsolved 
problem in CNN based upsampling layers.

•	 Contrast Preservation: The Channel-Spatial 
Attention Fusion (CSAF) module intensifies 
local contrast and the semantic features 
distinctiveness especially in the areas having 
repeated textures or patterns with shadows.

Figure 7 might show side-by-a side denoising comparisons 
of DnCNN, Restormer and AGTN at different noise levels. 
The visual outcomes line up with the quantitative ones, 
which confirms the generalization ability and practicality 
of AGTN in synthetic and real-world settings.

Fig. 7: Qualitative Comparison of Denoising Results 
Across Models

Side by side comparison of denoised result of a noisy 
image in terms of DnCNN, Restormer and proposed AGTN 
framework. GTN offsets textures finer and cuts out noise 
better than others.

Conclusion and Future Work

In this paper, we present AGTN ( Attention-Guided 
Transformer Network ), a lightweight, real-time image 
restoration model tailored to be noise-resistant noise 
reduction of the image. Combining the concept of 
transformer-based feature extraction and spatial 
attention methodology, AGTN performs better in 
denoising tasks whether in synthetically generated noise 
models (e.g., AWGN) or in terms of real-world noisy 
masks (e.g., SIDD). Extensive experiments on BSD68, 

Fig. 6: Hardware Setup for Training and Inference
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Set12, and Urban100 validate its adequacy in restoring 
the structural details, providing better perceptual 
quality, and being efficient on embedded systems like 
NVIDIA Jetson Nano.

Key Contributions

1.	New AGTN Architecture: Suggested two conjoined 
attention archi (hybrid) that made a trade-off to 
balance between global context modeling and 
local detail retention-enhances both PSNR and 
SSIM scores.

2.	Stability to multi-Noise: Also generalizable, 
they were measured in AWGN, speckle, salt and 
pepper, and real-world spectrum of RGB noise 
(SIDD).

3.	Real-Time Deployment: Its efficiency in real-time 
performance recorded 27 FPS on Jetson Nano; 
thus, it is apt to be used in edge-AI and mobile 
vision systems.

4.	Comparative Superiority: outperformed state-
of-the-art models that are DnCNN, Restormer in 
quantitative and qualitative metrics.

Improvements & Future Directions

•	 Parameter Compression: Find low-rank matrix 
decompositions, quantize or distill knowledge 
to parameters to make them more suitable to 
smaller devices with ultra-memory and power 
limitations.

•	 Video Denoising Extension- Applying spatiotem-
poral transformers or recurrent attention blocks 
to AGTN spatial model to real-time video denois-
ing extensions.

•	 Unsupervised Domain Adaptation: Apply self-
supervised or contrastive training methods over 

the existing frameworks that have a noisy-prior 
on the state of the world sensors or scenes

•	 Unsupervised Domain Adaptation: Place self-
supervised or contrastive learning methods 
above the current solutions with a noisy-prior on 
real-world sensor setting or environment.
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