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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Sensitive emotion recognition information depends on high-level signal and image 
processing technologies to acquire, synchronize, and merge multimodal data involving 
heterogeneous information. One-modal methods are usually sensitive to isolated noise, 
occlusions or information losses. This paper examines multimodal signal processing 
techniques which combine audio, visual and physiological information using new feature 
extraction pipelines and adaptive fusion algorithms. The suggestion of fusion using a 
hybrid deep learning focus refers to the following presentation of integrating time and 
space representations by achieving a fusion of synchronized time frequency features, 
statistical descriptors, and deep embeddings, combined with adaptive weighting 
operations that help to overcome domain-specific noise. Test on benchmark datasets 
shows that the framework is more accurate, F1-score, and robust under realistic 
conditions when compared with unimodal and conventional fusion methods. This work 
helps in achieving scalable, real-time and noise-invariant multimodal systems that can 
be applied to healthcare, adaptive interfaces and affective computing through increased 
signal preprocessing, feature-level integration and classifier decision fusion.
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Introduction

Recognition of emotion is fundamentally a multimodal 
signal and image processing issue and this necessitates 
heterogeneous data streams to be acquired, analyzed 
and fused. These are speech (with prosodic and spectral 
features), visual (including facial expression and micro-
movements) and physiological (biosignals showing 
inner emotional deviations). Each modality has its own 
contributions to make to data, but is hampered by the 
weaknesses inherent to it like noise pollution, occlusion, 
time-sampling differences, or half-scans.

In signal processing terms, unimodal systems can be very 
difficult because they are such a heavy single-channel data 
channel system when it comes to dealing with robustness. 
(As an example, audio-only systems perform poorly in 
noisy conditions, vision-based ways are defeated in low 
illumination or occluded conditions, and physiological-
signal-only systems might be subject to motion artefacts 
or sensor noise.) Multimodal frameworks, in contrast, 
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can utilize the complementariness of the various signals 
so that any system would be allowed to use the strengths 
of one signal to overcome the deficiencies of another 
signal.

Developments in time-frequency analysis, adaptive 
filtering and statistical modeling of features has resulted 
in more accurate performances of emotional inferences 
across modalities. Spectral prosodic features include 
Mel-Frequency Cepstral Coefficients (MFCCs) and pitch-
energy profiles; spatial representations include Local 
Binary Patterns (LBP), Histograms of oriented gradient 
(HOG), and deep convolutional embeddings; frequency 
domain measurements that can be converted into metric 
values include: the power spectral density (PSD) of an 
electroencephalogram (EEG), heart rate variability 
(HRV), and wavelet-based analysis of GSR responses. 
Such pipelines of signal processing are the basis of the 
robust systems of emotion recognition.

The proposed multimodal fusion framework is presented 
in Figure 1, and based on signal modalities, it fuses 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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the signals by extracting the feature and fusing them 
together to improve accuracy levels of recognition. Also 
significant is the integration of multimodal aspects into 
a single decision-making system, and signal processing 
studies can provide a few solutions to this issue. Feature-
level fusion is the fusion at feature level achieved after 
extracting the feature vectors and concatenating or 
embedding these into a joint representation, to allow 
learning cross-modal correlation. Modality-specific 
classifiers at the decision-level are trained to generate 
independent predictions, which are fused by weighted 
voting or Bayesian integration thus becoming less prone 
to complete data loss. Hybrid fusion alternately invokes 
feature integration and decision aggregation in order 
to learn deep interdependencies in a modular manner. 
Nonetheless, there are still limitations when it comes 
to carrying out synchronizing and aligning multimodal 
data streams because of the diverse sampling rates and 
different levels of latency. Additionally, the resilience to 
noise, especially in a real world scenario, requires highly 
complex preprocessing techniques and adaptive fusion 
techniques.

We consider such challenges in the current study 
by proposing a framework-based multimodal signal 
processing using a combination of temporal and spatial 
representations of audio, visual, and physiological signals 
in a deep learning-driven multimodal representation 
system. The suggested strategy has entailed a powerful 
preprocessing pipeline that has improved signal quality 
by removing noise, normalizing and aligning the signal in 
time. It also presents a new multimodal scheme of feature 
extraction based on handcrafted signal descriptions and 

semantically-related deep neural network embeddings 
to provide informative emotional encoding. A learning 
framework of adaptive hybrid fusion is used to combine 
the cross-modal correlation learning with decision-level 
robustness so that the framework remains robust in 
the face of high noise or incomplete data. Evaluation 
of the proposed framework on benchmark datasets has 
shown that it yields higher accuracy, precision, recall, 
and robustness rates than the unimodal and traditional 
fusion techniques and can therefore be used in real-
world multimodal emotion recognition.

Related Work

Recognition of emotion has been already deeply 
examined with many modalities including speech, facial 
expression, and physiological. Initial studies were on 
unimodal systems where just one source of information 
is considering in detecting the emotion. Such systems 
however may be flawed in terms of environmental 
noise, artifacts of sensors or insufficient information 
and as such tend to lack robustness and generalization. 
In order to mitigate these defects, the recent research 
highlights multimodal fusion approaches which are the 
combination of complementary data sources to enhance 
the reliability and recognition accuracy.

Audio-Based Emotion Recognition

Audio-based emotion recognition mostly takes advantage 
of properties arising out of speech signal like pitch, 
intensity, formants and spectral properties. The use 
of traditional machine learning paradigms like Support 
Vector Machines (SVM),[1] Hidden Markov Models (HMM),[2]  
Gaussian Mixture Models (GMM)[3] was common when it 
comes to classifying emotional states. In more recent 
times there has been a good performance demonstrated 
by the deep learning methods, particularly, Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs), that learn the hierarchical and the temporal 
representations directly using raw audio or spectrograms 
as input.[4, 5]

Visual-Based Emotion Recognition

The visual modalities examine facial expressions, micro-
expressions, and gestures that are registered with the 
help of cameras. One type of feature extraction is 
handcrafted feature such as Local Binary Patterns (LBP)[6]  
and Histogram of Oriented Gradients (HOG).[7] Other 
feature extraction includes deep learning features where 
CNNs are used.[8] CNNs allow discrimination features to 
be automatically learned starting with raw images or 
frames of video data which greatly increases recognition 
accuracy. Long short-term memory (LSTM) networks are 

Fig. 1: Multimodal Fusion Framework for Emotion 
Recognition

This diagram illustrates the multimodal fusion 
framework that integrates audio, visual, and 

physiological signals for emotion recognition. The 
process includes feature extraction from each 

modality, followed by fusion to derive the final 
emotional state classification.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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considered temporal models that are commonly used to 
model changes in expressions over time.[9]

Physiological Signal-Based Emotion Recognition

The physiological signals as a type of biosignal 
are indications of internal emotional states in the 
form of reactions that are measured through an 
electrocardiogram (ECG), electroencephalogram (EEG), 
galvanic skin response (GSR) and other signals of the 
autonomic nervous system. These cues furnish sincere 
complementary data to audio and visual hints particularly 
in situations when other external manifestations are 
not clarified or held-back.[10] The methods of feature 
extraction usually include time-domain, frequency-
domain, and time-frequency domain-based estimates, 
like power spectral density estimations and wavelet 
transforms.[11] RNNs and CNNs stand out in deep learning 
models used in emotion recognition via model ing of the 
temporal shaping of physiological signals.[12]

Multimodal Fusion Approaches

Fusion of several modalities increases the performance 
of emotion recognition, since it exploits advantages of 
various sources of data. The major fusion approaches 
that are discussed in literature are:

•	 Feature-Level Fusion: In this, the feature 
vectors representing data in each modality are 
concatenated by being combined together in 
space or by being jointly embedded in a common 
space prior to classification.[13] The feature-level 
fusion can learn the inter-modal correlations, 
but can be subject to the curse of dimensionality 
and needs some feature normalization and 
synchronization.

•	 Decision-Level Fusion: This is where decisions 
rendered by different classifiers that are 
trained on different modalities are combined 
using methods like majority voting, weighted 
averaging or Bayesian fusion.[14] Decision-level 
fusion gives a modular and robustness to missing 
modalities and does not capture deep cross 
modal interactions.

•	 Hybrid fusion: hybrid fusion combines the feature 
and the decision levels strategies in order to 
realize the strengths of the former and the 
latter. As an example, the module implements 
modality-specific features that are first learnt 
and combined at the feature level, after which a 
collection of classifiers are employed with their 
decisions combined to achieve robustness.[15]  
The recent research applies deep learning 

models, which involve attention mechanisms to 
dynamically weigh modalities as part of their 
reliability.[16]

A number of multimodal emotion recognition systems 
that incorporate a combination of audio signals, visual 
signals and physiological signals have been proposed. 
Zeng et al.[17] joined both facial expressions and speech 
features, realizing considerable advances with respect 
to unimodal costs. Zheng and Lu[18] combined the data 
to the EEG and facial expressions with deep multimodal 
fusion demonstrated a greater level of robustness in 
noisy environments. In spite of these developments, 
other problems including modality synchronization, 
missing data and computational complexity are still 
sources of active research.

Methodology

Data Acquisition and Preprocessing

To learn a multimodal emotion recognition system capable 
of learning multimodal patterns via robust recognition, 
we employ publicly available benchmark data sets 
like DEAP and MAHNOB-HCI that offer synchronized 
audio, visual and physiological signals. Such datasets 
are representative, diverse and comprise a sample of 
naturalistic emotional reaction with subjects subjected 
to a variety of stimuli. In order to analyse the data, 
it must first be prepared by undergoing preprocessing 
steps that aim to clean and improve the signal quality 
as well as align the modalities. A number of noise 
filtering filters are used to eliminate artifacts (including 
background noise in sound signals, motion blur in video 
frames and electrical noise in physiological recordings). 
Each modality is normalised so that features lie within 
similar ranges to allow the features to be compared 
and combined fairly. Because of varying sampling rates 
and the potential temporal shifts between modalities, 
good data fusion requires synchronization algorithms 
to compensate correctly and precisely, combined with 
modalities that are aligned. Figure 2 shows how data 
acquisition pipeline entails separation of modalities 
based on audio, visual and physiological streams, noise 
filtering, normalization and synchronization of the data 
streams before the data can be subjected to feature 
extraction.

Feature Extraction

The successful extraction of features converts raw data 
into meaningful representations that presents emotional 
signals. In the audio modality we extract Mel-Frequency 
Cepstral Coefficients (MFCCs) describing spectrum 
properties of speech, pitch properties and energy 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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properties correlating with prosodic changes which vary 
with emotion. Optical characteristics make use of the 
Facial Action Coding System (FACS), which codifies facial 
muscle activity in line with facial expressions. Figure 3 
illustrates the feature extraction procedure that defines 
the particular features extracted in audio (MFCC, 
pitch, energy), visual (FACS, CNN embeddings), and 
physiological (HRV, EEG PSD, GSR) modalities constituting 
the unified set of features to be used in classification.

CNN-based embeddings Pretrained CNN networks have 
been used to extract so-called hierarchical spatial 
features from facial images or video frames, allowing 
strong representations of subtle expressions and micro-
expressions. In the physiological scenario, Heart Rate 
Variability (HRV) of the ECG, EEG Power Spectral Density 
(PSD) of the brain waves, Galvanic Skin Response (GSR) 
amplitude of Autonomic nervous systems arousal, are 
some of the features taken into account. A combination 

of these features extracts complementary emotional 
cues based on these corresponding external behavior 
and internal physiology.

Fig. 3: Feature Extraction Process for Audio, Visual, 
and Physiological Modalities

Fusion Techniques

One of the key elements of this methodology is the 
integration of multimodal features and we address three 
main fusion strategies through which the information 
provided by audio, visual, and physiological signals can 
be successfully integrated. In feature-level fusion, the 
features extracted in each modality are combined into 
a one complete vector to present the emotional state 
and they pass into deep learning classifiers like the Long 
Short Term Memory (LSTM) network. These networks are 
very appropriate to predict sequential dependencies 
in time and context dependencies in data. Conversely, 
decision-level fusion makes separate classification of 
each modality by separate classifiers, with the decisions 
of each modality combined via weighted majority voting. 
This methodology offers modularity and stability to the 
system enabling it to work even with modalities that are 
not available or noisy. Finally, the hybrid fusion approach 
also integrates the advantages of both by first executing 
inter-modal relationships through joint feature learning 
processes and then sequentially fusing decisions obtained 
through layers that estimate inter-modal relationships 
at the levels of modality by applying the decision fusion 
procedure to improve the final emotion classification. 
It is a two-stage architecture that attempts to strike a 
balance between the merits of integrating cross-modal 
feature interactions on a deep level with the adaptability 
and robustness of decision-level fusion. Figure 4 shows 
different multimodal fusion strategies (feature-level 
fusion, decision-level fusion, and hybrid fusion) and 
indicates how features or classifier decisions tend to be 
fused to enhance emotion recognition performance.

Fig. 2: Data Acquisition and Preprocessing Pipeline 
for Multimodal Emotion Recognition
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Fig. 4: Fusion Strategy Architecture for Multimodal 
Emotion Recognition

Classification Models

Further, to categorize emotional states based on fused 
features, we test a collection of machine learning 
models. The conventional classifiers such as Support 
Vector Machines (SVM) and Random Forests serve as 
good baselines as they are effectively used on structured 
features. Nonetheless, the deep learning architectures, 
especially the CNN-LSTM models, are investigated in 
their potential of automatically learning complicated 
spatial-temporal patterns. CNN layers capture 
hierarchical features of the inputs (in particular visual 
data), and LSTM layers capture the dependencies in time 
that are key to modeling changing emotional states in 
time-sequential data. We quantitatively benchmark the 
accuracy of these models both in terms of robustness 
and speed of execution/computational costs in order to 
determine which model is best suited to the real-time 
multimodal emotion recognition applications. Figure 
5 describes the process of classification, where fused 
features along with CNN-LSTM extracted embeddings 
are fed into a predictor model through the SVM, 

Random Forest, and CNN-LSTM architecture, after which 
prediction of the final emotion class is obtained.

Fig. 5: Classification Model Workflow for Multimodal 
Emotion Recognition

Experimental Results
Dataset Description

The refined benchmark datasets that we adopted, in this 
study, include DEAP and MAHNOB-HCI containing detailed 
multimodal data with audio, visual, and physiology 
signals. The DEAP dataset consists of 32 participants 
that considered music videos, which are coded in terms 
of arousal and valence and other emotional variables. 
Also MAHNOB-HCI contains recordings of 30 subjects 
in response to emotional stimuli (seven basic emotion 
categories). Synchronized multimodal data streams are 
contained in both datasets, which allows performing 
adequate improvement of fusion mechanisms. Diversity 
and richness of these datasets enable us to confirm 
how effective and generalizable our proposed emotion 
recognition framework is.

Performance Metrics

We used the common metrics of classification to 
quantitatively assess or measure the performance of 
our emotion recognition models: accuracy, F1-score, 
precision, and recall. Accuracy, precision and recall 
can gauge the accuracy of the predictions, and the 
sensitivity of the classifier in finding positive instances 
and precision, respectively. F1-score is harmonically 
weighted mean of precision and recall, i.e. it takes both 
into account. Also, latency measures were looked at to 
determine the processing capability and viability of real-
time applications.

Results and Analysis

We have experimented with unimodal modalities, i.e., 
audio-only, visual-only, and physiological only, and 
multimodal come-together modalities, i.e., feature-
level fusion, decision-level fusion, and a hybrid level 
fusion approach. The attained results can conclusively 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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attest the fact that multimodal fusion is highly superior 
to unimodal baselines on all outputs. At a feature level, 
fusion provided an accuracy of 81.42 percent as compared 
to 79.1 percent achieved by decision level fusion because 
it was able to utilize inter-modal correlations better 
than the latter. The hybrid fusion procedure based on 
the joint feature learning but the decision-level merging 
gained the best result with high accuracy of 84.20, a 
difference of around 8 percent comparing to the best 
unimodal technique. According to the results presented 
in Figure 6, the hybrid fusion strategy is better than 
unimodal and other fusion algorithms with an accuracy 
of 84.2 percent. And Figure 7 illustrates the precision-
recall of the methods tested, showing that hybrid fusion 
strategy is robust in terms of keeping high precision 
performance and recall. It is worth noting that when 
physiological signals were added, robustness markedly 

improved especially in noisy/occluded conditions that 
interfere with both audio and visual data. These results 
confirm the success of our hybrid fusion system in robust 
and accurate recognition of expression in realistic 
conditions.

Fig. 7: Precision-Recall Curves for Different Emotion 
Recognition Methods

Precision-recall curves illustrating the trade-off be-
tween precision and recall across six emotion recogni-

tion methods. Multimodal fusion techniques, especially 
hybrid fusion, demonstrate superior precision and 

recall balance compared to unimodal methods.

Discussion

The experimental results explicitly indicate that 
multimodal fusion of the audio, visual, and physiological 
signal can be highly useful in increasing the accuracy and 
robustness of the emotion recognition systems over the 
unimodal strategies. The feature-level fusion technique 
takes the complementary nature of heterogenous 
features and uses it by concatenating the heterogenous 
features to form one representation and imparts an 
opportunity to the classifiers to learn intricate interplay 
between heterogenous features. This solution method 
however may become suffer due to the curse of 
dimensionality which adds complexity to the calculation 
and can also cause overfitting to consume especially 
when the feature space is high-dimensional and the set 
of training data is small.

Decision-level fusion provides the modularity in which 
predictions by separate modality-specific, independent 
classifiers are made and subsequently combined. The 
latter approach is preferable when dealing with missing 
or degraded data of one or more modalities to preserve 
the lack of functionality and robustness of the system. 
However decision level fusion has less of overall accuracy 
as compared to feature level fusion because of lack of 
deep cross modal feature interactions.

Table 1: Performance Comparison of Emotion  
Recognition Methods

Method
Accuracy 
(%) F1-score Precision Recall

Audio-only 72.3 0.70 0.71 0.70

Visual-only 75.6 0.74 0.76 0.75

Physiological-only 70.8 0.69 0.68 0.70

Feature-level 
fusion

81.4 0.80 0.81 0.80

Decision-level 
fusion

79.1 0.78 0.78 0.79

Hybrid fusion 84.2 0.83 0.84 0.83

Fig. 6: Accuracy Comparison of Emotion  
Recognition Methods

Comparison of classification accuracy (%) for unimodal and 
multimodal fusion approaches in emotion recognition. The 

hybrid fusion method achieves the highest accuracy, demon-
strating significant improvement over unimodal baselines.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Timefrequency domain application on the feature 
extraction part has played a significant role in capturing 
finegrained emotional signals on all modalities. In 
audio, treatment of short-time Fourier transform (STFT) 
combined with Mel-Frequency Cepstral Coefficients 
(MFCCs) is useful because short-time Fourier transform 
(STFT) assists in representation of both transient and 
steady-state aspects of voice. Such combination of 
spatial descriptors, including Discrete Cosine Transform 
(DCT) and Gabor filters, with time attributes results in 
robustness to lighting flare and occlusions in cases of 
visual processing. In the case of physiological signals, 
continuous wavelet transform (CWT) and Hilbert Huang 
transform (HHT) allow successful modeling in non-
stationary emotional patterns which most of the static 
methods of analysis fail to examine.

Noise robust strategies have also been in the forefront 
in preserving accuracy at realistic implementation 
conditions. Through use of adaptive filtering on 
physiological data, spectral subtraction, and Wiener 
filtering using audio input and median/bilateral filtering 
on imagery information the system is able to optimally 
reduce environmental as well as sensor noise. Moreover, 
in adaptive modality weighting, stability of decision-
making under the situation with degraded quality 
leads to one or more modalities real-time quality  
assessment.

At the system-level, the proposed architecture considers 
real-time requirements by reducing the dimensionality 
(PCA) and compression of deep embedding embedding and 
convolutional kernel pruning, reducing computational 
burden. Partial inference the application of which 
implies processing only the most credible modalities in 
the conditions of constrained resources further minimizes 
latency and consumed energy with no decrease in the 
accuracy of classification. Such a delicate balance 
between the higher sophistication of algorithms and 
the lower computational cost supports the possibility of 
practical application of the system in resource-limited 
embedded and edge computing systems.

The hybrid fusion method (joint feature learning to 
detect rich inter-modal relations and decision-level 
fusion to improve predictions) is always higher than 
unimodal and also conventional approaches. Adding 
physiological measurements via EEG, GSR, HRV, has been 
useful in the problem of increasing the robustness of the 
systems when audio and visual feedback are degraded. 
The research results agree with the current literature 
[24], [25] and support the need to employ multimodal 
integration in the development of resilient and scalable 
emotion recognition systems.

Conclusion

This paper carried out an extensive research on 
multimodal fusion process of the recognition of emotion 
through fusing audio, visual and physiological evidence 
of emotion. In our broad testing on benchmark datasets, 
we show that our proposed hybrid fusion approach is 
able to outperform the classical unimodal approaches 
and the more classical composition approaches to fusion 
(featurs-level, decision level) with a significant margin. 
The hybrid method has been observed to be a good 
compromise between the merits of combined learning 
features and integration of decisions thus leading to 
better accuracy, precise and recall, as well as a robust 
learning in the case of noises or occlusions. Physiological 
signals were also discovered to be crucial in improving 
reliability where there were manipulated external cues 
resulting in stressing support to the multimodal aspect 
of application in the real world. Adaptive and scalable 
fusing mechanisms that use heterogeneous data sources 
can be of great help to the achievability of emotion 
recognition systems based on our findings.

In future, work is to be done to optimize the hybrid 
fusion framework to work in real time in embedded and 
edge computing environments and is concerned with the 
optimization of the aspect of computational time without 
either compromising precision of the results. Future 
work will also consider dynamic attention mechanisms to 
allow specific weighting of modalities according to input 
quality with increased performance across a variety of 
contexts since they are adapted dynamically. Also, the 
application of the system utilized to longitudinal, real-
world affective health tracking and personalized human-
computer interaction situation settings is to be sought 
to fully harness the potential practical effect. All in all, 
the research provides a strong basis of building the next 
generation emotion recognition systems that will have 
the capability of sophisticated interpretation within the 
multimodal and complex environments.
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It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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