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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
Precise and automatic segmentation of high resolution medical images is a central step 
in computer assisted diagnosis, treatment planning, surgical navigation. Nonetheless, 
standard segmentation networks have poor capabilities of detecting boundaries, typically 
in the heat areas and non-homogenous parts. This paper proposes a Residual Attention-
Enhanced Deep U-Net (RA-U-Net) which combines the concepts of residuals learning 
and attention gating into a traditional backbone U-Net. Residual blocks enhance the 
gradient flow and allow greater feature learning and attention gates allow the model to 
prioritize focusing on important anatomical structures during decoding. Two benchmark 
datasets used to test the proposed RA-U-Net include BraTS 2021 and ISIC 2018 that deal 
with the brain tumor-related data segmentation in MRI and dermoscopic skin lesion 
segmentation, respectively. Based on the outcome of experiments, it is evident that the 
use of standard U-Net and Attention U-Net does not match RA-U-Net, which has Dice 
scores of 91.4%, in terms of accuracy in segmenting the object. Moreover, the model 
works well in terms of preservation of boundaries and denoising, particularly in high 
resolution. Such results show that residual connection combined with spatial attention is 
to increase the feature representation and the precise localization. Proposed framework 
is computationally efficient, has a good transfer across modalities thus it is very ideal to 
be used in clinical settings on radiology workflow and telemedicine where there is the 
need to produce a high-fidelity segmentation in real-time.
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Introduction

Medical image segmentation forms an essential task in 
health care imaging systems, and has applications in tumor 
definition, organ border definition and measurement of 
lesions. Segmentation is particularly important in high 
resolution modalities such as the magnetic resonance 
imaging (MRI) and dermoscopic imaging methods where 
the boundaries between body structures are usually 
convoluted and the variation between the classes subtle.

U-Net has become the most common architecture used 
in biomedical segmentation among deep learning-
based models, unlike other models that upsample 
using downscaled low-resolution maps via weighting 
of intermediate maps or omitting some information 
spatially.[1] Nonetheless, off-the-shelf U-Net models do 
not perform well with high-resolution images and this is 
attributable mainly to the small receptive field, restriction 
of information flow, and failure to show spatial attention. 
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These cause fuzzy edges and inadequate segmentation 
in areas that have little contrast or intricate pattern of 
texture.[2] As a response to such difficulties, a number of 
improved U-Net solutions have emerged. Dealing with 
more technical aspects, Residual U-Nets combat the 
history of vanishing gradients and allow deeper learning 
through identity shortcuts[3] and Attention U-Nets take 
advantage of spatial gating to enable focusing attention 
on semantically essential abouts.[4] Nevertheless the 
majority of the available models are not efficient to 
integrate attention and residual learning in a coherent 
and computationally efficient distribution, particularly 
in real-time high-resolution segmentation.

In this paper, we are present a new architecture called 
the Residual Attention-Enhanced Deep U-Net (RA-U-Net). 
In this model, residual blocks are incorporated across 
the encoder path and decoder path to enable more 
feature reuse and easier to train. Besides, the attention 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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gates are added on top of skip connections so as to 
eliminate the irrelevant background noise and highlight 
the significant features during reconstruction. Tested on 
the benchmark models like BraTS 2021 and ISIC 2018, 
the presented framework has the best Dice scores with 
accurate boundary demarcations and generalization 
compared to the traditional U-Net-based models.

The rest of paper is structured as follows: in Section 2  
related work is reviewed. In section 3, proposed 
methodology is identified. In section 4, the experimental 
set up is characterized. The results obtained are both 
quantitative and qualitative, as given in section 5, which 
is followed by discussion. Lastly, the paper is concluded 
with the final Section 6 that discusses the future path.

Related Work

With the advent of the deep learning framework, especially 
the convolutional neural networks (CNNs), medical 
image segmentation has gained new heights. Some of 
the most notable structures are the U-Net, proposed by 
Ronneberger et al., which has since become a popular 
baseline in terms of biomedical image segmentation due 
to the symmetric encoder-decoder and the existence 
of skip connections to allow the preservation of spatial 
details during the upsampling process.[5] There are a 
number of extensions in order to modify the original 
U-Net to make it better. Examples include the Attention 
U-Net, which adds attention gates to help focus on 
some of the potentially important parts of the image 
and avoid background noise. This application enhances 
segmentation performance particularly medical images 
that are complex and cluttered.[6] Nonetheless, Attention 
U-Net can be prone to decreased performance upon 
upsurge of surroundings, as receptive field is minimal and 
the hierarchical convergence of features is not applicable. 
The second significant improvement is by Residual 
U-Nets (ResU-Net) which use residual connections, hence 
facilitating deeper networks, by alleviating vanishing 
gradients and stabilising training.[7] Residual blocks have 
been found useful on high-resolution tasks which preserve 
feature invariance and increase convergence. Most 
recently, there have been hybrid models, which combine 
both attention mechanisms and residual learning. Such 
prominent examples are studies RA-UNet[8] and R2U-Net[9] 
which prove that adding attention and residual pathways 
contributes to improved localization of small structures 
and easier boundary administration. Nevertheless, such 
models are usually associated with more computational 
overhead and are not optimized to execute in real-time, 
in particular on large medical images.

Although that has been accomplished, three significant 
predicaments remain:

1. Trading off the segmentation granularity and the 
model simplicity with high resolution.

2. Increasing the generalization across environment 
and modalities.

3. Improving spatial attention without trade-off in 
computation.

In order to bridge such gaps, we introduce an innovative 
Residual Attention- Enhanced Deep U-Net (RA-U-Net). 
We propose a model based on U-Net backbone with 
lightweight attention gates and residual learning blocks 
so as to enhance the accuracy of the segmentation task 
with minimal computational complexity. Additionally, 
multi-scale feature fusion is introduced to enhance 
the perception of global contexts and comprehensive 
details of the spatial structures, which happens to make 
RA-U-Net perfect in the high-resolution biomedical 
segmentation tasks.

Proposed Methodology

The architecture and components of the proposed 
Residual Attention-Enhanced Deep U-Net (RA-U-Net) 
segment high-resolution medical images by enhancing 
the process of segmentation and improving accuracy 
when compared to a deep U-Net are detailed in this 
section. RA-U-Net combines residual learning, attention 
mechanisms, and multi-scale feature fusion to improve 
segmentation accuracy in medical images.

Architecture Overview

The RA-U-Net composes a U-shaped encoder-decoder 
framework, which have extensively been implemented 
in biomedical image segmentation, but considerably 
improved by three fundamental innovations:

• Residual Blocks: Every convolutional block within 
the encoder and decoder are added with identity 
skip connections in the form of residual units. 
Block regularizers boost gradient flow, diminish 
the issue of lost gradients in deeper levels, and 
allow more stable and efficient training.[10]

• Attention Gates (AGs): Along each skip connection 
in the encoder-decoder paths are attention gates 
which apply feature map selection functions on 
features. This equips the network with flexibility 
to accommodate different features of the 
anatomy thereby outlining significant anatomy 
and also eradicating background activations.[11]

• Multi-Scale Feature Fusion: Features of the varied 
resolutions are combined due to concatenation 
and upsampling; the model combines the global 
contextual information and fine-grained spatial 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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detail. This will boost the accuracy of segmenting 
difficult clogs like on the boundaries of lesions or 
low-contrast regions.

The architectural modifications of the architectural 
improvements are indicated in Figure 1, where focus 
and the remainders module are incorporated within the 
entire pipeline of the U-Net to enhance representatives 
capacity.

Fig. 1: Residual Attention-Enhanced U-Net 
Architecture

The proposed RA-U-Net with 2D representation of 
residual blocks, skip connection attention gates, and 
multi-scale-fusion of features. The design augments 
feature propagation, spatial emphasis and precision of 
segmentation of high-resolution medical images.

Attention Gate Design

The mechanism of attention is developed to strengthen 
the passage of informative features between the encoder 
and decoder. Each gate of attention is given:

• Output x of the encoder is local high-resolution 
features.

• Decoder gating, signals g, which denotes rough 
contextual information.

Additive attention is first used together with a sigmoid 
activation to compute the attention coefficient, n(x,g):

 α(x,g)=σ(WT(δ(Wxx+Wgg+b)))	 (1)

Where 1- and 2- represent ReLU, sigmoid functions 
respectively. This coefficient rescales feature encoder 
values and only the most important activations manage 
to survive. The feature map is then concatenated to be 
easily aligned in space using the decoder input.[12]

Figure 2: Attention Gate Mechanism in RA-U-Net demon-
strates that the encoder features and the decoder signal 
passes through additive attention and gating mechanisms 
to arrive at an attended feature map with semantically 
significant parts highlighted accordingly.

A schematic description of additive attention mechanism 
deployed in RA-U-Net. The gate accepts features of the 

encoder x and the decoder signals g and computes an 
attention coefficient, alpha(x, g), which then modulates 
the input feature map after passing through a sigmoid 
activation to boost well-localised regions in the feature 
map to be segmented.

Loss Function

In order to maximize the performance of segmentation 
in conditions of class imbalance (e.g. small tumors or 
lesions), a composite loss term is used:

• Dice Loss: Maximises the overlap between 
predicted and ground truth masks, i.e.:

  (1)

Given P and G where P is the mask that is to be predicted 
and G representing the ground truth.

• Focal Loss: Alleviates the issue of class imbal-
ance by down-weighting easy negatives, and 
concentrating the training on hard examples.[3] 
Defined as:

  (2)

The final loss is a weighted sum:

  (3)

where λ1 and λ2are empirically set to balance both 
components.

Implementation Details

The settings of the RA-U-Net model implemented and 
trained are as follows:

• Input Image Size 512 x 512 pixels
• Training Backbone: PyTorch v2.0 CUDA Backend
• Optimizer: Adam optimizer learning rate 1 x 10 

41 x 10 4
• Batch Size: 8
• Epochs: 150
• 1 Data Augmentation: Random flips, rotations, 

elastic deformations

Fig. 2: Attention Gate Mechanism in RA-U-Net
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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• The computer hardware: NVIDIA RTX 3090-based 
GPU, 24 GB VRAM

Early stopping and dropout layers were used in order to 
avoid overfitting. Average convergence found within 120 
epochs on the model.

Experimental Results
Datasets

Two publicly available benchmark datasets were applied, 
i.e., to assess the segmentation performance of the 
proposed RA-U-Net model in terms of different medical 
imaging types and imaging conditions:

• BraTS 2021: It consists of multimodal MRI scans 
of brain tumors, such as high and low grades 
of gliomas. The task aims at segmentation of 
three key components of the enhancing tumor 
(ET), peritumoral edema (ED), and necrotic core 
(NCR/NET), which will present a challenging case 
as the intensity patterns will be heterogeneous.

• ISIC 2018: A dermoscopic image dataset to target skin 
lesion segmentation. It has a wide variety of different 
lesion types such as melanoma and nevus, and pixel-
level annotations. The dataset has the challenge of 
developing inconsistent shapes of lesions, color, and 
vagueness of the boundary.

The datasets present mutual challenges to compare 
performance of both high-resolution and modality-
varied segmentation tasks.[13] Figure 3 shows sample and 
focus of segmentation of representative sample for each 
of the datasets employed in the study.

Fig. 3: Evaluation Datasets for Medical Image 
Segmentation

This figure demonstrates the two evaluation benchmark 
datasets as an analysis of the proposed RA-U-Net model 
consisting of BraTS 2021, a dataset of brain tumor 
segmentation in multimodal MRI and ISIC 2018, a dataset 
of dermoscopic skin lesion segmentation. The modality, 
resolution, and anatomical variation of each dataset are 
unique to that dataset.

Evaluation Metrics

The performance of segmentation was evaluated by the 
next standard metrics in order to evaluate segmentation 
in a comprehensive manner:

• Dice Similarity Coefficient (DSC): Dice Similarity 
Coefficient (DSC): calculates the matching 
of predicted overlay and ground truth mask 
segmentation masks. It is sensitive to false 
positives and falsely negative, when performing 
medical imaging tasks, in which small structures 
are crucial.

• Jaccard Index: Jaccard Index, also referred to 
as alarming intercourse alkalinity (IoU), is an 
imminent descriptor of layout than Dice and 
measures the similarity amidst forecasted lesion 
areas and factual lesion zones.

• Hausdorff Distance (HD): Records the largest 
distance between boundary points of the ground 
truth against the ones of the prediction and 
hence the shape and contour accuracy. Less 
localization of the boundaries is projected by a 
lower HD value.

These are depicted in Figure 4, which depicts that each 
metric measures performance and shape accuracy of 
segmentation models.

Figure 4: Evaluation Metrics for Medical Image 
Segmentation

A graphical representation of the most important eval-
uation measures/metrics/measures of Dice Similarity 
Coefficient (DSC), Jaccard Index (IoU) and Hausdorff Dis-
tance (HD) which measures the accuracy of segmenta-
tion, overlap of regions and precision of the boundaries 
in analyzing medical images.

Quantitative Results

RA-U-Net improved the baseline models in each 
evaluation criterion of both the BraTS 2021 and ISIC 
2018 set. The comparison table includes the detailed 
comparison that is presented in Table 1 and Figure 5:

Table 1: Quantitative Performance Comparison Across 
Segmentation Models

Model Dice (%) Jaccard (%) HD (pixels)

U-Net 86.1 78.4 7.6

Attention U-Net 88.7 81.1 6.2

RA-U-Net (Proposed) 91.4 84.9 4.8

The RA- U- Net gave an absolute Dice improvement 
of 5.3 and Jaccard improvement of 6.5 over standard 
U-Net plus 2.8 pixels improvement in boundary errors in 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Hausdorff Distance. These advantages demonstrate that 
residual learning and attention-based refinement have 
a synergistic effect in obtaining the delicate details of 
lesions and filtering out the background information.

Fig. 5: Quantitative Metrics Comparison  
Across Models

Bar plot of the performance of U-Net, Attention U-Net 
and RA-U-Net on Dice Score, Jaccard Index and Hausdorff 
Distance. RA-U-Net consistently works best on all metrics 
showing higher segmentation accuracy and the accuracy 
of boundaries.

Qualitative Results

The quality of the model in localization is also proven 
by visual inspection of segmented masks. RA-U-Net will 
always produce clearer and consistent segmentation 
boundaries than U-Net and Attention U-Net, especially 
in regions with ill-defined borders, or inhomogeneous 
intensities. Noise is effectively suppressed by the 
attention gates and the resulting connections have the 
effect that scale change is still spatially consistent as 
shown in Figure 6: Visual Comparison of Segmentation 
Results Across Models.

Fig. 6: Visual Comparison of Segmentation Results 
Across Models

Qualitative results of the BraTS and ISIC test sets seg-
mentation when using U-Net, Attention U-net, and the 
proposed RA-U-Net. RA-U-Net has a clearer marking 
of boundaries and improved lesion coverage of intri-
cate areas.

Discussion

Proposed RA-U-Net shows significant improvements 
in medical image segmentation by the synergistic 
combination of residual learning and attention gate 
modules in the layers of the classical U-Net. The two-
fold improvement consistenly solves two prominent 
issues of biomedical segmentation (1) gradient decay in 
deep learning and (2) mismatch of local feature contexts 
between encoder-decoder pathways. The added residual 
blocks are quite useful in feature transfer and training 
stability, in particular, deep architecture on high-
resolution inputs which is witnessed by the improvement 
in Dice and Jaccard on both BraTS and ISIC datasets.

In addition, attention gates allow fine details that 
are spatially important information to be transmitted 
selectively, suppressing irrelevant background noise, 
resulting in better margins and semantic precision in low-
contrast or diffuse edges. This is of a particular concern 
in tumor segmentation, when correct identification of 
the edges of a lesion might directly affect diagnosis 
and treatment planning. Performance advantages have 
further been validated by the fact that minimized 
Hausdorff Distance appears presenting much better 
shape amenability and casting stress.

The model optimization in terms of computational 
efficiency, however, remains even despite adding 
architectural layers: the overall lightweight design of the 
attention modules and lack of the excessive parameter 
overhead contribute to it. This has made the RA-U-Net 
computationally frugal which paired with state-of-the-
art accuracy makes the network suitable and clinically 
deployable in real-time applications including point 
of care diagnostics, intra-operative guidance, and 
automated screening platforms. Potential further work 
would include generalizing to multi-organ segmentation 
tasks and combining with transformer-based encoder 
in order to obtain additional improvements in global 
context modeling.

Conclusion and Future Work

This paper introduces RA-U-Net, which is a new Residual 
Attention-Enhanced U-Net framework to undertake 
high-resolution medical image segmentation. It linked 
the learning blocks with residual learning blocks and 
the attention gate mechanism, which alleviates major 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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drawbacks over the traditional U-Net architecture, which 
include vanishing gradients and insufficient contextual 
focus on skip connections. Experience on BraTS 2021 
and ISIC 2018 databases proves the fact that RA-U-Net 
outperforms both the original U-Net and Attention U-Net 
baseline both in terms of dice coefficient and Jaccard 
index, as well as Hausdorff distance, proving its superior 
results in both global lesion segmentation and locating 
the boundaries with a higher precision.

The greatest benefits of the work are:

• Ampler residual-augmented encoder-decoder 
pipeline that allows consistent gradient flow and 
more profound feature extraction.

• Attention gate combination where the pertinent 
spatial features are dynamically filtered and 
enhances the lesion texture segmentation that 
are heterogeneous.

• The validation by contrasting against various 
other types of imaging modalities, demonstrating 
the robustness and ability to generalise the 
model.

Besides such successes, there are still a number of 
opportunities regarding further progress. Future 
extensions will rely on applying the current architecture 
to 3D volumetric data as required by enabling full-stack 
clinical integration especially in the areas of radiology 
and oncology workflows. Also, the model will be modified 
with multi-modal segmentation tasks in mind, using 
domain adaptation to close distributional gaps between 
various imaging modalities (e.g., MRI, CT, dermoscopy). 
The use of transformer-based encoders, self-supervised 
pretraining, and federated learning paradigms are also 
potentially promising features to improve scalability, 
privacy, and performance of real-world clinical settings.
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