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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
Segmentation of remote sensing (RS) images plays a pivotal role in signal and image 
processing as it helps in performing pixel-level interpretation of these images to help land 
cover mapping, environmental monitoring, studying urban infrastructure, and disaster 
assessment, etc. Although distilled deep learning architectures (e.g., U-Net, DeepLab, 
SegFormer) have produced good outcomes, their usage of high annotations (particularly 
with pixel-level) large-scale datasets conditions them to lack generalizability. The 
work presents a Zero-Shot Learning (ZSL) structure-the Cross-Domain Transfer and Self-
Training (CDT-ST) model-to perform RS image segmentation without target-domain 
labelled information. It combines a domain-invariant feature extraction module based 
on signal processing, with cross-domain class-mapping based on semantic embedding, 
and a sequence of refinements to pseudo-labels, namely confidence thresholding, 
spatial consistency filtering, and Conditional Random Fields (CRFs). The combination 
of these techniques makes such adaptation strong when dealing with extreme changes 
in the domain of spatial resolution, illumination, and scene structure. The experiments 
include evaluating on SpaceNet, DeepGlobe, and LoveDA datasets where the mean 
Intersection over Union (mIoU) was found to be 87.2% with no target-domain labels, 
only 233 fewer than fully supervised counterparts. Combining transfer learning, 
semantic mapping and primitive signal/image processing methods, CDT-ST proposes a 
scalable, no annotation required, high-accuracy system with application of large-scale, 
heterogeneous RS segmentation.
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Introduction

Segmenting of RS images is traditionally considered as 
a primary operation in the realm of geospatial analysis 
that will provide users with pixel-level data extracted 
out of aerial and satellite images. It can be used as the 
backbone of many applications such as environmental 
monitoring, land cover and land use classification, 
precision agriculture, disaster assessment, urban 
planning, and infrastructure management. Informed 
decision-making in civil areas and the environment 
requires the capability of defining objects in a highly 
accurate way concerning buildings, roads, vegetation 
and water bodies, specifically.

The last decade of technology had drastically 
changed the image segmentation of RS via deep 
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learning. Full supervised models consisting of U-Net 
like architectures, DeepLabV3+, or transformer 
based architecture, SegFormer have shown excellent 
performance with solely large labeled data as they 
learn spatial and contextual relationships between 
different classes. In spite of their performance, these 
models heavily require a large amount of training data 
in terms of pixel-wise annotations. The creation of such 
annotations in RS sector is very taxing and frequently 
necessitates special expertise, high-res captures, and 
time commitment. In addition, supervised models 
tend to perform very poorly when they are transferred 
to imagery obtained through alternate atmospheric 
conditions, lighting conditions, spatial resolutions, or 
geographical locales--a phenomenon commonly known 
as domain shift.

RESEARCH ARTICLE	 ECEJOURNALS.IN



Freddi Noria and Libson Matharine : Zero-Shot Learning for Remote Sensing Image Segmentation Using Cross-Domain  
Transfer and Self-Training

National Journal of Signal and Image Processing  | Apr - June 2025 19Journal of VLSI circuits and systems, , ISSN 2582-1458 

RESEARCH ARTICLE WWW.VLSIJOURNAL.COM

 1.8-V Low Power, High-Resolution, High-Speed 
Comparator With Low Offset Voltage 

Implemented in 45nm CMOS Technology

 Ishrat Z. Mukti1, Ebadur R. Khan2. Koushik K. Biswas3

1-3Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh

AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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The current solutions to this problem have concerned 
themselves with domain adaptation and transfer 
learning. Transfer learning aims at refining the models 
trained on large scale datasets like ImageNet or COCO 
to target RS datasets, whereas unsupervised domain 
adaptation (UDA) approaches aim to match the feature 
distribution of target and unlabeled source domains by 
either adversarial learning, statistical normalization, or 
style transfer. These techniques have recorded excellent 
success though most methods generally require some 
amount of target domain imagery during training, and 
many have complicated optimization routines that may 
also be computationally intensive. Finally, standard 
domain adaptation methods can also be affected by 
failures caused by classes or scene types encountered in 
the target, but not in subsequent, data, as is frequently 
encountered in RS applications at the global scale.

Zero-Shot Learning (ZSL) presents another paradigm that 
does not require the use of labeled target domain data. 
The stated model in ZSL aims at utilizing the knowledge of 
a well-labeled source dataset to complete the tasks on a 
never-before-seen target domain by utilizing secondary 
semantics, e.g. text description, class embedding, or 
high-level attribute representations. When applied to 
the case of RS image segmentation, ZSL could allow the 
deployment of segmentation models to new areas or 
imaging conditions far more quickly, potentially without 
further annotation, and therefore extensibility and cost-
effectiveness could be increased by multiple orders of 
magnitude.

In this paper, we present a new Cross-Domain Transfer and 
Self-Training (CDT-ST) modeling system to accomplish 
zero-shot remote sensing image segmentation. With a 
labeled source domain dataset, the framework starts 
by extracting features that are domain-invariant with 
a pre-trained encoder, fine-tuned. This is followed by 
semantic similarity mapping to project source and 
target class representations into a common embedding 
space so that a given model can perceive imagery in the 
target domain in terms of familiar source semantics. 
Further, in order to extend the framework to provide 
direct improvement of performance in the target 
domain, the framework integrates with iterative self-
training: segmentation predictions on the target domain 
are used to generate pseudo-labels and improved with 
confidence thresholding and spatial regularities before 
the represented instance is used to update the model. 
This iterative process of pseudo-labeling and updating 
sequentially gets the model adjusted to the target 
domain even when there are no direct labels.

The principal outputs of this work are the following ones. 
First, we propose a zero-shot segmentation methodology 

that is used uniquely toward RS imagery. It can solve the 
problem of significant geographic and sensor variations. 
Second, we combine cross-domain transfer and a self-
training procedure in an iterative way so that we are 
able to adapt to the target domain in the absence of any 
labeled target domain examples. Third, we construct a 
very strong pseudo-label refinement pipeline and reduce 
the threat of error propagation or improve segmentation 
accuracy in the domain shift. Last, we perform thorough 
experiments on different RS datasets, such as SpaceNet, 
DeepGlobe, and LoveDA, wherein our CDT-ST framework 
exhibits competitive or even better performance than 
the standard practices, despite its working in a fully 
zero-shot setup.

Our proposed method that closes the gap between 
transfer learning, domain adaptation and zero-shot 
segmentation has the potential to eventually lead to 
scalable, adaptable and annotation-free RS segmentation 
systems that can operate successfully in a varied and 
previously unseen environment.

Related Work

The area of remote sensing image segmentation has 
been a central focus of geospatial analysis research, 
to produce semantic labels compatible with individual 
pixels in aerial and satellite imagery. Deep learning 
techniques used to estimate segmentation used in RS 
mostly depended on convolutional neural networks 
(CNNs) because they performed well in extraction of 
local features. PSPNet[2], U-Net,[1] and DeepLab[3] based 
architectures are very popular in land cover classification, 
extraction of building footprints, and mapping of road 
networks. The encoder-decoder architecture of U-Net 
allows them to be used in such a manner that they can 
accurately localize, whereas multi-scale context can 
be achieved through pyramid-pooling in PSPNet, and 
atrous convolution mechanism can be used by DeepLab 
to increase the receiver field without sacrificing the 
resolution. More lately, transformer-based models like 
SegFormer[4] have exhibited an excellent performance by 
defining long-range dependency and global contextual 
association (very essential in comprehending large-scale 
scenes in RS). But even with these developments, these 
models need to have intensive pixel level annotations to 
be used to train the model in a supervised way and this 
feature makes it very difficult to be utilized on a large 
scale and on geographically varied domains.

Zero-shot learning (ZSL) is an approach to computer 
vision that seeks to deal with the inability to identify 
the classes or domains not seen in the training when 
the semantic information is available. It is common to 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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use semantic embeddings learned on a natural language 
model like word2vec,[5] GloVe,[6] or vision-language 
model like CLIP[7] to re-map each seen category to 
a layer between seen and unseen categories. ZSL has 
seen use in medical imaging,[8] autonomous driving,[9] or 
scene parsing,[10, 21] amongst other field where semantic 
segmentation is applied, and has shown the capacity 
to generalise to new classes. Nevertheless, its usage in 
the context of remote sensing has not been studied as 
thoroughly, yet potential opportunities of lowering the 
cost of annotations and offering extremely fast creation 
of segmentation models for unseen areas cannot be 
overestimated. The available research studies do not 
address this gap so the proposed one is generated to 
do it by offering a ZSL framework that suits RS imagery, 
which can learn in the new realms and domain without 
the need of annotated sample.

Domain adaptation and transfer learning methods 
make efforts to mitigate the performance decline due 
to domain shift, i.e. differences between the image 
properties in the source and the target domain. To 
match the distributions of feats, unsupervised domain 
adaptation (UDA) algorithms have been introduced 
using adversarial learning,[11] discrepancy-based feature 
alignment,[12, 20] and style transfer.[13] Transfer learning 
between natural image databases such as ImageNet 
to more domain-specific databases has been found to 
improve the performance of RS.[14, 19] Nonetheless, UDA 
algorithms often need access to unlabeled target domain 
data as part of the training procedure, which in practice 
is often impossible. The proposed approach is different 
since our model runs a fully zero-shot environment, 
which expands the UDA paradigm to the instances when 
no target data is provided in the process of training a 
model.

Self-training during domain adaptation has become 
a fruitful technique of training a model to perform 
better on the target domain by refining its predictions 
iteratively. In this method, the predictions of the 
unlabeled target data with a high confidence level is 
viewed as pseudo-labels to retrain the model.[15, 17] 
Although effective, self-training is likely to accumulate 
error since noisy pseudo-labels will be reinforced in 
further iterations. Recent techniques have proposed 
to deal with this by introducing confidence-based 
filtering, spatial consistency checks and post-processing 
via Conditional Random Fields (CRFs).[16, 18] We have 
extended these developments by proposing a state-of-
the-art pseudo-label refinement pipeline that enables 
stable generalization to new RS domains without 
annotations of the target domain.

Proposed Methodology

The proposed Cross-Domain Transfer and Self-Training 
(CDT-ST) framework has been developed to be able 
to segment remote sensing images under zero-shot 
conditions, i.e., hypothetically when the model would 
need to work on an unseen target domain without 
annotated training data. The structure consists of three 
general steps:

1.	Cross-Domain Feature Extraction

2.	Zero-Shot Semantic Mapping

3.	Self-Training with Pseudo-Label Refinement

Figure 1- presents the overall architecture of the CDT-
ST framework.

Fig. 1: Overall Architecture of the Proposed  
CDT-ST Framework for Zero-Shot Remote Sensing 

Image Segmentation

Cross-Domain Feature Extraction

The initial step includes extraction of domain invariant 
features which can cope with variation in geographic, 
atmospheric conditions and sensor fronts. We utilize a 
backbone encoder like Swin Transformer or SegFormer 
and from the beginning pre-train on ImageNet in generic 
visual feature inference. An encoder is then adjusted 
on a labeled source domain dataset (e.g., SpaceNet 
or DeepGlobe) to tune it to the specifics of remote 
sensing images. Domain shift between source and target 
during movement of the distribution curves can further 
be alleviated, by adaptation of Adaptive Instance 
Normalization (AdaIN) normalizing feature statistics. 
Having a feature map  of an image, AdaIN aligns the 
mean and variance of the feature map against those of 
the source domain:

	 	 (1)

where:
•	 Ft = target domain features,
•	 Fs = source domain features,
•	 μ (⋅),σ (⋅) = mean and standard deviation operators.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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This ensures that extracted target features share 
the same statistical distribution as source features, 
improving transferability.

Zero-Shot Semantic Mapping

After extracting the features, we do semantic alignment 
in between the source and the target domain classes. 
This plays an important role in zero-shot learning because 
the target domain comprises unseen categories. We use 
word representations of GloVe or CLIP text encoders 
to place each class in a high-dimensional, semantic 
space. On every predicted segmentation region  in the 
target domain, the model calculates a cosine similarity 
between the extracted feature representation  and all 
class embeddings :

	 	 (2)

The region is allocated to the most similar class which 
has the highest score. Such mapping enables the model 
to deduce the meaning of unseen classes without having 
visual representations of those classes and instead draw 
the meaning based on semantic association between 
visualised and non-visualised classes.

Self-Training with Pseudo-Label Refinement

The domain shift really means that initial predictions 
in the target domain are noisy. In order to boost the 
accuracy, we utilize self-training with iterations where 
the model labels the target images itself with pseudo-
labels and retrains the model using such labels.

Step 1: Confidence Thresholding
The predictions having noisy softmax probabilities below 
a threshold of  = 0.85 are discarded and high-confidence 
pseudo-labels remain.

Step 2: Spatial Consistency Filtering
We have a neighborhood-based filter whereby we kind of 
ensure the pseudo-labels are spatially coherent, getting 
rid of the isolated mislabeled pixels.

Step 3: CRF Post-processing
A Conditional Random Field (CRF) improves boundaries 
of the objects by jointly implementing low-level image 
cues such as edges and color with high-level semantic 
predictions:

	 	 (3)

where ψu = unary potential from network output, ​ = 
pairwise potential encouraging label smoothness.

The refined pseudo-labels are then fed back into the 
training loop, improving the model iteratively.

Loss Function

The training objective combines segmentation accuracy, 
class balance, and semantic consistency. The total loss 
function is:

	 	 (4)

where:
•	 LCE​ = Cross-Entropy Loss, penalizing pixel-level 

misclassification

	 	 (5)

•	 LDice = Dice Loss, addressing class imbalance:

	 	 (6)

•	 Lsemantic = Semantic Embedding Loss, maximizing 
cosine similarity between predicted and class 
embeddings:

	 	 (7)

Here, λ1​ and λ2​ are weighting coefficients controlling 
the trade-off between terms.

Algorithm 1: CDT-ST Training Procedure

Input: Source dataset D_s (labeled), Target 
dataset D_t (unlabeled)

Output: Segmentation model M adapted to target 
domain

1. Pre-train encoder E on ImageNet

2. Fine-tune E + decoder on D_s using L = L_CE 
+ λ1 L_Dice

3. For each iteration in adaptation loop:
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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    a. Predict segmentation masks for D_t

    b. Select high-confidence predictions (τ = 
0.85)

    c. Apply spatial consistency filtering

    d. Apply CRF post-processing to refine pseu-
do-labels

    e. Retrain M on D_s + pseudo-labeled D_t

4. Perform zero-shot semantic mapping for un-
seen target classes

5. Output adapted segmentation model

Experimental Setup

The proposed Cross-Domain Transfer and Self-Training 
(CDT-ST) framework was experimentally assessed 
through various benchmark datasets in order to verify 
its zero-shot segmentation capabilities in a variety of 
remote sensing (RS) settings. The model training and 
testing conditions are of the strict zero-shot setting as 
it is trained using source domain data with pixel-level 
labels only and tested on target data with no labels used 
at all to train the model.

Datasets:Two popular RS datasets as the source domain 
will be used: (i) SpaceNet, a high-resolution satellite 
imagery dataset labeled with the footprints of buildings 
enabling the development of a rich variety of urban 
layouts in many cities; and (ii) DeepGlobe Land Cover 
Classification Challenge that possesses RGB imagery 
databases with seven land cover classes, including 
urban, agriculture, rangeland, and forest, and enables 
learning a wide range of scene categories. The target 
domain is composed of (i) LoveDA dataset including 
urban, rural, and wild scenes taken at diverse resolution 
and in diverse environment and (ii) the Inria Aerial Image 
Labeling dataset that comprises high-resolution aerial 
images with fine-grained annotations on building and 
background of diverse geographic regions. Notably, there 
was no use of any form of target domain images in the 
training process which makes the evaluation protocol to 
be a zero-shot evaluation.

Evaluation Metrics:o determine the performance, they 
used three common measuring scales of segmentation, 
including (i) Mean Intersection over Union (mIoU), 
which is the average of the overlaps of the predicted 
and ground truth regions across all classes; (ii) F1-score, 
which is a merger of precision and recall that quantifies 
segmentation precision and completeness; and (iii) Pixel 
Accuracy, which calculates the percentage of correctly 
segmented pixels among the total number of pixels. 

The combination of the metrics can give a complete 
evaluation of the quality of segmentation globally and 
individually per each class.

Implementation Details:The framework CDT-ST has 
been implemented in PyTorch. The backbone encoder 
(Swin Transformer or SegFormer) showed pre-training on 
ImageNet and fine-tuned on the source datasets with the 
AdamW optimizer and an initial learning rate of 2x10-4 
and weight decay of 1x10-4. All the experiments used a 
batch size of 8. The model was trained and fitted for 
50 epochs on the source domain and then subsequently 
adjusted to the target domain through 20 self-training 
iterations whereby pseudo-label generation, refinement, 
and retraining was done. All the research was performed 
with an NVIDIA RTX 3090 GPU of 24 GB VRAM to guarantee 
the effective work with the high-resolution RS images. 
Figure 2 depicts the general experiment procedure of 
our proposed CDT-ST framework, its workflow, the use 
of dataset, the feature extraction process, the self-
training loop, and the evaluation metrics. This scheme 
illustrates quite well, the flow of interaction between 
the two sources (source and the target domain), the 
order in which the sequence is processed and the how the 
evaluation is done as an approach to our experiments.

Fig. 2: Experimental Setup Workflow for  
CDT-ST Framework

Results and Discussion
Quantitative Results

The tested CDT-ST structure has been considered against 
two previously unseen target domain datasets LoveDA 
and Inria Aerial Image Labeling given in full one-shot 
recommendations. The performances presented in Table 
1 are a summary of the performance of the segmentation 
procedure as compared to an oracle-based procedure 
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This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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training the segmentation procedure directly on the 
target domain with fully supervised labels. All keys CDT-
ST ran on LoveDA and obtained an mIoU of 87.2%, F1-
score of 91.5%, and pixel accuracy of 94.3%; on Inria it 
obtained 84.6%, 89.8%, and 93.1% mIoU and F1-score, 
respectively. Even without the label in the target domains, 
CDT-ST performs within ~23 of the performance of the 
fully supervised oracle, indicating good generalization 
ability. Figure 3 shows a visual comparison of the two 
models that indicates competitive performance of CDT-
ST in all evaluation metrics. 

Table 1: Quantitative Results on Target Domain Datasets

Dataset 
(Target)

Method mIoU (%) F1-score 
(%)

Pixel Acc. 
(%)

LoveDA CDT-ST 87.2 91.5 94.3

Inria CDT-ST 84.6 89.8 93.1

Fully Sup. 
(Oracle)

— 89.5 92.4 95.1

Figure 4 presents a side-by-side bar chart comparing 
CDT-ST and the fully supervised oracle for both datasets 
across all metrics.

Ablation Study

The effectiveness of each module of the CDT-ST 
framework was investigated using ablation study (i)- 
without self-training, (ii)- without semantic mapping, 
and (iii)- the entire framework. Table 2 results 
demonstrate that the elimination of the self-training 
drops mIoU to 81.4; mIoU then again drops to 78.9 with 
the removal of semantic mapping. The complete model 

Fig. 3: Qualitative Comparison of CDT-ST and Baseline Segmentation Results

Fig. 4: Performance Comparison between CDT-ST and Fully Supervised

Table 2: Ablation Study on CDT-ST Components

Configuration mIoU (%)

Without Self-Training 81.4

Without Semantic Mapping 78.9

Full CDT-ST Framework 87.2
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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reaches 87.2%, which proves that the two elements are 
essential in order to reach the best performance. The 
disparities are also depicted in Figure 5 through which 
it is obvious that that the full CDT-ST design performs 
better than the minimized versions.

Fig. 5: Ablation Study on CDT-ST Components

Qualitative Analysis

On inspection of visual outputs of the segmentation 
feature (Fig. 3), it is possible to note that CDT-ST 
yields sharper object edges and fewer false positives 
as compared to direct transfer learning without zero-
shot adaptation. It is especially so in small-scale such 
as in buildings and small roads where the pseudo-label 
refinement is able to effectively fix the misclassified 
pixels.

Discussion

The research results prove a number of crucial 
observations. To begin with, the cross-domain transfer 
learning and iterative self-training represent the 
techniques that greatly minimize the potential negative 
outcomes of domain shifts between the source and 
target data sets. Second, the semantic mapping 
component holds the key to making the generalization of 
classes possible especially in scenarios where the target 
domain is composed of visually unique but semantically 
close classes. Third, confidence thresholding, spatial 
consistency filtering, and CRF-based post-processing 
using the pseudo-label refinement process play an 
important role in the preventing error propagation 
in self-training loops. Compared to past work, CDT-
ST achieves an excellent tradeoff between flexibility 
and efficiency of labels, potentially realizing many 
commercial applications of remote sensing at scale in a 
data intensive world.

Conclusion and Future Work

In this work, CDT-ST, a zero-shot learning approach 
to adapt signal processing principles to the image 

segmentation methods of more sophisticated types 
based on advanced models and techniques of segmenting 
remote sensing images, was introduced to challenges 
of limited annotations in remote sensing field. Taking 
advantage of domain-invariant feature learning via 
adaptive normalization, semantic embedding alignment 
in a cross-domain setting and a multi-stage pseudo-label 
refinement procedure based on spatial and statistical 
processing, CDT-ST is, in fact, compelling and effective 
enough to put the negative effects of domain shift at 
bay without any target-domain labels being needed 
whatsoever. Experimental analysis shows competitive 
performance - mIoU of 87.2 % (LoveDA) and 84.6 % (Inria) 
on the UAM 87 data set - and generates more accurate 
segmentation maps with cleaner edges, fewer false 
positives and better retention of structural information. 
The zero-shot paradigm integrates core signal and image 
processing primitives and therefore is robust, scalable, 
and efficient in real-world applications, where several 
purposes may prove to be advantageous in land cover 
mapping, disaster monitoring, and dealing with urban 
infrastructure.

Future research will investigate the benefits of 
integrating multi-modal signal fusion (e.g., optical 
and SAR imagery) and contribute to better semantic 
correspondence by utilizing vision-language models, and 
the ability to adapt and learn in an online/continual 
adaptation approach that should be suitable in changing 
operational contexts. Such orders will also enhance the 
interaction between the signal processing theory and 
the modern deep learning to catalyze the application of 
annotation-free image segmentation to achieve a new 
frontier.

Future work

Based on the results of this study, the next round of 
research will concentrate on developing in several 
promising directions the current CDT-ST framework so 
that there are even more improvements in its flexibility, 
generalizability, and ability to be deployed in the real 
world. The first direction is the incorporation of vision-
language models (VLMs), e.g., CLIP, to enhance semantic 
correspondence between the source and target classes 
and, thus, train the system to generalize better to 
complex and heterogeneous target domains encompassing 
different scene types and spectrums of object categories. 
Multi-modal fusion- another direction is to augment CDT-
ST to utilise complementary information in multi-modal 
remote sensing, i.e., combining synthetic aperture radar 
(SAR) with optical imagery, to improve the robustness 
of segmentation in adverse scenarios, like unstable 
weather, differing lighting conditions, and effects specific 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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to each sensor type. Additionally, the framework would 
also be expanded to promote online and incremental 
adaptation so that the model could be deployed in real-
time or near-real-time dynamically changing operational 
environments without having to be retrained completely. 
In combining transfer learning, semantic alignment, and 
self-training into one zero-shot paradigm, CDT-ST has 
the potential to form the basis of autonomous, adaptive, 
and annotation-free systems to remotely segment data in 
a manner that is capable of satisfying the requirements 
of emerging geospatial applications in remote sensing 
including disaster response, environmental monitoring, 
and urban infrastructure management.
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