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ABSTRACT

The plant diseases are a major threat to food security globally since they result in
production loss through low crop yields in addition to compromising the yield quality
and quantity. Manual inspection is a primary application in traditional disease detection
techniques as it requires labour, prolongs diagnosis time, and has a very low rate of
error occurrence as well as it is not applicable across large landscapes of farming. In
order to overcome these restrictive factors, this study develops an Internet of Things
(loT)-enhanced deep learning model of real-time plant disease diagnosis based on
images. The system is a combination of the most recent advances in computer vision
through convolutional neural networks (CNNs) and edge computing to allow detecting
and classifying plant diseases early in real-world farms. The selected model consists of
a curated dataset of 50,000 leaves of various crops, both healthy and diseased, used
to feed a lightweight CNN, which is a modified MobileNetV2 that is optimized to run on
the resource-constrained edge device, namely Raspberry Pi 4B. The model is optimized
to TensorFlow Lite to achieve fast inference (in real-time) and is deployed down at the
field level, an loT-based camera takes image 2-4 times in a minute of the leaves. The
images that would be captured are processed locally on the edge node whereby the
disease classification has to be done with high accuracy and low latency. The system
performs classification with 93.23 percent accuracy with an average of 0.596 seconds
inference time, making it feasible in field conditions and an activity that is real time.
In addition, the system offers low power drain, wireless interconnection and horizontal
expansion using MQTT enabled communication with remote cloud dashboard which
stores long term data and provides analytics. The given proposed solution presents
the cost-efficient, mobile-friendly, scalable tool, which might help farmers to get
timely and actionable information, which will help farmers cue precision agriculture
approaches and reduce the transmission of the plant diseases. By filling in the gap
between deep learning and the technology of field-deployable loTs, this framework
will present substantial possibilities of shifting the traditional agricultural monitoring
systems toward smart, centralized farming monitoring systems.
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INTRODUCTION

In development countries, agriculture is one of the
mainstays of national food security and economy as a
considerable percentage of the population depends on
it. Plant diseases are one of the most urgent issues in
the agricultural field and their presence leads to a 20-40
percent decline in the amount of crops in a given year.
When these illnesses are not detected and treated in time
they may lead to huge losses, causing a negative effect
on food supply lines, income of farmers, environment,
etc. The early and precise disease detection is thus an
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important measure that is crucial in the sustainability
of effective agricultural yield and reduction of crop
destruction.

Manual check by agricultural experts, visual symptom
observation, and laboratory-based methods have long
been used as the method of plant illness diagnosis.
This approach can work well in laboratory-controlled
situations, but also has a number of limitations when
applied in the field during farming activities. They
are also naturally sluggish, CPU-intensive, and they
lend themselves to flawed human judgments based
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on the variation in the expertise of human beings.
Furthermore, where trained agronomists and diagnostic
laboratories are far apart or unavailable, as can be the
case in remote or resource-challenged regions, disease
surveillance of any scale is unlikely to occur under the
traditional model.

Nowadays, with the appearance of the new sophisticated
technologies like the Internet of Things (loT) and
Artificial Intelligence (Al), there emerged possibilities
of digitizing the conventional farming and turning it into
smart and data-driven precision farming. Owing to the
flexibility of connectivity and real-time visualization
supported by loT-based sensor network and embedded
systems, and the effectiveness as demonstrated by Al,
especially deep learning in image-based classification
since its inception, there is a growing interest to explore
the potentials of assisting sports with Al. Convolutional
Neural Networks (CNNs), which are a type of deep
learning system, showed accurate results in identifying
and classifying plant diseases using leaf images and
in most cases, they surpassed conventional machine
learning approaches.

Nevertheless, there are other issues when performing
deep learning models in the field of agriculture, including
the lack of computational power, a variable connection,
and real-time processing requirements. Here is where
edge computing comes to play, because processing and
inferencing can take place locally on the low-power
devices that do not require much power. Using deep
learning models together with a cloud connection to
an loT-enabled edge computing device like Raspberry
Pi, the whole process of detecting a plant disease can
be done in real-time in the field itself, without always
relying on cloud connectivity.

To overcome these setbacks, this paper suggests an loT-
coupled deep learning system that integrates lightweight
CNNs with the edge computing solution to provide an
error-free classification of plant diseases with real-time
image diagnosis capability. The proposed system not only
automates diagnostic but also, since the communication
between the proposed system and the farmer is based on
loT communications protocols, the farmer gets instant
feedback about the problem. This enables farmers to
make effective decisions in time, limits their need to
rely on the services of experts and precondition the
establishment of scaled and inexpensive agricultural
monitoring systems. By taking a holistic approach and
testing in the field, this study will bring about a solution
to the issue of plant diseases that growers lose out
on and provide them with a refund on their crops via
increased crop health management.

“ —

RELATED WORK

Advances in the use of deep learning in agricultural
diagnostics, notably in plant disease identification, have
been made in the last couple of years. Many studies have
applied convolutional neural network (CNN) to image-
based disease classification, and have shown that this
method achieves good performance.

One of the first large-scale assessments of deep CNN
models like AlexNet and Google Net was conducted on
the Plant Village dataset and resulted in an accuracy
of above 99 percent in controlled circumstances.
Nevertheless, their models were tested and trained
on clean, laboratory obtained images, which restrict
real mortal applications of the approach. Likewise,?
developed a CNN de novo and® showed encouraging
results on 13 plant disease classes but again, this was
not applied to field circumstances or to embedded
computational devices.

Increased the scope to compare different deep learning
models, such as AlexNet, VGG, and ResNet on the
disease classes of 58 plants.[”? The experiment ran on
GPUs of high performance and was focused on obtaining
accuracies between 94.3% and 99.5% but without taking
into consideration resource limits in field deployments.

To overcome the challenges of cloud dependency,
researchers are also in the process of implementing
lightweight models. In a comparative study done by Too
et al.[ on MobileNet, SqueezeNet, and DenseNet, it is
observed that MobileNet provided a good [10] balance
between accuracy and low computational costs. Their
findings paved the way towards the implementation of
the deep learning on mobiles and embedded devices.

There is also the progress of agriculture monitoring
systems using the technology of the loT. Another study®™
with respect to loT technologies in smart farming cited
Al-based analytics as one of the promising applications.
The thing is that the vast majority paid attention to
sensing in the environment (e.g., humidity, temperature)
but not to visual diagnostics.

The most recent research by® has investigated the use
of pretrained CNNs in transfer learning in plant disease
classification in real-world conditions.l'? They were
effective, but computationally heavy and server side
processing intensive.

One of the possible solutions that will help avert these
connectivity and the latency problems has risen in the
form of edge computing. [7]reib excessive time, the
reason being that some of the makers of the Trump train
are still around.Demonstrated the prototype of pest
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detection based on Raspberry Pi but their model was not
complex nor optimized to the deep learning inference
model. Other more recent works have been proposed
to perform edge deployment using TinyML, although it
has been shown that high classification accuracy can be
achieved only at the expense of real-time performance.

In short, studies earlier in this direction prove the
feasibility of deep learning in determining plant
diseases, but either they are not yet real-time or they do
not address the integration at the edges. The proposed
research is distinguished by the fact that it has developed
a lightweight CNN model that is loT-enabled with the
optimized architecture that will be able to perform
efficient inference locally with a minimal amount of
latency.

SYSTEM ARCHITECTURE
Overview

The suggested system architecture is the functionality
that allows diagnosing plant disease efficiently and in
real-time through combining the capacity of an Internet
of Things (loT) and deep learning at the edge. It has
three main modules that integrate in a synergistic way
to offer an end to end intelligent monitoring structure.
The Layer of Data Acquisition acts as the most proximate
component, which has an loT-enabled camera module
that delivers a high-resolution picture of the leaves of
the plant in real-time. This layer functions independent
of the particular agricultural field, keeping constant
control over the crops, and sending data in the form
of images to a system that analyzes them. The second
module is the Edge Computing Layer, which is based on
either a Raspberry Pi 4B or an NVIDIA Jetson Nano, two
small, low-power edge devices with capability of running
lightweight deep learning computations. At this level,
the inline tuned Convolutional Neural Network (CNN)
is stored with a MobileNetV2 that has been pruned and
quantized, train the neural network takes place at the
edge, with the device performing inferences and making
predictions on diseases classification using the taken
images of the leaves. This layer enables low latency,
as all data is processed locally, does not rely on cloud
connectivity and is thus the layer to consider when being
deployed in a limited bandwidth context or when remote
locations will be involved. The last module, Cloud
Dashboard, is an optional plug-in that allows monitoring
remotely, data logging and cloud updates of models. It
gives a friendly interface to the agronomist/ farmers to
see the result of the classification, patterns of disease
appearance and advices to take corrective measures.
Also, the cloud layer is used to enable periodical model
re-education and model rollout by over-the-air (OTA)
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updates, and as a result, guarantee ongoing learning
and flexibility to adjust to the environment. Figure 1
Together, this package of modules has the capability of
becoming a very scalable, dependable, and economical
platform capable of delivering real-time, intelligent
diagnostics of the health of the plant and can support
precision farming initiatives.

(Optional)
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[ Cloud Dashboard J

~

Edge Computing Layer |«

MQTT / Flask
Edge Device APls
(Raspberry Pi 4B/ JetsorNano)

MobileNetV2 Model
A
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loT-Enabed Camera

[ Data Acquisition Layer J

Fig. 1: loT-Integrated Deep Learning Framework for
Real-Time Plant Disease Diagnosis

Hardware Components

The hardware implementation of the proposed loT-based
deep learning model was diligently engineered with
portability and cost-effectiveness together with energy-
efficient claim in line with support of real-time image-
based plant disease diagnosis. The system is centered
around a Raspberry Pi 4B, which has 4GB RAM to work as
the edge computing device. With enough computation
capacity to support lightweight deep learning models
like MobileNetV2 with TensorFlow Lite, but still with a
small size and low power requirement, this single-board
computer can be deployed in the agriculture field in
remote locations. The Raspberry Pi Camera Module 8MP
has been connected to the Raspberry Pi to take high-
res images of leaves at different lighting environments.
The placement of the camera is also strategic in a way
that it checks the plant leaves at a specific distance
comfortably. This allows a steady image capture
to be used in classification of diseases. To increase
contextual awareness and environmental tracking, a
DHT22 sensor will also be integrated to measure the
ambient temperature and humidity which are important
parameters that affect the health of a plant and the
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propagation of disease. These sensor measurements
may be presented in addition to image-based diagnostic
solutions or may generate some conditional alerts,
implemented when environmental limits are broken.
To transfer data smoothly and access it remotely, the
system has a Wi-Fi module attached to it that enables
the Raspberry Pi to connect with the local wireless
network or hotspot. This connectivity is used to facilitate
real-time communication to a cloud-based dashboard,
remote configuration, remote software updates to the
model via the cloud, and over-the-air (OTA) system
software updates. Figure 2 reveals that the selected
hardware components collectively guarantee that not
only can the running efficient deep learning inferences
on-device but the system is also resistant and cadre to
deploy it in various agricultural atmospheres.

8MP Pi Camera . ‘ Wi-Fi
Module Module

Fig. 2: Hardware Architecture of the loT-Integrated
Edge System for Real-Time Plant Disease Detection

Software Stack

The software stack chosen in the proposed deep learning
framework that integrates loT has been efficiently tuned
to provide low latency and efficient computation in the
resource constrained, edge devices and also facilitate
smooth communication and integration across the system
modules. The main inference engine is TensorFlow Lite,
which allows the model to execute the quantization
of the MobileNetV2 deep learning model with limited
resources on the Raspberry Pi 4B device. The TensorFlow
Lite is specially dedicated to edge tasks, and thus
provides smaller model size (compared to TensorFlow
Lite) and faster inference with no reduction in accuracy
of classification, which qualifies it well as a tool of real-
time implementation of plant disease detection. In order
to enable data flow between the system components
and external interfaces, Flask micro web framework
is utilized to implement RESTful APIs through which
the edge device will expose endpoints related to the
results of the image classification process, the sensor

46 .

values and control signals. The modular API layer allows
scalability of the system and enables it to integrate
with a front-end dashboard or mobile apps, or cloud
servers. The choice of communication protocol between
the edge device and remote monitoring systems is very
important since it must be efficient and lightweight. The
framework uses the MQTT (Message Queuing Telemetry
Transport) protocol. The MQTT is a publish/subscribe
messaging protocol that fits perfectly in the IoT scenarios
because of low bandwidth usage and small overhead.
It allows the Raspberry Pi to broadcast actual-time
predictions and environmental data to a cloud broker
and be read by subscribed consumers such as dashboards
or alert systems instantaneously. The specified software
architecture will help maintain the whole framework as
dynamic, easily expandable, and resilient and make it
work in real-time even despite poor network resources
and perform monitoring, analytics, and decision-making
in precision farming efficiently.

Camera
|

v

TensorFlow Cloud /
Lite Bl H it H Dashboard ’
T

Fig. 3: Software Stack of the loT-Integrated Edge Sys-
tem for Real-Time Plant Disease Diagnosis

METHODOLOGY
Dataset Preparation

To the training and subsequent generalization of any
deep learning model, and with plant disease diagnosis
being a use case as serious as it is, you need to have
a robust and diverse dataset that will serve as its
backbone. In this paper, an extensive and diverse set
of data was compiled to make the model capable of
predicting plant diseases in different crops and under
different field conditions. The dataset mainly includes
images of the well-known Plant Village dataset, which
contains well-captured images of healthy and sick leaves
of plants collected due to controlled lighting conditions
and of even background. Nevertheless, this initial data
was greatly augmented by additional in-field images
that were manually captured with mobile cameras and
camera modules with loT and used in actual farms. The
introduced variability in these field images entails non-
uniform lighting, messy background, and only partially
visible leaves as well as natural leaf deformations, all
of which is very common in real-life environments but is
usually lacking in carefully collected dataset.
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In total, 50,000 annotated images of 38 different classes
of disease in the 10 main crops, including tomato, maize,
potato, grape, apple, cucumber, bell pepper, and many
others, are contained in the final dataset. In assembly
of datasets, special consideration was made to not only
have the relative proportions of classes close together,
but also to have an approximate balance of the number
of images per classes to avoid data bias by the model
(whereby more images of a particular disease were
used than other diseases). Incorporating the validation
process helped to support the precision of the annotation
process where experts and plant pathologists verified
and rectified the labels of the images used; a practice
that empowers the accuracy of supervised learning.

Others

Cucumber

Bell Pepper

Tomato

Grape

Potato

Fig. 4: Distribution of Plant Disease Image Dataset
across Different Crop Types

As a way of accommodating successful training and
evaluation of models, the dataset was divided into three
other sets; 70 percent as training data, 15 percent as
validation and 15 percent as testing. Notably, the test
set included only in-field images thus, reproducing
the realistic conditions of deployment and making the
assessment of the model performance in uncontrolled
environments more rigorous. Such stratified splitting
approach makes sure that the trained CNN can also
generalize the training data to novel and real-world
images and not just memorize them. Also, as a part of
preprocessor, to enable multi-class classification, class
labels were one-hot encoded and a respective metadata
(e.g., type of crop, environmental parameters) was
recorded, which could be used in later extensions of
multimodal learning applications. This is a robust and
context-aligned dataset the foundation of the suggested
deep learning framework and has the capacity to
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produce precise, scalable, and field- deployable plant
illness diagnostics.

Data Preprocessing and Augmentation

Data preprocessing and augmentation are important
parts of making a deep learning model that generalizes
to real world data, and in particular, data preprocessing
becomes vital when the input to the model is complex
and variable (in this case, the image of a plant leaf taken
outside). As implemented in the context of the current
study, preprocessing has been set up with the aim of
scaling input dimensions and normalizing pixel values
whereas augmentation was applied to synthetically
increase the variety of training data, thus, enhancing
the robustness of the model and preventing overfitting.

First, the spatial dimension of each input image was
changed to 224 224 pixel squares to fit the input size
requirement of a MobileNetV2 model. The purpose of
this resizing step is to assure the consistency of the
whole dataset and enable the network to learn spatial
hierarchies fairly without distortion artifacts or any
padding. There was also the scaling of the pixel values
in the standard 8-bit [0, 255] space used to a floating
point [0, 1] space, namely image normalization. The
transformation not only increases the convergence
speed of the optimization algorithm, the transformation
facilitates stabilizing the gradient flow in the network,
which is important to deep CNNs having hundred of
layers.

In addition to simple preprocessing, an extensive data
augmentation procedure was carried out to emulate the
degree of variance present in real-life when it comes to
agricultural fields. First, random rotations of the range
of 25 degrees were done to take into consideration
unoriented orientations of leaves in their natural
environment. Next, flipping horizontally and vertically
was utilised to take care of the symmetry of leaves and
overcome sensitivity of the models with respect to fixed
orientations. Also, those adjustments served to make
the brightness and contrast similarity and introduce
the effects of different lighting patterns which may be
very typical when it comes to taking pictures in the
open fields like shadows, over exposure, and changes in
natural light.

Further augmentation of spatial variability with usage
of random zoom and shift transformations is also carried
out, and the model is able to learn position invariance.
These operators reproduce camera installation and
framing contradiction which can take place during real
implementations. When combined with each other,
this augmentation option has increased the richness of
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training data making it possible to create a variety of
visual patterns available based on a small quantity of
original samples. It was very effective in enhancing the
model generalization to unseen samples, particularly in
cases of noisy, cluttered or poorly illuminated cases.

The training loop performed all augmentation forward
passesin real-time using Tensor Flow ImageDataGenerator
or custom made augmentation pipelines, so that every
training iteration exposed the model to a different dataset
dynamically variegated according to the augmentations.
Figure 5 Consequently, the edge deployment- ready
version of the final trained MobileNetV2 model is
more robust to changes in environmental conditions,
image occlusions and distortions, and can thus be
effectively applied to real, not controlled, agricultural
environments.

Augmented Images

&
£

Resize
(224 x224)

Augmentations

« Rotation (+25%)

» HoriZontal/Vertical Fiip

« Brightness/Contrast Shit
+ Zoom & Translation

Original Image

Fig. 5: Data Preprocessing and Augmentation Work-
flow for Training the CNN Model

Model Architecture and Optimization

Computational performance comes to focus in designing
deep learning models in the provision of resources
with edge devices such as Raspberry Pi 4B and NVIDIA
Jetson Nano. To address this issue, a slightly customized
MobileNetV2 architecture that is specifically designed
to work within small processing and memory limits is
realized in the proposed system. The MobileNetV2
employs depthwise separable convolutions, a two-layer
convolution operation where the task of spatial filtering
is performed before feature combining in individual
layers. This greatly decreases the amount of learnable
parameters and floating-point operations (FLOPs) in
comparison to regular convolutional neural networks
(CNNs) such as VGG or ResNet, and as such allows it
to incur real-time inference as it gives up on only a
small portion of accuracy. It begins with the input layer
that receives 2242243 RGB images, and then a series
of residual blocks with bottlenecks where non-linear
activation functions would be present, as well as skip
links, and so on. Figure 6 such blocks can be used to keep
proprieties of the channels and positions information
within a position, at the same time reducing gradient
vanishing further underlying layers. A global average
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pooling layer is used to reduce the final feature maps
and to improve generalization and lastly drop out layer
with a rate of 0.3 to avoid overfit by randomly dropping
neurons during training. The final layer of architecture
corresponds to a fully connected dense layer with a
Softmax activation function and generates a probability
distribution categorize over the 38 plant disease classes.

’—> Dropout

Bottleneck
Residual Block

Bottleneck
Residual Block

Drotpout

Fully
Connected

Input
224 x 224x3

\
Softmax J --------- :

Post-training 47
optimizations !
(pruning + quantization) |

\

Conversion
to TensorFlow Lite

Fig. 6: Modified MobileNetV2 Architecture Optimized
for Real-Time Edge-Based Plant Disease Classification

The Adam optimizer was used as it is an adaptive learning
rate, which is fast to converge, and the categorical
cross-entropy loss was used to train the model because
it is the default choice when the classification problem
is multi-class in nature. The model was trained on 25
epochs and early stopping was applied depending on the
validation loss so as to avoid overfitting of the model and
wastage of computation resources. Throughout training,
the learning rate was set to the value of 0.0001, and a
balance between the speed of convergence and stability
was observed. When we achieved satisfactorily good
precision and convergence on the validation dataset,
we compared it with optimization steps achieved after
training, i.e., quantization (reducing weights to the
values of 32-bit floats to values of 8-bit integers) and
pruning (removal of unnecessary weights and neurons).
The optimization of this model resulted in a model size
that was only 8 MB close to the original size, and yet
still retained more than 93% in terms of the classification
accuracy. Last but not least, the version optimized was
converted to the TensorFlow Lite format to make it
compatible with embedded platforms. This conversion
enables the model to be run on any low-power
problematic application with limited latency, hence
suitable to be installed on continuous fieldcare with loT-
driven systems of agricultural monitoring.
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EDGE IMPLEMENTATION AND REAL-TIME DIAGNOSIS

To make real-time, autonomous plant disease diagnosis
via an agricultural field achievable, they were able to
utilize the optimized deep learning model on an edge
computing platform based on the Raspberry Pi 4B
due to its balance of ability, power consumption, and
portability. The last training process of MobileNetV2
was transferred into the format of the TensorFlow
Lite (TFLite) model, which is intended to be used in
embedded systems with a small latency footprint. The
implementation of this lightweight model on a Python
based application, which runs the continuous loop of
prediction in a 10 seconds interval, has been made. The
script does three interesting tasks: (1) it takes an image
of a leaf with an 8MP Pi camera, (2) it preprocesses
the image to an acceptable input shape of the model
(resize, normalize) and (3) it runs inference with the
developed CNN model. After prediction is done, the
result is presented in the form of a JSON object and sent
by MQTT protocol to either a cloud dashboard or mobile
application where they can be accessed remotely by a
farmer or agronomist and action taken. The edge system
was actively tested in operation conditions. As presented
in Figure 7, the model has an average inference speed of
0.56 seconds, making it the fastest to diagnose a patient
after the capture of the image. Consumption of power
was estimated at around 3W under idle conditions and
5.4W under active inference, which shows that it can be
used in solar powered or battery powered field setups.
The communication latency of MQTT was at all times
less than 200 milliseconds ensuring that updates can be

Image Capture

Preprocessing

Inference

Result Formatting

Cloud/Mobile Interface

Fig. 7: Real-Time Edge Inference Workflow for Plant
Disease Detection Using Raspberry Pi
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made in real time. This effective edge implementation
does not require constancy of contact with the cloud,
and the operation can be regarded as being well enough
performed in rural regions with limited bandwidth and
inaccessible locations.

RESULTS AND DISCUSSION

The pilot Al implementation on the proposed deep
learning framework with loT integration proved to
have promising results regarding the accuracy of the
classification and the performance of the inference in
real-time. The model produced an accuracy of 93.4%,
which is higher than the multiple benchmark schemes
of CNN in terms of both accuracy and efficiency. This
accuracy was maintained at this high level when the
in-field images were adapted to test accuracy, with
variations in background light levels, backgrounds
that were complicated, and leaves that were partially
covered. This strength has been attributed to the high
amount of data augmentation and the highly optimised
preprocessing pipeline that were used in training as they
made the model gain robustness to be able to fit well
onto the actual situations. The model showed a high
standard of consistency in the results of all prediction
tests under different environmental settings in relation
to the effect of sun light at an early morning, and midday
glare, and partial shadows, which means that the model
shows practical applicability in terms of continual
monitoring through the day. The inference time was
approximately 0.56 seconds locally executed on the
Raspberry Pi 4B which can provide real-time feedback to
the users in the field without needing cloud computing
or a high speed Internet connection. These results affirm
the applicability of the proposed system in precision
agriculture application due to required timely decisions
in case of diseases management and crop protection.
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Fig. 8: Comparison of Accuracy and Inference Time
for CNN Models on Plant Disease Classification

Comparing the optimized MobileNetV2 model to bigger
more well-known deep learning philosophies, it was
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evident that it was successful when compared to bigger
model based on deployment possibility and the computing
result. Although the accuracy of the AlexNet and VGG16
are 90.2 and 91.1 respectively, the memory and compute
resources necessary per accelerator were much higher
(220MB and 528MB, respectively, as well as inference
time of more than 1.8s and 3.1s). On the contrary, with
the optimized MobileNetV2 model downsized to 8.1MB
and with no sacrifice to the accuracy, it can be deployed
edge as an additional loT application. Not everything
went quite well, even though there were these benefits.
Low resolution of the camera and poor conditions
of imagery influenced the consistency of predictions
in a limited number of instances especially when
extreme occlusions or coarse focus was experienced.
Moreover, the re-deployment of the models is presently
necessitated by update or upgrade unless over-the-air
(OTA) updates are incorporated into the pipeline that
is among the planned improvements. Table 2 all in all,
the suggested system is a trade-off between precision,
performance, and deployability and therefore emerges
as a potential option to have real-time plant disease
diagnosis in a smart farming set-up.

Table 2: Comparative Analysis of CNN Models for Plant
Disease Diagnosis

Model Size Inference
Model Accuracy (%) (MB) Time (s)
AlexNet 90.2 220.0 1.80
VGG16 91.1 528.0 3.10
Optimized 93.4 8.1 0.56
MobileNetV2
CONCLUSION

The problem that this research paper seeks to solve
using an efficient and broad loT-integrated deep learning
framework is the requirement to diagnose plant diseases
in real-time and based on images, which is a vital issue
in modern agriculture and needs the scalable, more
accurate, and time-sensitive disease detection method.
Subsequently, with edge-processing opportunity of low-
computation systems such as Raspberry Pi coupled with
the lightweight MobileNetV2 architecture, the proposed
system provides high classification results (93.4
percent), at a very low latency (0.56 seconds), and can
be deployed in the field to deliver instant feedback
of the diagnosis rather than relying on cloud-based
solutions. Added features with an loT enabled camera
and sensor solution further facilitate the effectiveness
of the solution at the field where monitoring and data
informed decisions can be obtained day and night. The
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model is robust to various conditions on lighting and
environment due to extensive preprocessing and data
augmentation so that it can be deployed in the real
world in the rugged and remote regions. The low power
requirement as well as memory size provides the system
with economics and sustainability of use in the long run.
Though the intended application delivers good basis of
smart farming applications, future advancements seek
to increase the usage of the application by involving
multi-sensor information, including soil moisture and
weather condition data, updating OTA models through
federated learning to keep improving the model on-the-
spot, and also accommodating multilingual feedback
either through audio or visual responses to benefit
illiterate or semi-literate users. On the whole, the
work provides a scalable precision agriculture solution,
which can contribute to profiling of crops and disease
management extensively in different agricultural
ecosystems.
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