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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

43

IoT-Integrated Deep Learning Framework for 
Real-Time Image-Based Plant Disease Diagnosis

L. Salabi1*, Perera Manthila2

1Electrical and Electronic Engineering Department, University of Ibadan Ibadan, Nigeria.
2Department of Electrical Engineering Faculty of Engineering, University of Moratuwa, Sri Lanka.

KEYWORDS:
IoT, Deep Learning, 
Plant Disease Detection, 
MobileNetV2, 
Edge AI, 
Image Classification, 
Precision Agriculture, 
TensorFlow Lite, 
Smart Farming

 
ARTICLE HISTORY:
Submitted	:	20.01.2025 
Revised	 	 :	06.02.2025 
Accepted		 :	24.04.2025

 

https://doi.org/10.17051/NJSIP/01.02.06

Abstract
The plant diseases are a major threat to food security globally since they result in 
production loss through low crop yields in addition to compromising the yield quality 
and quantity. Manual inspection is a primary application in traditional disease detection 
techniques as it requires labour, prolongs diagnosis time, and has a very low rate of 
error occurrence as well as it is not applicable across large landscapes of farming. In 
order to overcome these restrictive factors, this study develops an Internet of Things 
(IoT)-enhanced deep learning model of real-time plant disease diagnosis based on 
images. The system is a combination of the most recent advances in computer vision 
through convolutional neural networks (CNNs) and edge computing to allow detecting 
and classifying plant diseases early in real-world farms. The selected model consists of 
a curated dataset of 50,000 leaves of various crops, both healthy and diseased, used 
to feed a lightweight CNN, which is a modified MobileNetV2 that is optimized to run on 
the resource-constrained edge device, namely Raspberry Pi 4B. The model is optimized 
to TensorFlow Lite to achieve fast inference (in real-time) and is deployed down at the 
field level, an IoT-based camera takes image 2-4 times in a minute of the leaves. The 
images that would be captured are processed locally on the edge node whereby the 
disease classification has to be done with high accuracy and low latency. The system 
performs classification with 93.23 percent accuracy with an average of 0.596 seconds 
inference time, making it feasible in field conditions and an activity that is real time. 
In addition, the system offers low power drain, wireless interconnection and horizontal 
expansion using MQTT enabled communication with remote cloud dashboard which 
stores long term data and provides analytics. The given proposed solution presents 
the cost-efficient, mobile-friendly, scalable tool, which might help farmers to get 
timely and actionable information, which will help farmers cue precision agriculture 
approaches and reduce the transmission of the plant diseases. By filling in the gap 
between deep learning and the technology of field-deployable IoTs, this framework 
will present substantial possibilities of shifting the traditional agricultural monitoring 
systems toward smart, centralized farming monitoring systems.
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Introduction

In development countries, agriculture is one of the 
mainstays of national food security and economy as a 
considerable percentage of the population depends on 
it. Plant diseases are one of the most urgent issues in 
the agricultural field and their presence leads to a 20-40 
percent decline in the amount of crops in a given year. 
When these illnesses are not detected and treated in time 
they may lead to huge losses, causing a negative effect 
on food supply lines, income of farmers, environment, 
etc. The early and precise disease detection is thus an 
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important measure that is crucial in the sustainability 
of effective agricultural yield and reduction of crop 
destruction.

Manual check by agricultural experts, visual symptom 
observation, and laboratory-based methods have long 
been used as the method of plant illness diagnosis. 
This approach can work well in laboratory-controlled 
situations, but also has a number of limitations when 
applied in the field during farming activities. They 
are also naturally sluggish, CPU-intensive, and they 
lend themselves to flawed human judgments based 

RESEARCH ARTICLE ECEJOURNALS.IN



L. Salabi and Perera Manthila : IoT-Integrated Deep Learning Framework for Real-Time Image-Based  
Plant Disease DiagnosisIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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on the variation in the expertise of human beings. 
Furthermore, where trained agronomists and diagnostic 
laboratories are far apart or unavailable, as can be the 
case in remote or resource-challenged regions, disease 
surveillance of any scale is unlikely to occur under the 
traditional model.

Nowadays, with the appearance of the new sophisticated 
technologies like the Internet of Things (IoT) and 
Artificial Intelligence (AI), there emerged possibilities 
of digitizing the conventional farming and turning it into 
smart and data-driven precision farming. Owing to the 
flexibility of connectivity and real-time visualization 
supported by IoT-based sensor network and embedded 
systems, and the effectiveness as demonstrated by AI, 
especially deep learning in image-based classification 
since its inception, there is a growing interest to explore 
the potentials of assisting sports with AI. Convolutional 
Neural Networks (CNNs), which are a type of deep 
learning system, showed accurate results in identifying 
and classifying plant diseases using leaf images and 
in most cases, they surpassed conventional machine 
learning approaches.

Nevertheless, there are other issues when performing 
deep learning models in the field of agriculture, including 
the lack of computational power, a variable connection, 
and real-time processing requirements. Here is where 
edge computing comes to play, because processing and 
inferencing can take place locally on the low-power 
devices that do not require much power. Using deep 
learning models together with a cloud connection to 
an IoT-enabled edge computing device like Raspberry 
Pi, the whole process of detecting a plant disease can 
be done in real-time in the field itself, without always 
relying on cloud connectivity.

To overcome these setbacks, this paper suggests an IoT-
coupled deep learning system that integrates lightweight 
CNNs with the edge computing solution to provide an 
error-free classification of plant diseases with real-time 
image diagnosis capability. The proposed system not only 
automates diagnostic but also, since the communication 
between the proposed system and the farmer is based on 
IoT communications protocols, the farmer gets instant 
feedback about the problem. This enables farmers to 
make effective decisions in time, limits their need to 
rely on the services of experts and precondition the 
establishment of scaled and inexpensive agricultural 
monitoring systems. By taking a holistic approach and 
testing in the field, this study will bring about a solution 
to the issue of plant diseases that growers lose out 
on and provide them with a refund on their crops via 
increased crop health management.

Related Work

Advances in the use of deep learning in agricultural 
diagnostics, notably in plant disease identification, have 
been made in the last couple of years. Many studies have 
applied convolutional neural network (CNN) to image-
based disease classification, and have shown that this 
method achieves good performance.

One of the first large-scale assessments of deep CNN 
models like AlexNet and Google Net was conducted on 
the Plant Village dataset and resulted in an accuracy 
of above 99 percent in controlled circumstances. 
Nevertheless, their models were tested and trained 
on clean, laboratory obtained images, which restrict 
real mortal applications of the approach. Likewise,[2] 
developed a CNN de novo and[8] showed encouraging 
results on 13 plant disease classes but again, this was 
not applied to field circumstances or to embedded 
computational devices.

Increased the scope to compare different deep learning 
models, such as AlexNet, VGG, and ResNet on the 
disease classes of 58 plants.[9] The experiment ran on 
GPUs of high performance and was focused on obtaining 
accuracies between 94.3% and 99.5% but without taking 
into consideration resource limits in field deployments.

To overcome the challenges of cloud dependency, 
researchers are also in the process of implementing 
lightweight models. In a comparative study done by Too 
et al.[4] on MobileNet, SqueezeNet, and DenseNet, it is 
observed that MobileNet provided a good [10] balance 
between accuracy and low computational costs. Their 
findings paved the way towards the implementation of 
the deep learning on mobiles and embedded devices.

There is also the progress of agriculture monitoring 
systems using the technology of the IoT. Another study[5] 
with respect to IoT technologies in smart farming cited 
AI-based analytics as one of the promising applications. 
The thing is that the vast majority paid attention to 
sensing in the environment (e.g., humidity, temperature) 
but not to visual diagnostics.

The most recent research by[6] has investigated the use 
of pretrained CNNs in transfer learning in plant disease 
classification in real-world conditions.[12] They were 
effective, but computationally heavy and server side 
processing intensive.

One of the possible solutions that will help avert these 
connectivity and the latency problems has risen in the 
form of edge computing. [7]reib excessive time, the 
reason being that some of the makers of the Trump train 
are still around.Demonstrated the prototype of pest 
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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detection based on Raspberry Pi but their model was not 
complex nor optimized to the deep learning inference 
model. Other more recent works have been proposed 
to perform edge deployment using TinyML, although it 
has been shown that high classification accuracy can be 
achieved only at the expense of real-time performance.

In short, studies earlier in this direction prove the 
feasibility of deep learning in determining plant 
diseases, but either they are not yet real-time or they do 
not address the integration at the edges. The proposed 
research is distinguished by the fact that it has developed 
a lightweight CNN model that is IoT-enabled with the 
optimized architecture that will be able to perform 
efficient inference locally with a minimal amount of 
latency.

System Architecture
Overview

The suggested system architecture is the functionality 
that allows diagnosing plant disease efficiently and in 
real-time through combining the capacity of an Internet 
of Things (IoT) and deep learning at the edge. It has 
three main modules that integrate in a synergistic way 
to offer an end to end intelligent monitoring structure. 
The Layer of Data Acquisition acts as the most proximate 
component, which has an IoT-enabled camera module 
that delivers a high-resolution picture of the leaves of 
the plant in real-time. This layer functions independent 
of the particular agricultural field, keeping constant 
control over the crops, and sending data in the form 
of images to a system that analyzes them. The second 
module is the Edge Computing Layer, which is based on 
either a Raspberry Pi 4B or an NVIDIA Jetson Nano, two 
small, low-power edge devices with capability of running 
lightweight deep learning computations. At this level, 
the inline tuned Convolutional Neural Network (CNN) 
is stored with a MobileNetV2 that has been pruned and 
quantized, train the neural network takes place at the 
edge, with the device performing inferences and making 
predictions on diseases classification using the taken 
images of the leaves. This layer enables low latency, 
as all data is processed locally, does not rely on cloud 
connectivity and is thus the layer to consider when being 
deployed in a limited bandwidth context or when remote 
locations will be involved. The last module, Cloud 
Dashboard, is an optional plug-in that allows monitoring 
remotely, data logging and cloud updates of models. It 
gives a friendly interface to the agronomist/ farmers to 
see the result of the classification, patterns of disease 
appearance and advices to take corrective measures. 
Also, the cloud layer is used to enable periodical model 
re-education and model rollout by over-the-air (OTA) 

updates, and as a result, guarantee ongoing learning 
and flexibility to adjust to the environment. Figure 1 
Together, this package of modules has the capability of 
becoming a very scalable, dependable, and economical 
platform capable of delivering real-time, intelligent 
diagnostics of the health of the plant and can support 
precision farming initiatives.

Fig. 1: IoT-Integrated Deep Learning Framework for 
Real-Time Plant Disease Diagnosis

Hardware Components

The hardware implementation of the proposed IoT-based 
deep learning model was diligently engineered with 
portability and cost-effectiveness together with energy-
efficient claim in line with support of real-time image-
based plant disease diagnosis. The system is centered 
around a Raspberry Pi 4B, which has 4GB RAM to work as 
the edge computing device. With enough computation 
capacity to support lightweight deep learning models 
like MobileNetV2 with TensorFlow Lite, but still with a 
small size and low power requirement, this single-board 
computer can be deployed in the agriculture field in 
remote locations. The Raspberry Pi Camera Module 8MP 
has been connected to the Raspberry Pi to take high-
res images of leaves at different lighting environments. 
The placement of the camera is also strategic in a way 
that it checks the plant leaves at a specific distance 
comfortably. This allows a steady image capture 
to be used in classification of diseases. To increase 
contextual awareness and environmental tracking, a 
DHT22 sensor will also be integrated to measure the 
ambient temperature and humidity which are important 
parameters that affect the health of a plant and the 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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propagation of disease. These sensor measurements 
may be presented in addition to image-based diagnostic 
solutions or may generate some conditional alerts, 
implemented when environmental limits are broken. 
To transfer data smoothly and access it remotely, the 
system has a Wi-Fi module attached to it that enables 
the Raspberry Pi to connect with the local wireless 
network or hotspot. This connectivity is used to facilitate 
real-time communication to a cloud-based dashboard, 
remote configuration, remote software updates to the 
model via the cloud, and over-the-air (OTA) system 
software updates. Figure 2 reveals that the selected 
hardware components collectively guarantee that not 
only can the running efficient deep learning inferences 
on-device but the system is also resistant and cadre to 
deploy it in various agricultural atmospheres.

Fig. 2: Hardware Architecture of the IoT-Integrated 
Edge System for Real-Time Plant Disease Detection

Software Stack

The software stack chosen in the proposed deep learning 
framework that integrates IoT has been efficiently tuned 
to provide low latency and efficient computation in the 
resource constrained, edge devices and also facilitate 
smooth communication and integration across the system 
modules. The main inference engine is TensorFlow Lite, 
which allows the model to execute the quantization 
of the MobileNetV2 deep learning model with limited 
resources on the Raspberry Pi 4B device. The TensorFlow 
Lite is specially dedicated to edge tasks, and thus 
provides smaller model size (compared to TensorFlow 
Lite) and faster inference with no reduction in accuracy 
of classification, which qualifies it well as a tool of real-
time implementation of plant disease detection. In order 
to enable data flow between the system components 
and external interfaces, Flask micro web framework 
is utilized to implement RESTful APIs through which 
the edge device will expose endpoints related to the 
results of the image classification process, the sensor 

values and control signals. The modular API layer allows 
scalability of the system and enables it to integrate 
with a front-end dashboard or mobile apps, or cloud 
servers. The choice of communication protocol between 
the edge device and remote monitoring systems is very 
important since it must be efficient and lightweight. The 
framework uses the MQTT (Message Queuing Telemetry 
Transport) protocol. The MQTT is a publish/subscribe 
messaging protocol that fits perfectly in the IoT scenarios 
because of low bandwidth usage and small overhead. 
It allows the Raspberry Pi to broadcast actual-time 
predictions and environmental data to a cloud broker 
and be read by subscribed consumers such as dashboards 
or alert systems instantaneously. The specified software 
architecture will help maintain the whole framework as 
dynamic, easily expandable, and resilient and make it 
work in real-time even despite poor network resources 
and perform monitoring, analytics, and decision-making 
in precision farming efficiently.

Fig. 3: Software Stack of the IoT-Integrated Edge Sys-
tem for Real-Time Plant Disease Diagnosis

Methodology
Dataset Preparation

To the training and subsequent generalization of any 
deep learning model, and with plant disease diagnosis 
being a use case as serious as it is, you need to have 
a robust and diverse dataset that will serve as its 
backbone. In this paper, an extensive and diverse set 
of data was compiled to make the model capable of 
predicting plant diseases in different crops and under 
different field conditions. The dataset mainly includes 
images of the well-known Plant Village dataset, which 
contains well-captured images of healthy and sick leaves 
of plants collected due to controlled lighting conditions 
and of even background. Nevertheless, this initial data 
was greatly augmented by additional in-field images 
that were manually captured with mobile cameras and 
camera modules with IoT and used in actual farms. The 
introduced variability in these field images entails non-
uniform lighting, messy background, and only partially 
visible leaves as well as natural leaf deformations, all 
of which is very common in real-life environments but is 
usually lacking in carefully collected dataset.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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In total, 50,000 annotated images of 38 different classes 
of disease in the 10 main crops, including tomato, maize, 
potato, grape, apple, cucumber, bell pepper, and many 
others, are contained in the final dataset. In assembly 
of datasets, special consideration was made to not only 
have the relative proportions of classes close together, 
but also to have an approximate balance of the number 
of images per classes to avoid data bias by the model 
(whereby more images of a particular disease were 
used than other diseases). Incorporating the validation 
process helped to support the precision of the annotation 
process where experts and plant pathologists verified 
and rectified the labels of the images used; a practice 
that empowers the accuracy of supervised learning.

Fig. 4: Distribution of Plant Disease Image Dataset 
across Different Crop Types

As a way of accommodating successful training and 
evaluation of models, the dataset was divided into three 
other sets; 70 percent as training data, 15 percent as 
validation and 15 percent as testing. Notably, the test 
set included only in-field images thus, reproducing 
the realistic conditions of deployment and making the 
assessment of the model performance in uncontrolled 
environments more rigorous. Such stratified splitting 
approach makes sure that the trained CNN can also 
generalize the training data to novel and real-world 
images and not just memorize them. Also, as a part of 
preprocessor, to enable multi-class classification, class 
labels were one-hot encoded and a respective metadata 
(e.g., type of crop, environmental parameters) was 
recorded, which could be used in later extensions of 
multimodal learning applications. This is a robust and 
context-aligned dataset the foundation of the suggested 
deep learning framework and has the capacity to 

produce precise, scalable, and field- deployable plant 
illness diagnostics.

Data Preprocessing and Augmentation

Data preprocessing and augmentation are important 
parts of making a deep learning model that generalizes 
to real world data, and in particular, data preprocessing 
becomes vital when the input to the model is complex 
and variable (in this case, the image of a plant leaf taken 
outside). As implemented in the context of the current 
study, preprocessing has been set up with the aim of 
scaling input dimensions and normalizing pixel values 
whereas augmentation was applied to synthetically 
increase the variety of training data, thus, enhancing 
the robustness of the model and preventing overfitting.

First, the spatial dimension of each input image was 
changed to 224 224 pixel squares to fit the input size 
requirement of a MobileNetV2 model. The purpose of 
this resizing step is to assure the consistency of the 
whole dataset and enable the network to learn spatial 
hierarchies fairly without distortion artifacts or any 
padding. There was also the scaling of the pixel values 
in the standard 8-bit [0, 255] space used to a floating 
point [0, 1] space, namely image normalization. The 
transformation not only increases the convergence 
speed of the optimization algorithm, the transformation 
facilitates stabilizing the gradient flow in the network, 
which is important to deep CNNs having hundred of 
layers.

In addition to simple preprocessing, an extensive data 
augmentation procedure was carried out to emulate the 
degree of variance present in real-life when it comes to 
agricultural fields. First, random rotations of the range 
of 25 degrees were done to take into consideration 
unoriented orientations of leaves in their natural 
environment. Next, flipping horizontally and vertically 
was utilised to take care of the symmetry of leaves and 
overcome sensitivity of the models with respect to fixed 
orientations. Also, those adjustments served to make 
the brightness and contrast similarity and introduce 
the effects of different lighting patterns which may be 
very typical when it comes to taking pictures in the 
open fields like shadows, over exposure, and changes in 
natural light.

Further augmentation of spatial variability with usage 
of random zoom and shift transformations is also carried 
out, and the model is able to learn position invariance. 
These operators reproduce camera installation and 
framing contradiction which can take place during real 
implementations. When combined with each other, 
this augmentation option has increased the richness of 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator

National Journal of Signal and Image Processing | Apr - June 202548

training data making it possible to create a variety of 
visual patterns available based on a small quantity of 
original samples. It was very effective in enhancing the 
model generalization to unseen samples, particularly in 
cases of noisy, cluttered or poorly illuminated cases.

The training loop performed all augmentation forward 
passes in real-time using Tensor Flow ImageDataGenerator 
or custom made augmentation pipelines, so that every 
training iteration exposed the model to a different dataset 
dynamically variegated according to the augmentations. 
Figure 5 Consequently, the edge deployment– ready 
version of the final trained MobileNetV2 model is 
more robust to changes in environmental conditions, 
image occlusions and distortions, and can thus be 
effectively applied to real, not controlled, agricultural 
environments.

Fig. 5: Data Preprocessing and Augmentation Work-
flow for Training the CNN Model

Model Architecture and Optimization

Computational performance comes to focus in designing 
deep learning models in the provision of resources 
with edge devices such as Raspberry Pi 4B and NVIDIA 
Jetson Nano. To address this issue, a slightly customized 
MobileNetV2 architecture that is specifically designed 
to work within small processing and memory limits is 
realized in the proposed system. The MobileNetV2 
employs depthwise separable convolutions, a two-layer 
convolution operation where the task of spatial filtering 
is performed before feature combining in individual 
layers. This greatly decreases the amount of learnable 
parameters and floating-point operations (FLOPs) in 
comparison to regular convolutional neural networks 
(CNNs) such as VGG or ResNet, and as such allows it 
to incur real-time inference as it gives up on only a 
small portion of accuracy. It begins with the input layer 
that receives 2242243 RGB images, and then a series 
of residual blocks with bottlenecks where non-linear 
activation functions would be present, as well as skip 
links, and so on. Figure 6 such blocks can be used to keep 
proprieties of the channels and positions information 
within a position, at the same time reducing gradient 
vanishing further underlying layers. A global average 

pooling layer is used to reduce the final feature maps 
and to improve generalization and lastly drop out layer 
with a rate of 0.3 to avoid overfit by randomly dropping 
neurons during training. The final layer of architecture 
corresponds to a fully connected dense layer with a 
Softmax activation function and generates a probability 
distribution categorize over the 38 plant disease classes.

Fig. 6: Modified MobileNetV2 Architecture Optimized 
for Real-Time Edge-Based Plant Disease Classification

The Adam optimizer was used as it is an adaptive learning 
rate, which is fast to converge, and the categorical 
cross-entropy loss was used to train the model because 
it is the default choice when the classification problem 
is multi-class in nature. The model was trained on 25 
epochs and early stopping was applied depending on the 
validation loss so as to avoid overfitting of the model and 
wastage of computation resources. Throughout training, 
the learning rate was set to the value of 0.0001, and a 
balance between the speed of convergence and stability 
was observed. When we achieved satisfactorily good 
precision and convergence on the validation dataset, 
we compared it with optimization steps achieved after 
training, i.e., quantization (reducing weights to the 
values of 32-bit floats to values of 8-bit integers) and 
pruning (removal of unnecessary weights and neurons). 
The optimization of this model resulted in a model size 
that was only 8 MB close to the original size, and yet 
still retained more than 93% in terms of the classification 
accuracy. Last but not least, the version optimized was 
converted to the TensorFlow Lite format to make it 
compatible with embedded platforms. This conversion 
enables the model to be run on any low-power 
problematic application with limited latency, hence 
suitable to be installed on continuous fieldcare with IoT-
driven systems of agricultural monitoring.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Edge Implementation and Real-Time Diagnosis

To make real-time, autonomous plant disease diagnosis 
via an agricultural field achievable, they were able to 
utilize the optimized deep learning model on an edge 
computing platform based on the Raspberry Pi 4B 
due to its balance of ability, power consumption, and 
portability. The last training process of MobileNetV2 
was transferred into the format of the TensorFlow 
Lite (TFLite) model, which is intended to be used in 
embedded systems with a small latency footprint. The 
implementation of this lightweight model on a Python 
based application, which runs the continuous loop of 
prediction in a 10 seconds interval, has been made. The 
script does three interesting tasks: (1) it takes an image 
of a leaf with an 8MP Pi camera, (2) it preprocesses 
the image to an acceptable input shape of the model 
(resize, normalize) and (3) it runs inference with the 
developed CNN model. After prediction is done, the 
result is presented in the form of a JSON object and sent 
by MQTT protocol to either a cloud dashboard or mobile 
application where they can be accessed remotely by a 
farmer or agronomist and action taken. The edge system 
was actively tested in operation conditions. As presented 
in Figure 7, the model has an average inference speed of 
0.56 seconds, making it the fastest to diagnose a patient 
after the capture of the image. Consumption of power 
was estimated at around 3W under idle conditions and 
5.4W under active inference, which shows that it can be 
used in solar powered or battery powered field setups. 
The communication latency of MQTT was at all times 
less than 200 milliseconds ensuring that updates can be 

made in real time. This effective edge implementation 
does not require constancy of contact with the cloud, 
and the operation can be regarded as being well enough 
performed in rural regions with limited bandwidth and 
inaccessible locations.

Results and Discussion

The pilot AI implementation on the proposed deep 
learning framework with IoT integration proved to 
have promising results regarding the accuracy of the 
classification and the performance of the inference in 
real-time. The model produced an accuracy of 93.4%, 
which is higher than the multiple benchmark schemes 
of CNN in terms of both accuracy and efficiency. This 
accuracy was maintained at this high level when the 
in-field images were adapted to test accuracy, with 
variations in background light levels, backgrounds 
that were complicated, and leaves that were partially 
covered. This strength has been attributed to the high 
amount of data augmentation and the highly optimised 
preprocessing pipeline that were used in training as they 
made the model gain robustness to be able to fit well 
onto the actual situations. The model showed a high 
standard of consistency in the results of all prediction 
tests under different environmental settings in relation 
to the effect of sun light at an early morning, and midday 
glare, and partial shadows, which means that the model 
shows practical applicability in terms of continual 
monitoring through the day. The inference time was 
approximately 0.56 seconds locally executed on the 
Raspberry Pi 4B which can provide real-time feedback to 
the users in the field without needing cloud computing 
or a high speed Internet connection. These results affirm 
the applicability of the proposed system in precision 
agriculture application due to required timely decisions 
in case of diseases management and crop protection.

Fig. 8: Comparison of Accuracy and Inference Time 
for CNN Models on Plant Disease Classification

Comparing the optimized MobileNetV2 model to bigger 
more well-known deep learning philosophies, it was 

Fig. 7: Real-Time Edge Inference Workflow for Plant 
Disease Detection Using Raspberry Pi
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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evident that it was successful when compared to bigger 
model based on deployment possibility and the computing 
result. Although the accuracy of the AlexNet and VGG16 
are 90.2 and 91.1 respectively, the memory and compute 
resources necessary per accelerator were much higher 
(220MB and 528MB, respectively, as well as inference 
time of more than 1.8s and 3.1s). On the contrary, with 
the optimized MobileNetV2 model downsized to 8.1MB 
and with no sacrifice to the accuracy, it can be deployed 
edge as an additional IoT application. Not everything 
went quite well, even though there were these benefits. 
Low resolution of the camera and poor conditions 
of imagery influenced the consistency of predictions 
in a limited number of instances especially when 
extreme occlusions or coarse focus was experienced. 
Moreover, the re-deployment of the models is presently 
necessitated by update or upgrade unless over-the-air 
(OTA) updates are incorporated into the pipeline that 
is among the planned improvements. Table 2 all in all, 
the suggested system is a trade-off between precision, 
performance, and deployability and therefore emerges 
as a potential option to have real-time plant disease 
diagnosis in a smart farming set-up.

Table 2: Comparative Analysis of CNN Models for Plant 
Disease Diagnosis

Model Accuracy (%)
Model Size 

(MB)
Inference 
Time (s)

AlexNet 90.2 220.0 1.80

VGG16 91.1 528.0 3.10

Optimized 
MobileNetV2

93.4 8.1 0.56

Conclusion

The problem that this research paper seeks to solve 
using an efficient and broad IoT-integrated deep learning 
framework is the requirement to diagnose plant diseases 
in real-time and based on images, which is a vital issue 
in modern agriculture and needs the scalable, more 
accurate, and time-sensitive disease detection method. 
Subsequently, with edge-processing opportunity of low-
computation systems such as Raspberry Pi coupled with 
the lightweight MobileNetV2 architecture, the proposed 
system provides high classification results (93.4 
percent), at a very low latency (0.56 seconds), and can 
be deployed in the field to deliver instant feedback 
of the diagnosis rather than relying on cloud-based 
solutions. Added features with an IoT enabled camera 
and sensor solution further facilitate the effectiveness 
of the solution at the field where monitoring and data 
informed decisions can be obtained day and night. The 

model is robust to various conditions on lighting and 
environment due to extensive preprocessing and data 
augmentation so that it can be deployed in the real 
world in the rugged and remote regions. The low power 
requirement as well as memory size provides the system 
with economics and sustainability of use in the long run. 
Though the intended application delivers good basis of 
smart farming applications, future advancements seek 
to increase the usage of the application by involving 
multi-sensor information, including soil moisture and 
weather condition data, updating OTA models through 
federated learning to keep improving the model on-the-
spot, and also accommodating multilingual feedback 
either through audio or visual responses to benefit 
illiterate or semi-literate users. On the whole, the 
work provides a scalable precision agriculture solution, 
which can contribute to profiling of crops and disease 
management extensively in different agricultural 
ecosystems.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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