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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Restoration of low-light images is a classic amongst the challenges of computer vision, 
relevant to most image formation processes in the real world, including surveillance at 
night time, automated driving, medical diagnosis, and low-light imaging. Photos taken 
in dim light usually undergo severe degradation in the form of noise, loss of contrast, 
color distortion and detailing which makes it very difficult on the viewer to interpret 
as well as perform automated vision systems. Although the current image enhancement 
algorithms and convolutional neural network (CNN)-based models partially solve this 
issue, they remain limited by small receptive fields and unsuccessful modeling of 
global dependencies, therefore resulting in poor enhancement and artifact creation. 
To overcome these drawbacks, in this paper, a new low-light enhancement transformer 
model, LightFormer, inspired by the application of self-attention mechanisms, is 
introduced, which has many local textures and long-range contextual relationships in 
a unified framework. LightFormer has a two-branch encoder-decoder style along with 
Transformer bottleneck, and a new Illumination-Aware Attention Module (IAAM) that 
adaptively adjusts dark areas depending on what the model has learned about the 
illumination distributions. This better model is trained on modified loss involving the 
pixel wise reconstruction loss, the perceptual loss and illumination loss with the view 
to ensuring the quantitative accuracy and the visual plausibility. An immense number 
of experiments on published datasets like LOL and SID has shown that LightFormer 
is significantly better than the state of the art in peak signal-to-noise ratio (PSNR), 
structural similarity index (SSIM), and perceptual measures like NIQE and LPIPS. Along 
with that, the high degree of generalization in numerous lighting conditions with 
performance output in real-time on embedded hardware (NVIDIA Jetson AGX Xavier) 
means the proposed model can be deployed in settings with limited resources. This 
paper demonstrates that LightFormer is a stable and scalable model to enhance low-
light with a tradeoff between high-quality restoration and inference time requirements 
in current computer vision.
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Introduction

However, during recent years, it has been revealed 
that low-light image restoration is a task of paramount 
importance in the fields of image enhancement and 
computational photography where this critical task 
shapes a broad range of real-world applications which 
can be divided into categories of intelligent surveillance, 
autonomous vehicles, remote sensing, medical imaging, 
and smartphone photography. When images are captured 
in less than optimal lighting conditions, they are most 
of the time affected by a combination of degradation 
components; low signal-to-noise ratio (SNR), poor 
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visibility, low contrast, high color distortion, and spatial 
details. These artefacts do not only reduce the human 
visual ability but are very detrimental to the performance 
of automated computer vision systems such as detecting 
objects, facial recognition and semantic segmentation.

The perceptual quality enhancement of the dark images 
is an avenue that has been well researched upon by using 
conventional image enhancement methods like histogram 
equalization, gamma correction and Retinex based 
models. The methods however, are highly dependent on 
manually fabricated priors and reliance on assumptions 
that are global, which do not tend to generalize well over 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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different scenes and lighting conditions. Convolutional 
neural networks (CNNs) have transformed the past few 
years by learning effective feature representations 
through a learning process, without prior knowledge 
about how to represent features. EnlightenGAN, 
RetinexNet and Zero-DCE among others have taken 
data driven methods to improve low-light images a step 
further. Nevertheless, CNNs also suffer a limitation as 
presented by their localities of receptive fields and 
translation-invariant-ness thus underperforming when it 
comes to representing global contextual dependencies 
which is necessary in modeling complex intra-frame 
variations of illumination.

To address these, computer vision researchers have 
been gravitating towards what are commonly known 
as Vision Transformers (viTs) which use self-attention 
networks to capture long-range pixel-level interactions 
over pixel-sets. In contrast to CNNs, Transformers are 
able to weight features contextually across the whole 
image and thus they are likely to learn more global 
structural regularities and light settings. Most recently, 
SwinIR and Restormer have shown the promise in 
Transformer-based models to address image restoration 
problems, but many of these models do not yet have 
tuning specifically to the problems of extreme low-light 
conditions Figure 1.

Fig. 1: Visual Challenges in Low-Light  
Image Restoration

LightFormer, a brand new hybrid architecture, 
combining the local feature extraction ability of CNNs 
and the global contextual reasoning performance of 
Transformers, is now proposed with the help of this 
motivation. LightFormer adopts a two-stream encoder-
decoder architecture where the network comes up with 
a novel Illumination-Aware Attention Module (IAAM) that 
dynamically stereotypes dark areas through training a 
learned-illumination-map. The Transformer bottleneck 
allows the model to attend to the whole image in all the 
spatial dimensions providing an opportunity to recover 
global consistencies in brightness and texture.

Moreover, our model is trained with a well-thought 
multi-objective loss extending the pixel-accuracy with 
perceptual quality and illumination consistency. It has 
tested this model on challenging datasets like LOL and 
SID and it was much better in terms of quantitative 

information (PSNR, SSIM), and human perception 
(LPIPS, NIQE, etc.). Notably, we can also confirm its 
computational efficiency and real-time deployability 
with embedded hardware platforms and thus is suited to 
practical low-light operations.

To conclude, this paper will touch on the main drawbacks 
of current methods of enhancement and propose a 
Transformer-enhanced network that will be specifically 
trained on low-light restoration of images. LightFormer 
offers low-light image enhancement solutions that are 
robust, perceptually consistent, and hardware-efficient 
due to its ability to bridge the current divide between 
the illumination-aware approaches that grab the global 
attention but remain unefficient present to date and the 
enhancement methods not incorporating the knowledge 
of per-pixel illumination levels.

Related Work

Traditional forms of Strength Development

Classical methods of low-light image enhancement 
include Histogram equalization, gamma correction 
and the Retinex theory and these are done in order to 
improve visibility by redistribution of pixel intensities. 
The human visual imagery inspires the Retinex-
based models that break images into components 
of reflectance and illumination.[1] Although they are 
very computational easy, these techniques tend to 
exaggerate the noise and also they fail in occasions with 
extreme underexposure. Multi-scale fusion approaches, 
where features are stacked at different resolutions to 
maintain detail,[2] cannot take sufficiently well-exposed 
references or multiple inputs, therefore complicating 
their deployment in the field, at least in mobile devices 
or fast, real-time applications.[11]

Deep Learning Models Based on CNN

Low-light image enhancement has also been enhanced 
with deep learning, and especially via convolution neural 
networks (CNNs), which is attributed to the spatial 
hierarchies that can be learned. A stacked autoencoder 
has been proposed by LLNet[3] as a tool of image 
denoising and enhancement. This was further advanced 
by RetinexNet[4] that learned to decompose and boost 
images on the basis of incitation details. EnlightenGAN[5] 
adapted the adversarial training where the models are 
trained to give visually plausible solutions without paired 
data and Zero-DCE[6] proposed a curve estimation strategy 
that is trained to be zero-reference. Nevertheless, their 
variable lighting classification with CNNs  cannot do 
better based on receptive field locality and translation 
invariance. Also, they are more computationally heavy 
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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to deploy in embedded and edge systems also discussed 
in recent work on edge-optimized deep models.[11, 14]

Vision Models that use Transformers

In recent years, Vision Transformers (ViTs) have achieved 
amazing results in image restoration and enhancement 
applications because of the global receptive field and free 
attention mechanism. Self-attention in visual modeling 
was initially found with early undertakings like the Image 
Transformer[7] and ViT.[8] Instead, SwinIR[9] proposed 
windowed attention in a hierarchical Transformer to 
boost the restoration process, whereas Restormer.[10] 
aimed to propose efficient feature modulation in face of 
high resolution image enhancement. Nonetheless, these 
models do not necessarily have optimizations with regard 
to the peculiarities of the low-light situations. Also, 
bringing ViTs into edge systems with limited resources 
is an open research question, especially as they need to 
deliver real-time low-power workloads.[12, 14]

The general tendency of customizing Transformer and AI-
based models to a variety of other fields is also evident 
in a number of recent publications with references 
to quantum communication,[13] optimization of smart 
grids,[12] and low-power communication protocols of 
an IoT sensor,[15] further emphasizing the necessity 
of scalable, energy-efficient, and task-specific deep 
learning models.

This paper refines these works and offers LightFormer, 
a low-light recovery framework using Transformer 
architecture whose scheme of attention is light-sensitive, 
in addition to being optimized in terms of perceptual 
quality-and on edge-device deployment.

Proposed Method: LightFormer
Architecture Overview

The proposed hybrid neural architecture LightFormer 
tries to combine the advantages of convolutional 
operations which use local features and Transformer 
based attention in order to achieve global contextual 
dependencies. The model is based on U-Net-like 
encoder-decoder architecture, and is supplemented by a 
Transformer bottleneck in the center that makes it quite 
capable of correcting low-light images with a complicated 
and non-uniform distribution of illumination.

Encoder Module

In the proposed LightFormer design the encoder block 
is designed to learn a rich set of spatial and contextual 
features of the input in low-light image. It is composed 
of several convolutional layers that decrease the spatial 

resolution and increase the feature dimensionality 
step by step, enabling the learning of low or high-
level texture and semantic hint in order. Every encoder 
block has a convolutional layer, convolutional layer 
followed by the batch normalization layer, and non-
linear activation layer like ReLU or GELU, which gives 
adequate feature transformation and stable training. In 
order to accommodate this spatially varying light more 
effectively, a local self-attention mechanism is included 
in every stage, allowing those areas, which are low-lit, 
to be emphasized, as a local context is followed. Also, 
residual connections have been added in order to avoid 
the loss of fine details and improve gradient flow. These 
components combined allow the encoder to build a 
multi-scale feature representation that has both global 
topology and local variations, which is a key to precise 
and perceptually consistent image restoration in the 
following decoding.

Transformer Bottleneck

Transformer bottleneck is the focus of the LightFormer 
architecture, which in the core is designed to capture 
the global contextual dependencies that traditional 
CNNs are not agile themselves to capture. This 
bottleneck includes a stack of stacked Multi-Head Self-
Attention (MHSA) layers sandwiched between feed-
forward networks (FFNs), all of which enables the 
network to define long-range spatial connections over 
the picture. The model is capable of this due to the 
mechanism of interpreting global illumination patterns, 
semantic alignment of similar regions across lack of 
spatial proximity and continuity of tonal variation, and 
enhancement of tonality and contrast across areas that 
represent darkness or brightness. Every Transformer 
block has Layer Normalization and residual links to make 
sure they flow propagations and training are stable. 
Positional encodings or relative position bias are added 
to the attention modules in order to facilitate the 
maintenance of the spatial structural information; thus, 
there is an awareness of the spatial structures in the 
network. This universal reasoning decides ability of the 
LightFormer that creates more sensible and optically 
likely improvements, particularly in images containing 
intricate or asymmetrical lighting.

Decoder Module

The LightFormer decoder is structurally similar to the 
LightFormer encoder and is meant to regenerate the 
augmented image by successive upsampling of the 
learned deep feature representation to the input image 
one. To perform spatial upsampling, it uses transposed 
convolutions or pixel shuffle operations to do so 
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analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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effectively and without artefacts. The skip connections 
between corresponding encoder layers are built into 
every decoding phase to retain contextual and textural 
information that allows the combination of low-level 
spatial information with high-level semantic properties 
that have been de facto learned previously in the entire 
pipeline. There is also the use of an illumination-aware 
feature fusion module that is dynamically adjusted 
according to the learned brightness priors of the decoder 
and the Transformer bottleneck. This enables the 
decoder to use dynamic restoration intensities that are 
spatially varying to enhance the quality of enhancement 
in the very dark areas or those with uneven illumination. 
The decoder is able to make not only the images bright 
but also detailed, devoid of artifacts, and perceptually 
consistent throughout the scene with the help of these 
skip connections that blend structural cues local to a 
particular area of the image with elements gained in the 
global attention-driven encoder Figure 2.

Fig. 2: High-Level Overview of LightFormer 
Architecture

Attention module illumination-Aware (IAAM)

One of the main innovations in the proposed LightFormer 
architecture is called the Illumination-Aware Attention 
Module (IAAM) that specifically targets the illumination 
issue in low-light images, which is spatially non-uniform. 
Although long-range dependencies can be captured 
within the global attention mechanisms (e.g. bottleneck 
of Transformer), it can miss small local changes of light. 
The IAAM overcomes this by having a focused, adaptive 
attention subsystem that increases the intensity of 
darker regions more forcefully with no excess exposure 
to the brighter regions.

The IAAM works in a way that is first to generate 
illumination mask based on intermediate feature maps 
with a lightweight convolutional sub-network. This 
illumination map is a map that contains an estimate of 
the brightness of the spatial domain of the image and 
on the basis of this an exposure model can detect and 
identify areas that are too dark or shadowed. Using this 

map, the IAAM calculates spatial weights of the attention 
which converse better illuminated regions and raise the 
importance of the feature enhancement in the darker 
regions.

Mathematically, let  represent the input feature map.  
The acquired enlightenment veil be. The IAAM improves 
the features through attention weighted mechanism:

	 	 (1)

Where the symbol 99 is element-wise multiplication. 
The scaling factor, 0, is a factor that can be learned. The 
given formulation makes the image lighting conditions 
spatially adaptive and directly inform the attention 
response.

The IAAM is incorporated at various stages of the 
encoder\textendihyp Terry’s-decoder path in order to 
make the network concentrate its representational 
resources on the difficult areas of the picture. It helps 
to direct selective brightening of the features in the 
shadowed or low contrast parts effectively directing 
the restoration process enhances the results both in 
local detail restoration and also in a global perceptual 
consistency.

Through the use of illumination sensitivity in attention 
mechanism the IAAM brings a vast improvement in 
the capability of the network to respond to extreme 
lighting conditions which makes LightFormer robust and 
visually consistent under differing low-light conditions  
Figure 3.

Fig. 3: Architecture of the Illumination-Aware 
Attention Module (IAAM)

Loss Functions

To provide a quantitative and perceptual quality of 
training the proposed LightFormer model and recover 
low-light images, a combination loss is used. This loss 
term prefers to optimise pixel-level ground truth, 
structural regularity and illumination-aware gain. The 
overall loss is  it is a weighted sum of three important 
parts that are reconstruction loss, perceptual loss, and 
illumination consistency loss.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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1. Loss in Reconstruction

The reconstruction loss is the major goal to minimize the 
difference between the enhanced picture and the pixel-
wise difference.  The ground truth image It is commonly 
provided by using Mean Squared Error (MSE) which 
is used to penalize large deviations and to accurately 
map brightness and color. This is a loss which induces 
structural Similarity to the restored and the original 
photos:

	 	 (2)

2. Perceptual Loss 

Although MSE will give results that will show low level 
of fidelity they are usually over- smoothed and do not 
take into consideration the realism in perceptions. 
To deal with this, a perceptual loss is added, and this 
compares the high-level feature maps extracted using 
a pre-trained VGG-19 network. Matching deep features 
of pre-existing layers (e.g. conv3_3 or conv4_2) forces 
the model to maintain texture, sharpness of edges, and 
structure:

	 	 (3)

Where ϕl (.)the activation map itemized by (confining 
the map item to one circle) is denoted by (confining the 
map item to one circle) in order to distinguish it from 
(confining the map item to an infinite number of circles)
layer.

3. Loss of Consistency of Illumination 

This term is specially designed to undergo tasks with low-
lights enhancement. It guarantees spatial consistency 
of illumination in restoration of brightness by reducing 
variations within the learned illumination maps of 
neighboring regions. The illumination consistency 
penalty discourages the unusual transitions in intensity 
or the uneven distribution of brightness in the image, 
and encourages smooth illumination with consistency 
across the whole image. It is calculated as the average 
of the absolute difference between neighboring pixels in 
the illumination mask being predicted M:

	 	(4)

Total Loss Function

The general target of the training is formulated as 
follows:

	 	 (5)

Where ⋋1,⋋2,⋋3. They are scalar weights of equalizing 
the contributions of individual loss terms. These 
hyperparameters are empirically adjusted so that 
the network could attain balance between pixel-level 
accurateness and perceptual quality.

The combination of the three losses allows LightFormer 
to learn how to produce appealingly visual, spatially 
consistent, and accurate on a quantitative level enhanced 
images even at extremely low light levels Figure 4.

Fig. 4: Loss Function Flow in LightFormer Training

Experimental Setup

In order to thoroughly analyze the functionality of the 
recommended LightFormer architecture, an extensive 
experimental procedure was adopted such as benchmark 
data, and well-considered training regimes, and solid 
evaluation measures. Two most popular datasets were 
employed in training and validation. The LOL dataset 
is made of matched low-light and normal light images 
acquired under real world condition, which offers a 
valuable grounding environment to learn and assess 
supervised learning. Also, the SID dataset has the RAW 
measurements made by the sensor of low-light images 
and converted to RGB as processed by the camera ISP 
pipelines, thereby enabling the model to be generalizable 
across sensor-level distortion and under exposure 
conditions. The model was trained and acted upon the 
PyTorch framework end to end with the help of an AdamW 
optimizer and 200 epochs. Since stable convergence and 
better generalization have to be achieved, an ordinary 
base learning rate of 2e-4 was used coupled with a 
cosine annealing schedule. Random cropping, horizontal 
flip, and image gamma correction of data augmentations 
were used to strengthen the model against variations of 
lighting in training. Both standard and perceptual image 
quality measures were applied to consider the efficient 
work of the model. At the pixel level and between the 
fixed and ground truth images, at the pixel level, and 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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between the fixed and ground truth images, Structural 
Similarity Index (SSIM) and Peak Signal-to-Noise Ratio 
(PSNR) were calculated to determine the consistency 
of the images at the structural level. Also, a set of 
perceptual metrics (Natural Image Quality Evaluator 
(NIQE) and Learned Perceptual Image Patch Similarity 
(LPIPS)) was added to provide an evaluation measure of 
the visual image as related to human perceptions. The 
combination of these metrics makes the overall picture 
of the performance of enhancement considering both 
objective fidelity and subjective quality. The range of 
tests will guarantee that LightFormer will be tested on a 
large spectrum of realistic scenarios and will accordingly 
shed light on its generalization, its stability and its 
applicability to practice Table 1.

Table 1: Experimental setup parameters for training and 
evaluation of the proposed LightFormer architecture.

Aspect Details

Datasets Used LOL (paired low-light/normal-
light images), SID (RAW sensor 
low-light images converted to 
RGB)

Training Framework PyTorch

Optimizer AdamW

Epochs 200

Learning Rate Base LR = 2e-4, cosine annealing 
schedule

Data Augmentation Random cropping, horizontal 
flipping, gamma adjustment

Evaluation Metrics PSNR, SSIM (pixel-level 
accuracy), NIQE, LPIPS 
(perceptual quality)

Results and Discussion
Measurable Analysis

The corresponding quantitative measure of the proposed 
LightFormer model is determined with four commonly 
used image objective quality assessment metrics: 
PSNR, SSIM, NIQE, and LPIPS. Table 1 demonstrates that 
LightFormer is much better than the current state-of-the-
art methods according to all evaluation criteria. Another 
comparison is that LightFormer has a high-performance 
property of pixel-level fidelity (that is, PSNR 22.8 dB), 
which exceeds Restormer (20.3 dB), EnlightenGAN 
(17.9 dB) and Zero-DCE (15.1 dB). Likewise, SSIM that 
measures structural similarity scores 0.83 in LightFormer, 
which is higher than Restormer (0.79) and all other CNN-
based approaches. Regarding the perceptual quality, 
LightFormer provides the lowest NIQE score (2.5) and the 
lowest (LPIPS) score (0.17), which indicates that it has a 
higher tendency to generate aesthetically pleasing with 

less amount of noise and distortion. As inferred by these 
findings, this model increases not only the objective 
quality of images but also their subjective visualization. 
One aspect of the enhancement can be attributed to 
the incorporation of global context modeling with the 
use of Transformers and localized brightness modulation 
with the use of the Illumination-Aware Attention Module 
(IAAM) which enhance the features globally across all 
areas, both dark, and bright.

Subjective and Image analysis

Some of the evidence of LightFormer over the previous 
processes is the visual comparison. As exemplified in 
LightFormer provides the performance of providing 
better images with natural color, clear edges, and a 
lot of noise reduction even on heavily underexposed 
images. Conversely, the results of Zero-DCE are too 
bright and washed, EnlightenGAN features color 
distortion, as well as Restormer, powerful in terms of 
structure, occasionally being lacking in contrast in very 
dark areas. The attention-guided architecture adopted 
by LightFormer is able to draw its focus to the shadowed 
areas without saturating the well-lit areas leading to an 
end product that is balanced and perceptually coherent. 
Also, the illumination-aware attention mechanism 
enables the network to apply spatially adaptive 
enhancement providing the network with both realistic 
and detail-retaining outputs. It is remarkable that 
LightFormer generalizes well to new lighting conditions, 
and new type of scenes compared to alternatives. This 
brings to the fore that it can find useful application in 
real life scenario like surveillance, mobile photography 
and self-driving.

Ablation and Robustness Discussion

In order to confirm the validity of the LightFormer in the 
architectural component further, ablation experiments 
were done by sequentially deleting the Transformer 
bottleneck and IAAM module. According to the Table 2 that 
summarizes the results, when the Transformer module is 
removed, a fall in PSNR by 2.1 dB and a loss in texture 
clarity is observed, thus proving the significance of global 
context modeling in the setting of complex lighting. The 
omission of the IAAM block resulted in uneven brightness 
and greater artifacts in dark areas due to the important 
part of adaptive enhancement it plays. Figure 5 indicates 
the relative magnitude of each element to the overall 
performance which illustrates the synergy created by 
the architectural element that enables superior results 
with LightFormer. In addition, it was tested at different 
noise intensities and exposure ovals, which revealed 
that LightFormer would preserve image perception and 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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structural accuracy, and can be used in real-time low-
light environments where conditions are unpredictable. 
These findings highlight the end-to-end solution through 
integrating the consideration of convolutional backbones 
with Transformer attention and illumination-aware 
modules that restore low-light images.

Fig. 5: Contribution of Architectural Components to 
LightFormer’s Performance Improvement

Table 2: Quantitative Performance Comparison on  
Low-Light Image Enhancement Benchmarks

Method PSNR (dB) SSIM NIQE↓ LPIPS↓
Light Former 22.8 0.83 2.5 0.17

Restormer 20.3 0.79 3.1 0.21

EnlightenGAN 17.9 0.68 3.7 0.29

Zero-DCE 15.1 0.59 4.5 0.38

Conclusion

In this paper, we have proposed LightFormer, a novel 
Transformer-based model, which is one of the first 
to focus on the fitting of the Transformer to the field 
of low-light restoration: it keeps the advantages of 
self-attention organization and adds to the position 
independence on illumination maps provided by the 
Illumination-Aware Attention Module (IAAM). Enhanced 
with a Transformer bottleneck and spatially adaptive 
attention, LightFormer can achieve restored fine 
details, structural integrity, and enhanced perceptual 
quality when subjected to extreme low-light situations 
due to the combination of a hybrid encoder-decoder 
structure. Considerable experiments carried out on the 
benchmark datasets, such as LOL and SID, have shown 
that LightFormer achieves the best PSNR, SSIM, NIQE 
and LPIPS results when compared to the state-of-the-
art CNN- and Transformer-based approaches. Visual 
tests also reaffirmed the model to be able to render 
naturally bright images that are full of details without 
an addition of artifacts and overexposure. Also, the 
model can run in real time on embedded systems, is 
lightweight and can be used in activities like mobile 
photography, surveillance, and autonomous systems. 

The ablation studies confirmed the necessity of inclusion 
of both Transformer bottleneck and IAAM in terms of 
better restoration performance. Mainly, LightFormer 
fills the gap between the high-quality enhancement and 
efficient deployment providing the scalable solution that 
can be successfully used to perform the powerful image 
enhancement task in real-world low-light scenarios. 
The future work will explore extending this framework 
to temporal extension of video embellishment, how 
night vision is expanded to multimodal sensors and 
how the application of unsupervised learning technique 
enables more generalization within a single imaging 
environment.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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