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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Proper decoding of seismic signals is used during earthquake detection, geophysical 
exploration as well as during the monitoring of a structure. Some traditional approaches 
to time-frequency (T-F) analysis like Short-Time Fourier Transform (STFT) and Wavelet 
Transform (WT) are burdened by trade-offs between time and frequency resolutions and 
cannot be used easily to analyze nonstationary seismic events. This paper introduces 
an improved time-frequency analysis scheme that uses Deep Autoencoder Networks 
to improve resolution and features of existing time-frequency analysis schemes that 
incorporate Modified S-Transform (MST). The MST generalizes the S-Transform to include 
an adaptive Gaussian window that is rescaled depending on instantaneous frequency 
components in order to better localize in time and frequency. At the same time, a 
deep autoencoder is used to train noise-tolerant feature representations in terms of 
compressed features on the spectrograms generated by MST in unsupervised learning. 
Both the synthetic and real seismic data are used in the validation of the hybrid approach 
through use of events occurring in IRIS seismic network. Findings indicate that spectral 
clarity, classification accuracy (94.2 per cent), and performance in low SNR regimes 
has greater improvement as compared to conventional STFT and WT methods. The 
evaluated method manages to capture minute changes more accurately in waveforms 
and becomes interpretable under noisy situations. This framework allows even more 
complex task of seismic signal analysis that can be used in earthquake early warning 
systems, microseismic monitoring, and exploration geophysics thanks to powerful and 
scalable computation framework.
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Introduction

The process of seismic signal processing is very vital 
in many areas, such as earthquake location, base 
exploration, and structure health measurement where 
right decoding of nonstationary signals is significant. 
Such earthquakes generally exhibit sudden transitions 
and perplexing variations with time in a sophisticated 
range of frequency, which needs to be broken down using 
a set of sophisticated analysis tools that should have the 
ability to show a time-localized and frequency-resolved 
characteristic.

The Short Time Fourier Transform (STFT), and Wavelet 
Transform (WT) are the traditional methods of time-
frequency (T-F) analysis, which are prevalent in 
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practice; however, they are necessarily constrained 
by the Heisenberg uncertainty principle, and thus are 
subject to time-frequency trade-offs.[11] In particular, 
STFT uses a fixed window length which causes it to lose 
the performance in resolving frequency components 
which change rapidly. Although WT has multi-resolution 
analysis capabilities, WT could be susceptible to spectral 
leakage and insensitivity in highly noisy conditions.[1] The 
S-Transform (ST)[2] that is a hybrid of the STFT and WT 
offers frequency dependent-resolution through a scalable 
Gaussian window addition, addressing these short Kevin 
Lam In spite of its merits, fixed windowing topology 
of standard S-Transform continues to demonstrate 
inability to flexibly adjust to different seismic situations, 
particularly, to changes in signal-to-noise ratios 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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(SNRs). In the meantime, deep learning (especially 
deep autoencoders) has proven to be impressive at 
learning compact noise-robust feature representations 
in an unsupervised fashion.[3] Data-driven models, in 
combination with conventional signal-processing, have 
in recent years provided new opportunities to support 
seismic data interpretation, particularly of weak or 
overlapping signals.[4]

This paper offers a hybrid system based on a Modified 
S-Transform (MST) and a Deep Autoencoder Network to 
improve seismic signal analysis. The signal in the MST 
is able to better localize in the time-frequency plane 
because the Gaussian window width is adaptively set to 
the instantaneous signal frequency. Autoencoder network 
also learns high-level features of MST spectrograms and 
minimizes noise and redundancy. The approach is tested 
on artificial and practical seismic data and demonstrates 
significant gains in resolution, stability, and classification 
responses as compared to more traditional methods.

Related Work

Seismic signal processing has a long tradition of time-
frequency (T-F) analysis/decomposition approaches. 
Various solutions have been proposed to enhance the 
resolution of the signal and denoising and feature 
extraction.

Empirical Mode Decomposition (EMD) and Wavelet Packet 
Transform (WPT) are notorious in the decomposition 
of nonstationary seismic signals into time-frequency 
signal. Whereas, WPT gives multi-resolution analysis 
through the adaptive breaking up of frequency space, 
EMD divides signals into intrinsic mode functions 
(IMFs).[5] Nevertheless, both approaches are likely 
to incur mode mixing, fail to be very powerful under 
noisy conditions and they are apt to generate non 
redundant elements particularly when they cope 
with low-level seismic waves.[6] Some adaptive forms 
of the S-Transform have been introduced in order 
to enhance localization. As a particular example, 
by way of enhancing resolution at different parts of 
the frequency range, frequency-dependent window 
scaling and the multi-taper S-Transform methodologies 
have been proposed.[7, 8] However, these methods are 
naturally signal agnostic in nature, in that they do not 
utilize a data-driven learning component, and tend to 
not be flexible in the face of different seismic noise 
spectra or overlapping signals. At the same time, deep 
learning, especially autoencoder-based schemes has 
been gaining traction as a robust unsupervised method 
of analyzing seismic data. Autoencoders are powerful, 
which can reduce high dimensional input data into low-
dimensional latent presentations and maintain necessary 

information. Seismic event detection, classification, and 
noise reduction has been improved using Variational 
Autoencoders (VAEs) and Denoising Autoencoders 
(DAEs).[9], 10] Although this is the case, in most studies 
the development of the learned features cannot be 
interpreted using time-frequency domain knowledge 
because it is not incorporated into the learning process.

In this regard, the proposed framework is specifically 
relevant because instead of being isolated working modes, 
a Modified S-Transform (MST) and Deep Autoencoders 
are combined to bridge the gap between them due to 
time-frequency decomposition being enhanced by the 
former, and compact, robust features being extracted 
via unsupervised manner by the latter. This combination 
is interpretable as well as performance-enhanced, 
especially on the weak or overlapping seismic signals.

Methodology

This part gives the fundamentals of the proposed 
hybrid framework, consisting of a frequency-adaptive 
Modified S-Transform (MST) and Deep Autoencoder 
Network in order to get a better time-frequency 
localization and unsupervised features extraction of 
seismic. The architecture is geared toward the denoising 
and compressing of the raw seismic signals and, as a 
consequence, their production into representations that 
could be classified, clustered or otherwise interpretively 
handled.

Modified S-Transform (MST)

The classical S-Transform is a mixed approach that can 
be characterized as a composition of Short-Time Fourier 
Transform (STFT) and Continuous Wavelet Transform 
(CWT) since it is performed by applying a signal, in 
which the input signal is convolved with a scaling 
Gaussian window, to stabilize properties of both of the 
mentioned methods. Nonetheless, in its conventional 
implementation, the window width is determined 
constant with respect to frequency, and therefore lacks 
flexibilities in a broad spectral band.

In the present investigation, the Modified S-Transform 
(MST) presents a frequency-adaptive Gaussian window, 
and, as a result, a better resolution is achieved at the 
high frequencies of transient and at the low frequencies 
of a waveform.[12] Mathematically the MST can be  
defined as:

	 	 (1)
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Where:

•	 x(τ) is the seismic signal,

•	 g(t−τ,f) is a frequency-dependent Gaussian 
window function.

The adaptive window is defined as:

	 	 (2)

Here, α, and β are variables for controlling the trade-off 
between time and frequency resolution. This formulation 
gives a narrower window for high frequencies for peak 
localization and larger windows at lower frequencies for 
higher spectral resolution and is well suited for analysis 
of multi-component seismic signals.

Deep Autoencoder Network

Some further signal representation is achieved by use of 
a symmetrical deep autoencoder, a form of neural net 
which is also able to learn compressed, low-dimensional 
embeddings of input data in an unsupervised manner.[13] 
Autoencoder is used to leverage spectrograms produced 
by MST and trained to reconstruct them with noise and 
irrelevant information filtered out. Common components 
of the network (Figure 1) are as follows:

Architecture:

•	 Encoder Encoder Machine or deep learning 
encoder A sequence of convolutional layers 
using the ReLU and max-pooling activation 
functions, and progressively down sampling the 
input spectrogram in order to select spatially 
informative features.

•	 Bottleneck: A fully connected layer which is the 
latent feature space - a compressed encoding 
free of irrelevant information which captures 
key signal characteristics.

•	 Decoder: Deconvolution (transposed convolution) 
layer and upsampling layers to back cast the 
original spectrogram according to the latent 
representation.

Loss Function:

The size of the network is learned to reduce the 
Mean Squared Error (MSE) between the initial and the 
reconstructed spectrograms:

	 Lrec  = ‖X-X ‖2	 (3)

Where:

•	 X is the input MST spectrogram,

•	 X^ is the reconstructed output.

This is an effective way to remove the noise and 
irrelevant part and give a clean, compressed model of 
representation that can be used in subsequent tasks like 
classification or clustering of seismic events.

Fig. 1: Deep Autoencoder Network Architecture

Symmetrical deep autoencoder structure to the 
compression and reconstruction of the spectrogram of 
MST marking the encoder and decoder successor and the 
loss objective obtained subtraction of the bottlenecks.

Hybrid Framework Workflow

The framework of seismic signal analysis proposed by the 
authors includes five orderly stages that are represented 
in Figure 2 Hybrid Framework of Seismic Signal Analysis. 
Each layer employs structure to increase interpretability, 
resolution and noise robustness to robustly analyse the 
nonstationary seismic data.

1. Raw Seismic Signal:

The input is continuous seismic waveforms which can be 
recorded on the geophysical sensors themselves or on 
any open database (e.g., IRIS).

2. Preprocessing:

The raw signals are treated to some preprocessing 
operations that include:

•	 Normalization of amplitudes to adjust the values 
of the waveform,

•	 Bandpass filtering (e.g. 0.5-20 Hz) of unwanted 
high- and low-frequency noise,

•	 Outlier detection and removal to clean outlaws 
impulsive or corrupt data points.

3. MST Time-Frequency Decomposition:

The signal that has been preprocessed is converted to 
a representation in the time-frequency domain with 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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the Modified S-Transform (MST). The step is used to 
measure spectral characteristics that vary with time and 
adaptively adjusts the window of analysis to coincide 
with the contents of frequencies.

4. Deep Autoencoder feat Learning:

The MST-computed spectrograms are used as input to a 
symmetrical deep autoencoder that learns a denoised 
latent representation in a compact space.[14] It is at 
this stage that learning of informative seismic features 
is done unsupervised but irrelevant fluctuations were 
smoothed.

5. Analysis and interpretation:

Downstream tasks that can be used to leverage the 
latent features extracted are numerous:

•	 Seismic event classification (e.g. Liquefaction 
on the seabed, distinguish between earthquakes 
and microseisms),

•	 unknown or even anomalous pattern clustering,

•	 Graphical usage to help with the geophysical 
interpretation and pattern recognition.

Such hybrid pipeline is able to use the traditional time-
frequency processing with the help of deep learning in 
order to provide a powerful and scalable solution to 
seismic data processing.

Fig. 2: Hybrid Framework for Seismic Signal Analysis

A 5-step workflow consisting of Modified S-Transform 
and deep autoencoder-based feature learning to give a 
much-improved interpretation of seismic signals.

It is an end-to-end method that presents a data-adaptive, 
noise-robust, and interpretable analysis of seismic 
signals, leveraging the advantages of both classic and 
modern signal processing and deep learning.

Experimental Setup

In order to prove the efficiency and applicability of the 
suggested hybrid framework, both synthetic and real-
life seismic data appeared as the object of extensive 
tests. The experiments aimed at the assessment of 
the time-frequency resolution, classification ability, 
and resilience to noise interference with the help of 
commonly accepted metrics.[15]

Dataset

In order to guarantee holistic assessment of the suggested 
hybrid framework, the two different types of datasets, 
i.e., synthetic and the real ones, were involved to cover 
the vast range of seismic signal properties and noise 
situations.

Synthetic Seismic Events:

Synthetic P-waves and S-waves with tunable parameters 
amplitude, duration and phase were combined with 
Ricker wavelets simulating seismic pulses to create an 
experimental dataset to be controlled. To achieve the 
simulation of the different noisy conditions, additive 
Gaussian noise was imposed in a variety of signal to signal 
ratios (SNRs) of between -5dB and 20dB. The synthetic 
dataset used is an organised setting to benchmark the 
time-frequency resolution, denoising efficiency, and 
overall signal localisation performance, of the Modified 
S-Transform (MST) and deep autoencoder pipeline.

Real Seismic Data -IRIS Network:

Actual seismic events were used which were obtained 
at the Incorporated Research Institutions to Seismology 
(IRIS) database. The data are continuous waveform 
recordings of regional and teleseismic earthquakes, 
microseisms and tremor, observed in various locations 
with distinct tectonic settings, with information about 
the type of events. The performance of such a system 
to seismic events in real-world situations is evaluated 
through this real-world dataset with the aim of testing 
the accuracy of the classification of such events along 
with its noise robustness.

Each signal was processed through standard preprocessing 
steps of amplitude normalization, bandpass filtering 
(0.520 Hz) and sliding window segmentation so that they 
would have consistent sampling rates and comparable 
time alignment before being transformed to MST.

Figure 3: Comparison of Synthetic and Real Seismic 
Signals with Time-Frequency Representation sketches 
the comparison between synthetic and the real seismic 
signals, as well as their time-frequency representations 
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consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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of the same. This visualization shows disparities in 
the structure of waveforms, frequency content and 
complexity of spectra features between the sets of data.

Fig. 3: Comparison of Synthetic and Real Seismic 
Signals with Time-Frequency Representation

Samples of synthetic and real seismic waveforms (left and 
right respectively) and time-frequency spectrograms of 
the same to demonstrate the intricacy of seismic spectra 
and different waves in the presented framework.

Performance Metrics

In order fully to evaluate the efficacy of the proposed 
hybrid framework, a series of quantitative performance 
measures were used. These metrics have been chosen 
to consider some of the main points of comparison, 
which includes time-frequency resolution, classification 
performance and the ability to perform in noisy situations.

Time-Frequency Resolution:

This measure is evaluated on a bandwidth-to-duration ratio 
doing so indicates the skill of the method to confine the 
energy of the signal in the time-frequency domain. The 
lower the ratio, the more the localization is sharp and 
more is the resolution. The Modified S-Transform (MST) is 
compared with the standard ones like STFT and WT to justify 
its excellent superiority in decomposition application.

Accuracy of Classification: 

The Support Vector machine (SVM) together with the 
Convolutional Neural Network (CNN) employed in the 
classification of the seismic events was trained based 
on the latent features generated on the bottleneck 
of the auto encoder. Accuracy is determined as the 
percentage of correctly classified seismic events, 
across an assortment of event types, i.e. earthquakes, 
microseisms and noise segments.

Noise Robustness:

This was considered in terms of two measurements:

•	 Signal-to-Noise Ratio (SNR) Improvement: This 
uses a pre-processing and post-processing signal-

to-noise ratio (SNR) comparison of a signal, and 
measures the improvement in the quality of the 
signal after processing.

•	 Peak Signal-to-Noise Ratio (PSNR): Interprets the 
spectrogram generated and clean spectrogram. 
The greater the value of PSNR, the better the 
denoising process and less signal fidelity.

The three fundamental measures feature the system 
in which high-resolution decomposition, effective and 
accurate feature learning, and robust ability to learning 
under noise conditions are evaluated all together.

A descriptive list of the performance metrics used can 
be found in Figure 4: Performance Metrics of Seismic 
Signal Analysis Framework.

Fig. 4: Performance Metrics for Seismic Signal 
Analysis Framework

Summary of the evaluation criteria applied in the 
proposed framework: time-frequency resolution in 
terms of bandwidth-to-duration ratio, error rate of 
classification with SVM and CNN, and sensitivity to noise 
measured with SNR and PSNR indicators.

Results and Discussion

This sub-section describes the experimental findings 
associated with the proposed hybrid scheme that 
involves Modified S-Transform (MST) and deep auto-
encoder network. The three most important performance 
dimensions are considered in the analysis namely time-
frequency resolution, feature-based classification and 
robustness to noise. The outcomes of the counterparts 
are compared, with conventional approaches to define 
the effectiveness of the suggested approach.

Time-Frequency Resolution

The table 1 is provided with a comparative ANL of the 
time and frequency resolution through three time-
frequency decomposition methods, Short-Time Fourier 
Transform (STFT), Wavelet Transform (WT) and the 
proposed Modified S-Transform (MST). The resolution 
was scaled to localization (in milliseconds) and spectral 
discrimination (in Hertz).
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Table 1: Time-Frequency Resolution Comparison

Method
Time Resolution 

(ms)
Frequency 

Resolution (Hz)

STFT 120 8.0

WT 95 6.0

MST (Proposed) 78 4.5

MST proves better than both STFT and WT in terms of 
superiority of balance in the time and frequency resolution. 
This is claimed to be due to the frequency-adaptive Gaussian 
window of this algorithm which allows sharper localization 
of high-frequency transients whilst maintaining low-
frequency spectral detail. The graded resolution enhances 
the ability to put the nonstationary seismic features under 
proper tracking and enhance spectral leakage reduce.

Feature Extraction and Classification

Seismic event classification with a Support Vector 
Machine (SVM) was used to assess the power of the 
latent features to discriminate that were identified 
with the deep autoencoder. The comparison of the 
classification accuracy of the three sets of features was 
applied to raw time-domain features, the features that 
were reduced by Principal Component Analysis (PCA), 
and deep autoencoder features. The autoencoder-based 
features provided the best classification accuracy as 
displayed in Table 2 which characterizes better feature 
compactness and non-linear separability. This tendency 
is also observed in Figure 5, depicting the classification 
accuracy on three sets of features, allowing to admire 
the great improvement in performance owing to the 
deep representation learning process.

Table 2: Classification Accuracy Using Different Feature Sets

Feature Set Classification Accuracy (%)

Raw Features 81.7

PCA-Reduced Features 88.3

Autoencoder Features 94.2

It is clearly shown that the best classification accuracy 
of 94.2 percent is attained when autoencoder-based 
features are used, the performance of which is far much 
better than those of the two base representations. 
This indicates the model was capable of learning 
compressed, noise-hindrance, and semantically valuable 
representations on MST spectrograms hence enhancing 
the separability of seismic event classes.

Bar chart of comparison of classification accuracy 
observed with raw features (47 percent), PCA-reduced 
features (73 percent) and deep autoencoder features 
(94 percent) in seismic event recognition.

Noise Robustness

The noise suppressing capabilities of the proposed 
framework were tested under adverse conditions of input 
degradations. The case was looked at when the seismic 
signals were injected with Gaussian noise using-5 dB 
SNR. The deep autoencoder had the capacity to increase 
the quality of signal.

•	 SNR: Gain of about +6.5 dB was measured after 
reconstruction meaning extensive removing 
of noise. (see Table 3. Noise Robustness -SNR 
Enhancement and Figure 6: SNR Enhancement 
Obtained by the Proposed Framework).

•	 PSNR Metric: The value of PSNR was high (>30 
dB) of the reconstructed spectrograms, which 
indicated high fidelity of reconstructions to the 
original clean signals.

These results confirm the strength of the framework 
when operated at low SNR settings, and the framework 
itself can be used in real-world seismic settings where 
there is background noise, sensor drift and transient 
interference.

In general, the described MST-autoencoder model showed 
significant increases in the core aspects of seismic signal 
processing. Finer waveform decomposition is possible 
due to the improved time-frequency resolution as well 
as deeper autoencoder recovers more encapsulated, 
discriminative features that improve the performance of 
classifying and removing noise. Signal-adaptive analysis 
can be combined with the unsupervised deep learning 

Fig. 5: Classification Accuracy Across Feature Sets

Table 3: Noise Robustness – SNR Improvement

Input SNR (dB) Output SNR (dB) SNR Gain (dB)

–5 1.5 +6.5
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comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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to enable scalable implementation in a broad range 
of seismic monitoring tasks such as real-time signal 
detection and anomaly recognition.

Proposed signal processing mechanism in seismic signal 
has shown an approximate 6.5 dB signal-to-noise ratio 
(SNR) enhancement in the scenario when seismic signal 
processing is carried out under challenging low-SNR 
conditions as well and it proves the fact that proposed 
mechanism can effectively de-noise seismic signal.

Conclusion and Future Work

This paper presented a powerful mixed model of 
interpreting seismic signals that synergistically combines 
a Modified S-Transform (MST) and Deep Autoencoder 
Networks that accurately interpret seismic signals. The 
MST improves on time-frequency resolution limitations 
of the conventional STFT and wavelet transforms and 
the autoencoder gives compact and noise-robust low-
dimensional latent feature representations. A scenario 
with synthetic seismic data as well as real data records 
in IRIS network were considered in evaluating the 
proposed pipeline. Comparative experiments proved 
that the framework was largely able to outperform the 
baseline methods in timefrequency localization accuracy 
of classification (up to 94.2%) and noise resilience (6.5 
dB SNR gain), thereby confirming its possible practical 
utility to a range of seismic conditions.

Major Contributions:

•	 Constructed a frequency-adaptive decomposing 
strategy based on MST so as to estimate both 
temporal and spectral resolution in a finer 
manner.

•	 Developed an efficient deep-feature extraction 
module based on autoencoder to reduce or 

eliminate noise by underlying deep-feature 
encoding.

•	 Illustrated best performance on classification 
with SVM on the basis of latent features compared 
to raw as well as reduced PCA.

•	 Tested in terms of achieving adequate robustness 
with measureable quantities (e.g., SNR gain, 
PSNR) into the high-noise regime and applied to 
actual seismic data.

Future Directions:

•	 Scalability to a multichannel array data 
to spatiotemporal correlation and source 
localization.

•	 Developing spatiotemporal attention mechanisms 
(e.g., Transformer models) in order to better 
recognize dynamic events.

•	 Deployment in real time onto low power edge 
processors to provide disaster response and early 
warning systems on site
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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