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Proper decoding of seismic signals is used during earthquake detection, geophysical
exploration as well as during the monitoring of a structure. Some traditional approaches
to time-frequency (T-F) analysis like Short-Time Fourier Transform (STFT) and Wavelet
Transform (WT) are burdened by trade-offs between time and frequency resolutions and
cannot be used easily to analyze nonstationary seismic events. This paper introduces
an improved time-frequency analysis scheme that uses Deep Autoencoder Networks
to improve resolution and features of existing time-frequency analysis schemes that
incorporate Modified S-Transform (MST). The MST generalizes the S-Transform to include
an adaptive Gaussian window that is rescaled depending on instantaneous frequency
components in order to better localize in time and frequency. At the same time, a
deep autoencoder is used to train noise-tolerant feature representations in terms of
compressed features on the spectrograms generated by MST in unsupervised learning.
Both the synthetic and real seismic data are used in the validation of the hybrid approach
through use of events occurring in IRIS seismic network. Findings indicate that spectral
clarity, classification accuracy (94.2 per cent), and performance in low SNR regimes
has greater improvement as compared to conventional STFT and WT methods. The
evaluated method manages to capture minute changes more accurately in waveforms
and becomes interpretable under noisy situations. This framework allows even more
complex task of seismic signal analysis that can be used in earthquake early warning
systems, microseismic monitoring, and exploration geophysics thanks to powerful and
scalable computation framework.
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INTRODUCTION

The process of seismic signal processing is very vital
in many areas, such as earthquake location, base
exploration, and structure health measurement where
right decoding of nonstationary signals is significant.
Such earthquakes generally exhibit sudden transitions
and perplexing variations with time in a sophisticated
range of frequency, which needs to be broken down using
a set of sophisticated analysis tools that should have the
ability to show a time-localized and frequency-resolved
characteristic.

The Short Time Fourier Transform (STFT), and Wavelet
Transform (WT) are the traditional methods of time-
frequency (T-F) analysis, which are prevalent in
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practice; however, they are necessarily constrained
by the Heisenberg uncertainty principle, and thus are
subject to time-frequency trade-offs.['l In particular,
STFT uses a fixed window length which causes it to lose
the performance in resolving frequency components
which change rapidly. Although WT has multi-resolution
analysis capabilities, WT could be susceptible to spectral
leakage and insensitivity in highly noisy conditions.!"! The
S-Transform (ST)® that is a hybrid of the STFT and WT
offers frequency dependent-resolution through a scalable
Gaussian window addition, addressing these short Kevin
Lam In spite of its merits, fixed windowing topology
of standard S-Transform continues to demonstrate
inability to flexibly adjust to different seismic situations,
particularly, to changes in signal-to-noise ratios
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(SNRs). In the meantime, deep learning (especially
deep autoencoders) has proven to be impressive at
learning compact noise-robust feature representations
in an unsupervised fashion.®! Data-driven models, in
combination with conventional signal-processing, have
in recent years provided new opportunities to support
seismic data interpretation, particularly of weak or
overlapping signals.™

This paper offers a hybrid system based on a Modified
S-Transform (MST) and a Deep Autoencoder Network to
improve seismic signal analysis. The signal in the MST
is able to better localize in the time-frequency plane
because the Gaussian window width is adaptively set to
the instantaneous signal frequency. Autoencoder network
also learns high-level features of MST spectrograms and
minimizes noise and redundancy. The approach is tested
on artificial and practical seismic data and demonstrates
significant gains in resolution, stability, and classification
responses as compared to more traditional methods.

RELATED WORK

Seismic signal processing has a long tradition of time-
frequency (T-F) analysis/decomposition approaches.
Various solutions have been proposed to enhance the
resolution of the signal and denoising and feature
extraction.

Empirical Mode Decomposition (EMD) and Wavelet Packet
Transform (WPT) are notorious in the decomposition
of nonstationary seismic signals into time-frequency
signal. Whereas, WPT gives multi-resolution analysis
through the adaptive breaking up of frequency space,
EMD divides signals into intrinsic mode functions
(IMFs).B!  Nevertheless, both approaches are likely
to incur mode mixing, fail to be very powerful under
noisy conditions and they are apt to generate non
redundant elements particularly when they cope
with low-level seismic waves.[! Some adaptive forms
of the S-Transform have been introduced in order
to enhance localization. As a particular example,
by way of enhancing resolution at different parts of
the frequency range, frequency-dependent window
scaling and the multi-taper S-Transform methodologies
have been proposed.l”- 8 However, these methods are
naturally signal agnostic in nature, in that they do not
utilize a data-driven learning component, and tend to
not be flexible in the face of different seismic noise
spectra or overlapping signals. At the same time, deep
learning, especially autoencoder-based schemes has
been gaining traction as a robust unsupervised method
of analyzing seismic data. Autoencoders are powerful,
which can reduce high dimensional input data into low-
dimensional latent presentations and maintain necessary
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information. Seismic event detection, classification, and
noise reduction has been improved using Variational
Autoencoders (VAEs) and Denoising Autoencoders
(DAEs).[l 191 Although this is the case, in most studies
the development of the learned features cannot be
interpreted using time-frequency domain knowledge
because it is not incorporated into the learning process.

In this regard, the proposed framework is specifically
relevant because instead of being isolated working modes,
a Modified S-Transform (MST) and Deep Autoencoders
are combined to bridge the gap between them due to
time-frequency decomposition being enhanced by the
former, and compact, robust features being extracted
via unsupervised manner by the latter. This combination
is interpretable as well as performance-enhanced,
especially on the weak or overlapping seismic signals.

METHODOLOGY

This part gives the fundamentals of the proposed
hybrid framework, consisting of a frequency-adaptive
Modified S-Transform (MST) and Deep Autoencoder
Network in order to get a better time-frequency
localization and unsupervised features extraction of
seismic. The architecture is geared toward the denoising
and compressing of the raw seismic signals and, as a
consequence, their production into representations that
could be classified, clustered or otherwise interpretively
handled.

Modified S-Transform (MST)

The classical S-Transform is a mixed approach that can
be characterized as a composition of Short-Time Fourier
Transform (STFT) and Continuous Wavelet Transform
(CWT) since it is performed by applying a signal, in
which the input signal is convolved with a scaling
Gaussian window, to stabilize properties of both of the
mentioned methods. Nonetheless, in its conventional
implementation, the window width is determined
constant with respect to frequency, and therefore lacks
flexibilities in a broad spectral band.

In the present investigation, the Modified S-Transform
(MST) presents a frequency-adaptive Gaussian window,
and, as a result, a better resolution is achieved at the
high frequencies of transient and at the low frequencies
of a waveform.l'? Mathematically the MST can be
defined as:

=

S, f) = j «(T). gt — T,f).e 2T dT (1)

amn
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Where:

e X(T) is the seismic signal,
e g(t-t,f) is a frequency-dependent Gaussian
window function.
The adaptive window is defined as:

1 -8 a
U)z'e mrl"g(f):f_” (2)

V2o

gt f) =

Here, a, and B are variables for controlling the trade-off
between time and frequency resolution. This formulation
gives a narrower window for high frequencies for peak
localization and larger windows at lower frequencies for
higher spectral resolution and is well suited for analysis
of multi-component seismic signals.

Deep Autoencoder Network

Some further signal representation is achieved by use of
a symmetrical deep autoencoder, a form of neural net
which is also able to learn compressed, low-dimensional
embeddings of input data in an unsupervised manner.!"3!
Autoencoder is used to leverage spectrograms produced
by MST and trained to reconstruct them with noise and
irrelevant information filtered out. Common components
of the network (Figure 1) are as follows:

Architecture:

o Encoder Encoder Machine or deep learning
encoder A sequence of convolutional layers
using the ReLU and max-pooling activation
functions, and progressively down sampling the
input spectrogram in order to select spatially
informative features.

« Bottleneck: A fully connected layer which is the
latent feature space - a compressed encoding
free of irrelevant information which captures
key signal characteristics.

o Decoder: Deconvolution (transposed convolution)
layer and upsampling layers to back cast the
original spectrogram according to the latent
representation.

Loss Function:

The size of the network is learned to reduce the
Mean Squared Error (MSE) between the initial and the
reconstructed spectrograms:

Lee = IX-X2 (3)
Where:
e X is the input MST spectrogram,

« X" is the reconstructed output.
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This is an effective way to remove the noise and
irrelevant part and give a clean, compressed model of
representation that can be used in subsequent tasks like
classification or clustering of seismic events.

Deep Autoencoder Network

Reconstructed
output

Bottlenneck

Encoder

Loss Function
2
Lrec — IX — X ||

Symmetrical deep
autoencoder

Fig. 1: Deep Autoencoder Network Architecture

Symmetrical deep autoencoder structure to the
compression and reconstruction of the spectrogram of
MST marking the encoder and decoder successor and the
loss objective obtained subtraction of the bottlenecks.

Hybrid Framework Workflow

The framework of seismic signal analysis proposed by the
authors includes five orderly stages that are represented
in Figure 2 Hybrid Framework of Seismic Signal Analysis.
Each layer employs structure to increase interpretability,
resolution and noise robustness to robustly analyse the
nonstationary seismic data.

1. Raw Seismic Signal:

The input is continuous seismic waveforms which can be
recorded on the geophysical sensors themselves or on
any open database (e.g., IRIS).

2. Preprocessing:

The raw signals are treated to some preprocessing
operations that include:

« Normalization of amplitudes to adjust the values
of the waveform,

« Bandpass filtering (e.g. 0.5-20 Hz) of unwanted
high- and low-frequency noise,

e Qutlier detection and removal to clean outlaws
impulsive or corrupt data points.

3. MST Time-Frequency Decomposition:

The signal that has been preprocessed is converted to
a representation in the time-frequency domain with
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the Modified S-Transform (MST). The step is used to
measure spectral characteristics that vary with time and
adaptively adjusts the window of analysis to coincide
with the contents of frequencies.

4. Deep Autoencoder feat Learning:

The MST-computed spectrograms are used as input to a
symmetrical deep autoencoder that learns a denoised
latent representation in a compact space.l™ |t is at
this stage that learning of informative seismic features
is done unsupervised but irrelevant fluctuations were
smoothed.

5. Analysis and interpretation:

Downstream tasks that can be used to leverage the
latent features extracted are numerous:

» Seismic event classification (e.g. Liquefaction
on the seabed, distinguish between earthquakes
and microseisms),

« unknown or even anomalous pattern clustering,

e Graphical usage to help with the geophysical
interpretation and pattern recognition.

Such hybrid pipeline is able to use the traditional time-
frequency processing with the help of deep learning in
order to provide a powerful and scalable solution to
seismic data processing.

Input - Raw . Time-Frequenc; Analysis and
Seisr:nic Signal Preprocessing Deco!npoc;ition Y Inter:retation
« Amplitude using MST « Classification
WW normalization R of seismic events
« Bandpass filtering e + Clustering
- Outlier removal |] H H & [I H H « Visualization
& and seismic
interpretationn
i [

Frequiency

Feature Learning
with Deep Autoenccoder

* Classification of seismic eve-
nts

« Clustering

« Visualization and seismic
interpretation

Fig. 2: Hybrid Framework for Seismic Signal Analysis

A 5-step workflow consisting of Modified S-Transform
and deep autoencoder-based feature learning to give a
much-improved interpretation of seismic signals.

It is an end-to-end method that presents a data-adaptive,
noise-robust, and interpretable analysis of seismic
signals, leveraging the advantages of both classic and
modern signal processing and deep learning.

2 I

EXPERIMENTAL SETUP

In order to prove the efficiency and applicability of the
suggested hybrid framework, both synthetic and real-
life seismic data appeared as the object of extensive
tests. The experiments aimed at the assessment of
the time-frequency resolution, classification ability,
and resilience to noise interference with the help of
commonly accepted metrics.["!

Dataset

In order to guarantee holistic assessment of the suggested
hybrid framework, the two different types of datasets,
i.e., synthetic and the real ones, were involved to cover
the vast range of seismic signal properties and noise
situations.

Synthetic Seismic Events:

Synthetic P-waves and S-waves with tunable parameters
amplitude, duration and phase were combined with
Ricker wavelets simulating seismic pulses to create an
experimental dataset to be controlled. To achieve the
simulation of the different noisy conditions, additive
Gaussian noise was imposed in a variety of signal to signal
ratios (SNRs) of between -5dB and 20dB. The synthetic
dataset used is an organised setting to benchmark the
time-frequency resolution, denoising efficiency, and
overall signal localisation performance, of the Modified
S-Transform (MST) and deep autoencoder pipeline.

Real Seismic Data -IRIS Network:

Actual seismic events were used which were obtained
at the Incorporated Research Institutions to Seismology
(IRIS) database. The data are continuous waveform
recordings of regional and teleseismic earthquakes,
microseisms and tremor, observed in various locations
with distinct tectonic settings, with information about
the type of events. The performance of such a system
to seismic events in real-world situations is evaluated
through this real-world dataset with the aim of testing
the accuracy of the classification of such events along
with its noise robustness.

Each signal was processed through standard preprocessing
steps of amplitude normalization, bandpass filtering
(0.520 Hz) and sliding window segmentation so that they
would have consistent sampling rates and comparable
time alignment before being transformed to MST.

Figure 3: Comparison of Synthetic and Real Seismic
Signals with Time-Frequency Representation sketches
the comparison between synthetic and the real seismic
signals, as well as their time-frequency representations
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of the same. This visualization shows disparities in
the structure of waveforms, frequency content and
complexity of spectra features between the sets of data.
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Fig. 3: Comparison of Synthetic and Real Seismic
Signals with Time-Frequency Representation

Samples of synthetic and real seismic waveforms (left and
right respectively) and time-frequency spectrograms of
the same to demonstrate the intricacy of seismic spectra
and different waves in the presented framework.

Performance Metrics

In order fully to evaluate the efficacy of the proposed
hybrid framework, a series of quantitative performance
measures were used. These metrics have been chosen
to consider some of the main points of comparison,
which includes time-frequency resolution, classification
performance and the ability to perform in noisy situations.

Time-Frequency Resolution:

This measure is evaluated on a bandwidth-to-duration ratio
doing so indicates the skill of the method to confine the
energy of the signal in the time-frequency domain. The
lower the ratio, the more the localization is sharp and
more is the resolution. The Modified S-Transform (MST) is
compared with the standard ones like STFT and WT to justify
its excellent superiority in decomposition application.

Accuracy of Classification:

The Support Vector machine (SVM) together with the
Convolutional Neural Network (CNN) employed in the
classification of the seismic events was trained based
on the latent features generated on the bottleneck
of the auto encoder. Accuracy is determined as the
percentage of correctly classified seismic events,
across an assortment of event types, i.e. earthquakes,
microseisms and noise segments.

Noise Robustness:
This was considered in terms of two measurements:

« Signal-to-Noise Ratio (SNR) Improvement: This
uses a pre-processing and post-processing signal-
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to-noise ratio (SNR) comparison of a signal, and
measures the improvement in the quality of the
signal after processing.

« Peak Signal-to-Noise Ratio (PSNR): Interprets the
spectrogram generated and clean spectrogram.
The greater the value of PSNR, the better the
denoising process and less signal fidelity.

The three fundamental measures feature the system
in which high-resolution decomposition, effective and
accurate feature learning, and robust ability to learning
under noise conditions are evaluated all together.

A descriptive list of the performance metrics used can
be found in Figure 4: Performance Metrics of Seismic
Signal Analysis Framework.

Classification Noise
Accuracy Robustness

Time-Frequency
Resolution

Confusion matrix

T
=
2
o
s
s
<
@

SNR and PSNR
evaluation

SVM and CNN on
extracted features

Measured as the
bandwidth-to-
duration ratio

Fig. 4: Performance Metrics for Seismic Signal
Analysis Framework

Summary of the evaluation criteria applied in the
proposed framework: time-frequency resolution in
terms of bandwidth-to-duration ratio, error rate of
classification with SYM and CNN, and sensitivity to noise
measured with SNR and PSNR indicators.

RESULTS AND DISCUSSION

This sub-section describes the experimental findings
associated with the proposed hybrid scheme that
involves Modified S-Transform (MST) and deep auto-
encoder network. The three most important performance
dimensions are considered in the analysis namely time-
frequency resolution, feature-based classification and
robustness to noise. The outcomes of the counterparts
are compared, with conventional approaches to define
the effectiveness of the suggested approach.

Time-Frequency Resolution

The table 1 is provided with a comparative ANL of the
time and frequency resolution through three time-
frequency decomposition methods, Short-Time Fourier
Transform (STFT), Wavelet Transform (WT) and the
proposed Modified S-Transform (MST). The resolution
was scaled to localization (in milliseconds) and spectral
discrimination (in Hertz).
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Table 1: Time-Frequency Resolution Comparison

Time Resolution Frequency
Method (ms) Resolution (Hz)
STFT 120 8.0
WT 95 6.0
MST (Proposed) 78 4.5

MST proves better than both STFT and WT in terms of
superiority of balance in the time and frequency resolution.
This is claimed to be due to the frequency-adaptive Gaussian
window of this algorithm which allows sharper localization
of high-frequency transients whilst maintaining low-
frequency spectral detail. The graded resolution enhances
the ability to put the nonstationary seismic features under
proper tracking and enhance spectral leakage reduce.

Feature Extraction and Classification

Seismic event classification with a Support Vector
Machine (SVM) was used to assess the power of the
latent features to discriminate that were identified
with the deep autoencoder. The comparison of the
classification accuracy of the three sets of features was
applied to raw time-domain features, the features that
were reduced by Principal Component Analysis (PCA),
and deep autoencoder features. The autoencoder-based
features provided the best classification accuracy as
displayed in Table 2 which characterizes better feature
compactness and non-linear separability. This tendency
is also observed in Figure 5, depicting the classification
accuracy on three sets of features, allowing to admire
the great improvement in performance owing to the
deep representation learning process.

Table 2: Classification Accuracy Using Different Feature Sets

Feature Set Classification Accuracy (%)
Raw Features 81.7
PCA-Reduced Features 88.3
Autoencoder Features 94.2

It is clearly shown that the best classification accuracy
of 94.2 percent is attained when autoencoder-based
features are used, the performance of which is far much
better than those of the two base representations.
This indicates the model was capable of learning
compressed, noise-hindrance, and semantically valuable
representations on MST spectrograms hence enhancing
the separability of seismic event classes.

Bar chart of comparison of classification accuracy
observed with raw features (47 percent), PCA-reduced
features (73 percent) and deep autoencoder features
(94 percent) in seismic event recognition.
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Fig. 5: Classification Accuracy Across Feature Sets

Noise Robustness

The noise suppressing capabilities of the proposed
framework were tested under adverse conditions of input
degradations. The case was looked at when the seismic
signals were injected with Gaussian noise using-5 dB
SNR. The deep autoencoder had the capacity to increase
the quality of signal.

* SNR: Gain of about +6.5 dB was measured after
reconstruction meaning extensive removing
of noise. (see Table 3. Noise Robustness -SNR
Enhancement and Figure 6: SNR Enhancement
Obtained by the Proposed Framework).

e PSNR Metric: The value of PSNR was high (>30
dB) of the reconstructed spectrograms, which
indicated high fidelity of reconstructions to the
original clean signals.

These results confirm the strength of the framework
when operated at low SNR settings, and the framework
itself can be used in real-world seismic settings where
there is background noise, sensor drift and transient
interference.

In general, the described MST-autoencoder model showed
significant increases in the core aspects of seismic signal
processing. Finer waveform decomposition is possible
due to the improved time-frequency resolution as well
as deeper autoencoder recovers more encapsulated,
discriminative features that improve the performance of
classifying and removing noise. Signal-adaptive analysis
can be combined with the unsupervised deep learning

Table 3: Noise Robustness - SNR Improvement

Input SNR (dB) | Output SNR (dB) | SNR Gain (dB)
-5 1.5 +6.5
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—6dB Galn

SNR
Improvement

Fig. 6: SNR Improvement Achieved by the
Proposed Framework

to enable scalable implementation in a broad range
of seismic monitoring tasks such as real-time signal
detection and anomaly recognition.

Proposed signal processing mechanism in seismic signal
has shown an approximate 6.5 dB signal-to-noise ratio
(SNR) enhancement in the scenario when seismic signal
processing is carried out under challenging low-SNR
conditions as well and it proves the fact that proposed
mechanism can effectively de-noise seismic signal.

CONCLUSION AND FUTURE WORK

This paper presented a powerful mixed model of
interpreting seismic signals that synergistically combines
a Modified S-Transform (MST) and Deep Autoencoder
Networks that accurately interpret seismic signals. The
MST improves on time-frequency resolution limitations
of the conventional STFT and wavelet transforms and
the autoencoder gives compact and noise-robust low-
dimensional latent feature representations. A scenario
with synthetic seismic data as well as real data records
in IRIS network were considered in evaluating the
proposed pipeline. Comparative experiments proved
that the framework was largely able to outperform the
baseline methods in timefrequency localization accuracy
of classification (up to 94.2%) and noise resilience (6.5
dB SNR gain), thereby confirming its possible practical
utility to a range of seismic conditions.

Major Contributions:

« Constructed a frequency-adaptive decomposing
strategy based on MST so as to estimate both
temporal and spectral resolution in a finer
manner.

« Developed an efficient deep-feature extraction
module based on autoencoder to reduce or
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eliminate noise by underlying deep-feature
encoding.

o Illustrated best performance on classification
with SVM on the basis of latent features compared
to raw as well as reduced PCA.

« Tested in terms of achieving adequate robustness
with measureable quantities (e.g., SNR gain,
PSNR) into the high-noise regime and applied to
actual seismic data.

Future Directions:

e Scalability to a
to spatiotemporal
localization.

multichannel array data
correlation and source

« Developing spatiotemporal attention mechanisms
(e.g., Transformer models) in order to better
recognize dynamic events.

« Deployment in real time onto low power edge
processors to provide disaster response and early
warning systems on site
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