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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
MoBI Technologies offer the opportunity to record electroencephalography (EEG) in 
naturalistic, unconstrained conditions; still, the application of these technologies is 
limited by extreme signal contamination due to ocular, muscular and motion artifacts 
and environmental noise. These artifacts are superimposed on areas of neural 
frequencies and hence the removal of these frequencies without altering brain signals is 
an ongoing challenge especially in mobile platforms with limited resources during real-
time processing. The paper will describe a new latency-tradeoff and signal processing 
framework, based on sparse representation, adaptive learned dictionaries and statistical 
artifacts classification, that can perform efficient, real-time artifact removal in MoBI 
applications. The method is a union between high performance adaptive filtering and 
sparse coding with system optimization to operate as an embedded system. Through the 
proposed method, there is segmentation and decomposition of incoming EEG streams 
into overlapping windows into a combination of sparse coefficient vectors based on 
the Orthogonal Matching Pursuit (OMP) performed in adaptively trained overcomplete 
dictionary. The dictionary is online-subsequently updated utilizing a low computational 
burden K-SVD variant ensuring renewing EEG structures and atom specializing to 
artifacts founded on the statistical properties e.g. kurtosis, variance, and correlation 
with reference EOG/EMG channels. There is selective attenuation of artifact coefficients 
which can reconstruct the clean EEG signals with minimal distortion. It was examined 
with publicly available Mobile Brain/Body Imaging data dealing with walking, cycling, 
and virtual reality trials. Compared to Independent Component Analysis (ICA), wavelet 
thresholding and regression-based methods, the proposed approach provided an average 
SNR gain of 6.8 dB, 94.5 percent ERP peak retention and 47 ms latency per 500 ms 
window runtime on an ARM Cortex-A53 embedded platform with less than 40 percent 
CPU resource utilisation. These findings validate the technique as applicable to non-
stop, real-on-device EEG artifact suppression, in real-time removing the need to use 
brain computing interface (BCI) and neurofeedback in real, portable conditions. The 
suggested framework falls in between the high-fidelity EEG denoising and embedded 
mobility and provides a scalable solution to next-generation mobile neurotechnology.
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Introduction

Electroencephalography (EEG) is one of the most popular 
non-invasive neuroimaging techniques that can provide 
time resolution in milliseconds, thus it is very appropriate 
to investigate the brain activity during the cognitive and 
motor tasks. More recently, the Mobile Brain Imaging 
paradigm (MoBI) has evolved which allows EEG data 
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to be recorded during naturalistic, real-life scenarios, 
including physical activity like walking or riding a bicycle, 
and high-immersion virtual reality, among others. As the 
MoBI opens more options of neurophysiological studies 
and brain-computer interfaces (BCI), new challenges 
are also posed, the most prominent of which is that EEG 
data are as consistently contaminated with non-EEG 
signals (including ocular (e.g., blinks, saccades), muscle 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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(EMG), and motion artifacts, as well as environmental 
EM and other sources of electromagnetic interference. 
Such sources usually co-exist with neurophysiological 
frequency bands (0.5-45 Hz) and their removal can tend 
to distort the real data of the neural activity, especially 
on a real time processing with resource-limited mobile 
devices.

Standard methods of artifact removal are significantly 
limited in application to MoBI settings. Bandpass 
filtering has the capability of blocking some of the noise 
components and eradicates neural information randomly 
at overlapping frequencies. Methods based on regression 
analysis necessitate the involvement of an auxiliary 
channel of reference (EOG/EMG), and impose sensitivity 
with regards to reference quality and the assumptions of 
linearity. The Independent Component Analysis (ICA) has 
been another very popular algorithm to preprocess the 
offline EEG; although it is computationally expensive, 
requires batch data and is not applicable to be used in real 
time in an embedded system. The wavelet thresholding 
has the capacity to extract multi-resolution features; 
however, it suffers signal artifacts due to manual tuning 
of parameters, and difficulty in nonstationary situations.

Alternatively, sparse representation and dictionary 
learning presents a mighty solution in removing EEG 
artifacts wherein a signal is represented as a sparse 
combination of atoms of a basis in an overcomplete 
dictionary. Artifacts and clean signals occupy different 
dictionaries spaces and hence the possibility to suppress 
particular dictionaries components (related to artifacts) 
and leave intact the other brain activity components. 
Previous literature showed that sparse representation 
can be a promising method of EEG reconstruction but 
most of the existing algorithms are all offline, static and 
computational intensive, which make them impractical 
in mobile, real time applications.

Our online sparse representation and adaptive 
dictionary learning framework has been proposed with 
new architecture that is specifically suited to real-time 
EEGE artifact removal in MoBI systems to address the 
above stated limitations. A sparse coding step based on 
the Orthogonal Matching Pursuit (OMP) algorithm and 
an online dictionary updating technique using K-SVD is 
utilized within the framework, which enables the system 
to adapt the EEG activity and the artifacts to the changing 
conditions of each recording session. The system is 
designed with latency optimization in the entire pipeline 
with a demonstrated sub-50 ms per 500 ms window on an 
ARM Cortex-A53 embedded processor making on-device 
deployment possible in wearable neuroimaging. The 
suggested framework has the contribution to the wider 
field of biomedical signal processing of the advancing 
real-time denoising methodologies with dynamic mobile 
neuroimaging settings. The methodology combines 
adaptive sparse coding and dictionary learning to succeed 
in tackling key issues in the EEG signal enhancement, 
which is a fundamental problem in biomedical signal 
analysis, whose applications variationally span the 
sphere of clinical diagnostics, the brain-computer 
interface, and many others.

The key outputs of the work can be summarized in the 
following way. We propose a new online real-time setup 
that uses online sparse representation based algorithm, 
able to dynamically learn and adapt dictionary atoms and 
thus has a high success rate in controlling nonstationary 
EEG artifacts successful in a MoBI scenario. Second, we 
propose a latency-optimized structure that makes our 
scheme well suited to running in real-time on small-sized 
embedded devices and thus fills the gap between high-
performance summarization technologies and wearable 
systems. Third, we develop and test the framework in 
an integrated implementation, and perform end-to-
end test on an ARM Cortex-A53 chip, to show that it is 

Fig. 1: Sparse Representation and Adaptive Dictionary Learning Framework for Real-Time EEG Artifact Removal
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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possible to deploy in real-life brain computer interface 
applications on mobile devices. Fourth, we engage in 
the full benchmarking of existing techniques, including 
ICA, wavelet thresholding, and regression-based artifact 
removal, on MoBI data sets and measure results both 
in SNR increase, preservation of ERP and latency of 
processing. The presented method thus out-performs 
the existing solutions in terms of artifact suppression (ff) 
(folded back SNR (ff) + 6.8 dB), higher retention of ERPs 
(94.5%), and much reduced latency (1/4 of ICA based 
approaches) with minimal computational overheads that 
are ideal in continuous, in-field application of neuro-
technologies.

Related Work

The task of removing artifacts during EEG may be revealed 
in a multitude of studies that approximate removing 
artifacts both by conventional filtering techniques and 
novel machine learning methods. Each method has 
uniqueness in terms of advantages and disadvantages 
where Mobile Brain Imaging (MoBI) is concerned and 
resource constraints and real-time functional operation 
are important.

A. Filtering-Based Methods

One of the oldest methods of preventing artifacts in EEG 
is the Finite Impulse Response (FIR) and Infinite Impulse 
Response (IIR) filtering of the signal.[1] These techniques 
are effective in cutting down on narrowband noise e.g. 
power-line interference (50/60 Hz) by suppressing 
particular frequency regions. They, however, perform 
poorly when applied to handle broad-band artifacts such 
as electromyographic (EMG) activity or disturbances 
that occur due to motion and cover a similar frequency 
range to that of the nerves.[2] Additionally, it may cause 
important information in neural neighborhood to be 
filtered off thus constraining its applicability in high 
fidelity MoBI situations.

B. Blind Source Separation (BSS)

In offline preprocessing of EEG data Blind Source 
Separation techniques (specifically, Independent 
Component Analysis, ICA) are with frequent occurrence 
used to separate and eliminate artifacts.[3], [4] EEG ICA 
represents the statistical independence of statistically 
independent components, which could be detected and 
rejected, suppressed, based on the artifact-related 
sources. Although ICA performs well on artifact removal 
in controlled laboratory conditions, the implementation 
has two significant limitations when applied in MoBI 
apparatus: (1) large amount of data is required to 
stabilize decomposition drawing-it inevitably not suitable 

in a streaming application and (2) the data processing 
overhead is high compared to computing capacity of 
embedded devices.[5, 14] There are variants like Adaptive 
ICA[6,11] which tries to handle nonstationary artifacts yet 
still are resource consuming.

C. Wavelet-Based Methods

The wavelet transform derived denoising techniques 
take advantage of multi-resolution representation 
of wavelets by breaking down EEG into frequency 
subbands, especially artifacts by applying threshold.
[7, 15] The method is flexible enough in the analysis of 
transient and non-transient noise. But its execution is 
sensitive to wavelet basis as well as thresholding values.
[8, 12] Moreover, it proves difficult to adapt to the mobile 
environment in real time to more dynamic artifact 
properties.

D. �Sparse Representation and Dictionary Learning 
Approaches

Sparse representation is an important tool that uses 
EEG as a linear guide of limited basis atoms of an 
over-complete dictionary.[9] This enables extraction 
of structured neural patterns out of artifact-related 
patterns, usually having different statistical and 
morphological properties. Further, dictionary learning 
approaches, like K-SVD, optimise the basis set to signal 
properties, and this may benefit artifact separation. 
Other researchers like Elad et al.[10, 13] have shown the 
usefulness of sparse coding in EEG denoising process 
especially offline. Current approaches however have the 
crucial draw back of limited applications of MoBI into 
three broad categories:

•	 Offline Processing: This type of processing 
with large amounts of EEG is carried out most 
frameworks, which are not suited to the real-
time BCI or neurofeedback.

•	 Static Dictionaries: Pre-existing dictionaries are 
not able to change depending on nonstationary 
artifacts that are witnessed in dynamic 
environments.

•	 Computational Overhead: Simple sparse coding 
algorithms and dictionary learning methods 
require a lot of computational resources to run, 
thus cannot be embedded in practice before 
being optimized.

E. Comparative Assessment

Table 1 summarizes the upsides and downsides of the 
above-mentioned approaches with regard to MoBI. 
As compared to the currently existing solutions, the 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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bottleneck of real-time processing within the proposed 
framework is based on the combination of Orthogonal 
Matching Pursuit (OMP) and online K-SVD dictionary 
learning, which makes it possible to gradually follow 
the changes in the patterns of the artifacts. The 
latter also supports operation with low latency on ARM 
Cortex-A53 embedded platforms, unable to be offered 
by the traditional approaches to ICA or offline sparse 
representation.

Methodology
Framework Overview

The framework developed to remove EEG artifacts 
in real-time is to be applied on mobile brain imaging 
(MoBI) platforms with limited power capabilities and 
requirements of the minimal latency. Figure 1 shows 
three primary stages that constitute the processing 
pipeline: Preprocessing, sparse coding and adaptive 
dictionary learning.

•	 Preprocessing: Raw EEG signals obtained by a 
multi-channel mobile EEG system undergo a 
zero-phase FIR bandpass filter (0.5-45 Hz) prior 
to detection in order to filter-out baseline drift 
and high-frequency noise and retain the neural 
frequency range of interest. Filtered signals are 
next divided into 500 ms overlapped windows 
(50% overlap) to provide temporal continuity 
of the filtered signal and also to allow the use 
of transient artifacts without large processing 
delay.

•	 Sparse Coding: Sparse EEG data received by 
each window is expressed as a sparse collection 
of dictionary atoms input using the Orthogonal 
Matching Pursuit (OMP) algorithm. The sparse 

representation ensures that not so many atoms 
are active at once, which allows to segregate 
between the activity in the neural network and 
the structured artifacts. The implementation in 
this stage is done with the help of an optimized, 
a-fixed, iteration OMP variant which acclimatized 
the expression of accuracy against the real-time 
execution.

•	 Dictionary Learning: A dynamic environment 
of artifacts within the MoBI contexts is 
accommodated by deforming the dictionary 
based on newly accessible pure EEG segments 
using an online K-SVD algorithm. This enables 
dictionary to change dynamically but still giving 

Table 1: Comparative Analysis of EEG Artifact Removal Methods in MoBI Contexts

Method
Artifact Types 

Addressed Adaptability
Real-Time 
Feasibility

Computational 
Load Limitations in MoBI

FIR/IIR Filtering Narrowband 
noise

Low High Low Fails against broadband 
artifacts; possible signal 
distortion

ICA (BSS) Ocular, EMG, 
some motion

Medium Low High Requires batch data; 
high latency

Wavelet Thresholding Transient and 
stationary noise

Medium Moderate Medium Sensitive to parameters; 
poor adaptation to 
nonstationary noise

Sparse Representation 
(Offline)

Ocular, EMG, 
motion

Low–Medium Low High Static dictionary; offline 
only

Proposed Framework Ocular, EMG, 
motion, 
environmental

High High Low–Medium Requires initial 
dictionary seeding

Fig. 1: Block diagram of the proposed sparse 
representation and dictionary learning framework 
for real-time EEG artifact removal in mobile brain 

imaging.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

5

high accuracy of artifact separation without 
using large training datasets that have previously 
been collected.

Artifact Identification

In sparse decomposition, dictionary atoms representing 
artifacts are based on their statistical properties 
and morphological properties. In particular, kurtosis 
coefficients, variance and Pearson correlation 
coefficients regarding reference EOG (electrooculogram) 
and EMG (electromyogram) channels are calculated. 
Artifact atoms are atoms having high kurtosis (>5), large 
variance and high correlation with reference signals. 
The resulting sparse coefficients are in turn set to zero 
so that neural activity components rather than other 
components contribute to the reconstructed EEG. This 
selective down-regulation approach sharp-reduces the 
danger of eliminating actual signals of the brain.

Fig. 2: Flowchart for artifact atom detection and 
removal based on statistical and correlation-based 

thresholds.

Real-Time Implementation

In order to work in real-time, the framework uses sliding-
window processing, whereby every segment of the EEG 
is processed shorter than the time span of a single 

window (500 ms), creating a lag of less than 50 ms. C++ 
implementation uses ARM NEON SIMD vectorization to 
realize parallel design benefits of embedded processors, 
e.g. the ARM Cortex-A53. Memory consumption is pre-
optimised to minimise dynamic RAM use, and wherever 
possible all matrix operations are carried out with fixed-
point and not floating-point arithmetic, with further 
reductions in CPU overhead with no loss of precision. 
The entire system is implemented in a Raspberry Pi 4B to 
verify its implementation and confirm that the proposed 
solution is real-time and power optimal in its artifact 
removal.

Fig. 3: System architecture of the real-time EEG ar-
tifact removal framework deployed on an embedded 

ARM platform.

Experimental Setup
Dataset

The given framework was tested with the help of the 
publicly accessible University of Oldenburg Mobile Brain/
Body Imaging (MoBI) dataset. The data set includes high-
density EEG recording over so-called naturalistic tasks 
such as walking, cycling, and interactions with virtual 
reality (VR). All sessions of recording were done using 
a 64-channel active electroencephalographic system 
(EEG; g.tec) synchronized with other motion capture 
and peripheral bio-monitoring tools. Given the realistic 
artifacts caused by movement in these conditions, such 
a dataset is likely to be of interest in the evaluation of 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator

National Journal of Signal and Image Processing | Apr - June 20256

methods used to remove artifacts related to movement 
in mobile brain acquirements.

Fig. 4: Illustration of the MoBI experimental setup 
showing a participant wearing a 64-channel EEG cap 

while performing walking, cycling, and VR tasks.

Hardware Implementation

The artifact removal framework of real time was executed 
on a Raspberry Pi 4B with quad-core ARM Cortex-A53 
processor and 4 GB RAM. This was embedded platform 
selection in order to replicate the computational 
limitations of wearable neuroimaging systems. EEG data 
captured on the g.tec amplifier were relayed to the 
Raspberry Pi through USB to be preprocessed, subjected 
to sparse coding, identified as artifacts, and resurrected 
over the device. This was optimized in C++ and ARM 
NEON SIMD vectorization meaning processing latency of 
less than 50 ms on a 500 ms segment.

Baseline Methods

In order to evaluate the quality of the suggested 
framework three popular EEG artifact removal 
approaches were used as a baseline: 

•	 Blind Source Separation based on Independent 
Component Analysis (ICA) and FastICA algorithm. 

•	 Daubechies-4 mother wavelets- guiding Wavelet 
Thresholding to do multi-resolution denoising.

•	 Regression-Based Artifact Removal using EOG 
and EMG reference channels that can be used to 
remove correlated artifacts. The methods were 
selected because they are well represented in 
the literature on EEG, and they have different 
underlying principles, which allowed comparing 
them exhaustively.

Evaluation Metrics

We evaluated the performance of the proposed EEG 
artifact removal framework with respect to a group of 
well-known and descriptive performance measures. The 
change in signal quality was measured in Signal-to-Noise 
Ratio ( 0 SNR) which was calculated as the logarithm of 
the ratio of signal power to noise power--a larger 0 SNR 
signifies a stronger artifact rejection, which is typical 
in EEG denoising studies. Secondly, the retention of ERP 
(Event-Related Potential) peak amplitude was assessed 
to explain that there was no distortion of the crucial brain 
responses after the processing stage, which would distort 
the cognitive indicators. Third, latency per window was 
taken, measured- test per window, or segment of EEG 
equal to 500 ms that was assessed with regard to the 
real-time registration since this denotes a very critical 
parameter of mobile and embedded BCI systems. Finally, 
we measured computational load as percentage CPU 
usage in ARM Cortex-A53 platform to determine resource 
efficiency required to ensure the on-going functionality 
with wearables. Taken altogether, these metrics lead 
to an overall assessment of both denoising capacity 
and feasibility of its practical realization in real time. 
The relative performance of the principal metrics of 
evaluation is depicted in Figure 6.

Fig. 5: System-level diagram showing data flow from EEG cap → amplifier → Raspberry Pi processing  
pipeline → clean EEG output → BCI interface.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Results

The results of the comparative performance analysis 
of the proposed framework and baseline techniques 
of artifact removal such as ICA, wavelet thresholding 
and regression are outlined in Figure 7 and Table 2. 
The highest SNR improvement (26) was 6.8 dB obtained 
by the proposed framework followed by ICA (5.1dB), 
wavelet thresholding (4.2 dB) and regression (3.0 dB), 
implying that the proposed framework performed 
better at suppressing noise as compared to others. Our 
approach preserved 94.5 percent of the neural signal 
compared to 89.3 percent with ICA, 85.6 percent with a 
wavelet threshold, and 80.2 percent with regression and 
therefore kept distortion of underlying brain activity to 
a minimum.

Concerning processing latency, the modern framework 
using a 500 ms EEG segment was 47 ms processing latency, 
which was substantially less than ICA (220 ms) and wavelet 
thresholding (95 ms), and marginally more than regression 
(35 ms). This proves that our approach satisfies the real-
time constraint and yet has superior performance in 
denoising. The ARM Cortex-A53 platform had a CPU load 

of 38 percent load compared to 84 percent and 52 percent 
in ICA and wavelet thresholding, respectively, thus more 
computational efficiency in embedded systems but higher 
than regression in 20 percent.

On the whole, the findings support that the suggested 
technique achieves a good trade-off between artifact 
removal, preservation of the neural signal, and 
computation rates, thus can be effectively used in a 
real-time settings leading to mobile brain imaging.

Figure 7: Comparison of artifact removal 
performance across methods, showing ΔSNR, ERP 

retention, and latency.

Discussion

The offered sparse representation based system 
presents an attractive tradeoff between successful 
artifact removal and critical brain signals protection 
in mobile brain imaging applications. The fact that the 
framework led to a 6.8 dB increase in SNR and preserved 
ERP peak at the level of 94.5 percentage pointing out to 
strong rejection of variety of artifacts including ocular, 
muscular and motion artifacts without disturbing the 
event-related brain responses. These findings prove the 
adequacy of the sparse coding and adaptive dictionary 
learning approaches to the tutorial of same neural and 
artifact in the complicated, dynamic setting.

The proposed framework also results in similar or 
better artifact suppression, with a drastic reduction in 
computational load, compared to traditional methods 

Fig. 6: Comparative evaluation of artifact remov-
al methods across key metrics: SNR improvement 

(ΔSNR), ERP peak amplitude preservation, processing 
latency, and computational load.

Table 2: Comparison of artifact removal performance across methods in terms of SNR improvement, ERP preservation, 
processing latency, and computational load.

Method ΔSNR (dB) ERP Preservation (%) Latency (ms) CPU Load (%)

Proposed Framework 6.8 94.5 47 38

ICA 5.1 89.3 220 84

Wavelet Thresholding 4.2 85.6 95 52

Regression 3.0 80.2 35 20
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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like Independent Component Analysis (ICA). Third party 
validation of the proposed framework on a different 
data set shows that the proposed framework can 
generate results comparable to and preferable to those 
of the independent component analysis (ICA) method 
with a significant reduction of computational load when 
compared to their traditional counterparts. With a single 
processor, the proposed framework was found to use 
less than half the computational load when compared to 
independent component analysis (ICA), with more than 
50 percent reduction in the In addition, the per-segment 
processing latency was reduced almost five times (47 
ms vs. 220 ms with ICA) and actual real-time operation 
is possible on embedded platforms, such as the ARM 
Cortex-A53. This delay minimization is important in 
applications of closed-loop brain computer interface 
(BCI) where the feedback is vital and should be almost 
instant. The competitive measure of the framework with 
regards to wavelet thresholding and regression-based 
techniques further underscores the multifacetedness of 
the framework and its feeble-robust nature.

Sparse representation approaches to EEG artifact removal 
had already been demonstrated to be promising,[9, 10]  
but were often restricted to off-line, batch-mode 
application, with fixed dictionaries. This limitation is 
overcome by our online update on the K-SVD dictionary 
which lets the model adjust to nonstationary signal and 
artifact properties found in the mobile environment 
continuously. This flexible responsiveness facilitates 
improved discrimination of artifacts and removes the 
necessity to pretrain heavily or to fine-tune, a general 
pinch point during real-world BCI-use.

Limitations:Although the framework is beneficial, there 
are limitations associated with the proposed framework. 
To begin with, although the latency and CPU load 
reduction rates are by far better than in the case of ICA, 
the computational load is still greater than that of simple 
regression techniques, which will limit the applicability 
on devices requiring maximal power conservation 
without improvements. Second, the present artifact 
identification is based on correlation with EOG/EMG 
reference channels and it might not be always accessible 
in all mobile EEG because of which the generalizability 
of the findings might be limited. This dependency ought 
to be addressed by future work incorporating blind 
artifact detection methods into the context of sparse 
coding. Third, the framework was evaluated only on 
a mixed MoBI dataset, so that its effectiveness would 
need to be confirmed on clinical populations and other 
real-life environments to prove greater generalizability. 
Although in the current framework one would identify 
the artifacts by correlating with the reference EOG and 

EMG channels, future work will seek to gain an insight on 
the blind artifact detection technique where no auxiliary 
channels are necessary to detect the interference. 
Unsupervised clustering of dictionary atoms, statistical 
divergence patterns, and deep learning-based blind 
source separation might increase the flexibility and 
reliability of the system in various EEG recordings 
setups, in particular, in setups that lack the availability 
of reference channels.

In conclusion, the given technique is a much-needed 
filler that helps balance complexity in signal processing 
techniques with the restrictions of an embedded 
environment, a real-time mobile EEG artifact removal. 
Nevertheless, its successful outcomes precondition the 
development of new neurotechnology applications that 
presuppose precise, low-latency brain monitoring out of 
the context of a laboratory setting.

Conclusion

The proposed paper provides a general framework 
of real-time EEG artifact attenuation based on sparse 
representation and dictionary learning of the mobile brain 
image, involving a proper removal of ocular, muscular, 
and motional artifacts and keeping the important 
neural information. When run on an embedded ARM 
Cortex-A53 platform, the system has a 94.5 percent ERP 
preservation, a 6.8 dB 2SN improvement, a low latency 
(~ 47 ms per 500 ms segment) and a moderate CPU usage 
(~ 38 percent), which proves its practicality in wearable 
neurotechnology. The adaptive online dictionary 
learning adaptively tracks the nonstationary artifacts, 
better than the standard ICA, wavelet thresholding, and 
regression approaches in both reliability and processing 
speed and as such it has the possibility to be used in 
brain-computer interface and cognitive monitoring in 
naturalistic environments. The implementation of this 
work is in the forefront of biomedical signal processing 
in that we present a scalable, real-time artifact removal 
framework which improves signal fidelity of the EEG in 
highly mobile environments. Artifact suppression and 
processing latency improvement demonstrated in this 
paper justifies the use of wearable neurotechnology that 
could be used to relate the high-tech developments of 
signal processing and actual practice in healthcare.

Future Work

Future directions will involve investigating how deep 
dictionary learning can be incorporated to even better 
accommodate more complex and nonlinear artifact 
patterns, generalizing the framework to combine 
multimodal sensor data like inertial measurement 
units and electromyography to allow better artifact 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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detection, and validating clinically and over time both in 
neurorehabilitation and during neuropsychological and 
cognitive workload tasks. Also, there will be some level 
of optimization of the system to operate with ultra-low-
power devices by relying on algorithmic compression and 
hardware acceleration that will allow deployment to 
wearable and implantable systems. Such instructions are 
intended to continue to develop real-time, embedded 
EEG processing to allow broad, practically useful 
neurotechnology.
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