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ABSTRACT

MoBI Technologies offer the opportunity to record electroencephalography (EEG) in
naturalistic, unconstrained conditions; still, the application of these technologies is
limited by extreme signal contamination due to ocular, muscular and motion artifacts
and environmental noise. These artifacts are superimposed on areas of neural
frequencies and hence the removal of these frequencies without altering brain signals is
an ongoing challenge especially in mobile platforms with limited resources during real-
time processing. The paper will describe a new latency-tradeoff and signal processing
framework, based on sparse representation, adaptive learned dictionaries and statistical
artifacts classification, that can perform efficient, real-time artifact removal in MoBlI
applications. The method is a union between high performance adaptive filtering and
sparse coding with system optimization to operate as an embedded system. Through the
proposed method, there is segmentation and decomposition of incoming EEG streams
into overlapping windows into a combination of sparse coefficient vectors based on
the Orthogonal Matching Pursuit (OMP) performed in adaptively trained overcomplete
dictionary. The dictionary is online-subsequently updated utilizing a low computational
burden K-SVD variant ensuring renewing EEG structures and atom specializing to
artifacts founded on the statistical properties e.g. kurtosis, variance, and correlation
with reference EOG/EMG channels. There is selective attenuation of artifact coefficients
which can reconstruct the clean EEG signals with minimal distortion. It was examined
with publicly available Mobile Brain/Body Imaging data dealing with walking, cycling,
and virtual reality trials. Compared to Independent Component Analysis (ICA), wavelet
thresholding and regression-based methods, the proposed approach provided an average
SNR gain of 6.8 dB, 94.5 percent ERP peak retention and 47 ms latency per 500 ms
window runtime on an ARM Cortex-A53 embedded platform with less than 40 percent
CPU resource utilisation. These findings validate the technique as applicable to non-
stop, real-on-device EEG artifact suppression, in real-time removing the need to use
brain computing interface (BCl) and neurofeedback in real, portable conditions. The
suggested framework falls in between the high-fidelity EEG denoising and embedded
mobility and provides a scalable solution to next-generation mobile neurotechnology.
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INTRODUCTION

Electroencephalography (EEG) is one of the most popular
non-invasive neuroimaging techniques that can provide
time resolution in milliseconds, thus it is very appropriate
to investigate the brain activity during the cognitive and
motor tasks. More recently, the Mobile Brain Imaging
paradigm (MoBl) has evolved which allows EEG data
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to be recorded during naturalistic, real-life scenarios,
including physical activity like walking or riding a bicycle,
and high-immersion virtual reality, among others. As the
MoBI opens more options of neurophysiological studies
and brain-computer interfaces (BCl), new challenges
are also posed, the most prominent of which is that EEG
data are as consistently contaminated with non-EEG
signals (including ocular (e.g., blinks, saccades), muscle
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(EMG), and motion artifacts, as well as environmental
EM and other sources of electromagnetic interference.
Such sources usually co-exist with neurophysiological
frequency bands (0.5-45 Hz) and their removal can tend
to distort the real data of the neural activity, especially
on a real time processing with resource-limited mobile
devices.

Standard methods of artifact removal are significantly
limited in application to MoBl settings. Bandpass
filtering has the capability of blocking some of the noise
components and eradicates neural information randomly
at overlapping frequencies. Methods based on regression
analysis necessitate the involvement of an auxiliary
channel of reference (EOG/EMG), and impose sensitivity
with regards to reference quality and the assumptions of
linearity. The Independent Component Analysis (ICA) has
been another very popular algorithm to preprocess the
offline EEG; although it is computationally expensive,
requires batch data and is not applicable to be usedinreal
time in an embedded system. The wavelet thresholding
has the capacity to extract multi-resolution features;
however, it suffers signal artifacts due to manual tuning
of parameters, and difficulty in nonstationary situations.

Alternatively, sparse representation and dictionary
learning presents a mighty solution in removing EEG
artifacts wherein a signal is represented as a sparse
combination of atoms of a basis in an overcomplete
dictionary. Artifacts and clean signals occupy different
dictionaries spaces and hence the possibility to suppress
particular dictionaries components (related to artifacts)
and leave intact the other brain activity components.
Previous literature showed that sparse representation
can be a promising method of EEG reconstruction but
most of the existing algorithms are all offline, static and
computational intensive, which make them impractical
in mobile, real time applications.
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Our online sparse representation and adaptive
dictionary learning framework has been proposed with
new architecture that is specifically suited to real-time
EEGE artifact removal in MoBI systems to address the
above stated limitations. A sparse coding step based on
the Orthogonal Matching Pursuit (OMP) algorithm and
an online dictionary updating technique using K-SVD is
utilized within the framework, which enables the system
to adapt the EEG activity and the artifacts to the changing
conditions of each recording session. The system is
designed with latency optimization in the entire pipeline
with a demonstrated sub-50 ms per 500 ms window on an
ARM Cortex-A53 embedded processor making on-device
deployment possible in wearable neuroimaging. The
suggested framework has the contribution to the wider
field of biomedical signal processing of the advancing
real-time denoising methodologies with dynamic mobile
neuroimaging settings. The methodology combines
adaptive sparse coding and dictionary learning to succeed
in tackling key issues in the EEG signal enhancement,
which is a fundamental problem in biomedical signal
analysis, whose applications variationally span the
sphere of clinical diagnostics, the brain-computer
interface, and many others.

The key outputs of the work can be summarized in the
following way. We propose a new online real-time setup
that uses online sparse representation based algorithm,
able to dynamically learn and adapt dictionary atoms and
thus has a high success rate in controlling nonstationary
EEG artifacts successful in a MoBI scenario. Second, we
propose a latency-optimized structure that makes our
scheme well suited to running in real-time on small-sized
embedded devices and thus fills the gap between high-
performance summarization technologies and wearable
systems. Third, we develop and test the framework in
an integrated implementation, and perform end-to-
end test on an ARM Cortex-A53 chip, to show that it is
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Fig. 1: Sparse Representation and Adaptive Dictionary Learning Framework for Real-Time EEG Artifact Removal
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possible to deploy in real-life brain computer interface
applications on mobile devices. Fourth, we engage in
the full benchmarking of existing techniques, including
ICA, wavelet thresholding, and regression-based artifact
removal, on MoBl data sets and measure results both
in SNR increase, preservation of ERP and latency of
processing. The presented method thus out-performs
the existing solutions in terms of artifact suppression (ff)
(folded back SNR (ff) + 6.8 dB), higher retention of ERPs
(94.5%), and much reduced latency (1/4 of ICA based
approaches) with minimal computational overheads that
are ideal in continuous, in-field application of neuro-
technologies.

RELATED WORK

The task of removing artifacts during EEG may be revealed
in a multitude of studies that approximate removing
artifacts both by conventional filtering techniques and
novel machine learning methods. Each method has
uniqueness in terms of advantages and disadvantages
where Mobile Brain Imaging (MoBI) is concerned and
resource constraints and real-time functional operation
are important.

A. Filtering-Based Methods

One of the oldest methods of preventing artifacts in EEG
is the Finite Impulse Response (FIR) and Infinite Impulse
Response (lIR) filtering of the signal.["! These techniques
are effective in cutting down on narrowband noise e.g.
power-line interference (50/60 Hz) by suppressing
particular frequency regions. They, however, perform
poorly when applied to handle broad-band artifacts such
as electromyographic (EMG) activity or disturbances
that occur due to motion and cover a similar frequency
range to that of the nerves.? Additionally, it may cause
important information in neural neighborhood to be
filtered off thus constraining its applicability in high
fidelity MoBI situations.

B. Blind Source Separation (BSS)

In offline preprocessing of EEG data Blind Source
Separation techniques (specifically, Independent
Component Analysis, ICA) are with frequent occurrence
used to separate and eliminate artifacts.’®» 1 EEG ICA
represents the statistical independence of statistically
independent components, which could be detected and
rejected, suppressed, based on the artifact-related
sources. Although ICA performs well on artifact removal
in controlled laboratory conditions, the implementation
has two significant limitations when applied in MoBI
apparatus: (1) large amount of data is required to
stabilize decomposition drawing-it inevitably not suitable
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in a streaming application and (2) the data processing
overhead is high compared to computing capacity of
embedded devices.™ 'l There are variants like Adaptive
ICAS " which tries to handle nonstationary artifacts yet
still are resource consuming.

C. Wavelet-Based Methods

The wavelet transform derived denoising techniques
take advantage of multi-resolution representation
of wavelets by breaking down EEG into frequency
subbands, especially artifacts by applying threshold.
U, 151 The method is flexible enough in the analysis of
transient and non-transient noise. But its execution is
sensitive to wavelet basis as well as thresholding values.
8 121 Moreover, it proves difficult to adapt to the mobile
environment in real time to more dynamic artifact
properties.

D. Sparse Representation and Dictionary Learning
Approaches

Sparse representation is an important tool that uses
EEG as a linear guide of limited basis atoms of an
over-complete dictionary.”? This enables extraction
of structured neural patterns out of artifact-related
patterns, usually having different statistical and
morphological properties. Further, dictionary learning
approaches, like K-SVD, optimise the basis set to signal
properties, and this may benefit artifact separation.
Other researchers like Elad et al.l'® 3] have shown the
usefulness of sparse coding in EEG denoising process
especially offline. Current approaches however have the
crucial draw back of limited applications of MoBI into
three broad categories:

o Offline Processing: This type of processing
with large amounts of EEG is carried out most
frameworks, which are not suited to the real-
time BCI or neurofeedback.

« Static Dictionaries: Pre-existing dictionaries are
not able to change depending on nonstationary
artifacts that are witnessed in dynamic
environments.

« Computational Overhead: Simple sparse coding
algorithms and dictionary learning methods
require a lot of computational resources to run,
thus cannot be embedded in practice before
being optimized.

E. Comparative Assessment

Table 1 summarizes the upsides and downsides of the
above-mentioned approaches with regard to MoBlI.
As compared to the currently existing solutions, the
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Table 1: Comparative Analysis of EEG Artifact Removal Methods in MoBI Contexts

Artifact Types Real-Time Computational
Method Addressed Adaptability Feasibility Load Limitations in MoBI
FIR/IIR Filtering Narrowband Low High Low Fails against broadband
noise artifacts; possible signal
distortion
ICA (BSS) Ocular, EMG, Medium Low High Requires batch data;
some motion high latency
Wavelet Thresholding Transient and Medium Moderate Medium Sensitive to parameters;
stationary noise poor adaptation to
nonstationary noise
Sparse Representation Ocular, EMG, Low-Medium Low High Static dictionary; offline
(Offline) motion only
Proposed Framework Ocular, EMG, High High Low-Medium Requires initial
motion, dictionary seeding
environmental

bottleneck of real-time processing within the proposed
framework is based on the combination of Orthogonal
Matching Pursuit (OMP) and online K-SVD dictionary
learning, which makes it possible to gradually follow
the changes in the patterns of the artifacts. The
latter also supports operation with low latency on ARM
Cortex-A53 embedded platforms, unable to be offered
by the traditional approaches to ICA or offline sparse
representation.

METHODOLOGY
Framework Overview

The framework developed to remove EEG artifacts
in real-time is to be applied on mobile brain imaging
(MoBI) platforms with limited power capabilities and
requirements of the minimal latency. Figure 1 shows
three primary stages that constitute the processing
pipeline: Preprocessing, sparse coding and adaptive
dictionary learning.

e Preprocessing: Raw EEG signals obtained by a
multi-channel mobile EEG system undergo a
zero-phase FIR bandpass filter (0.5-45 Hz) prior
to detection in order to filter-out baseline drift
and high-frequency noise and retain the neural
frequency range of interest. Filtered signals are
next divided into 500 ms overlapped windows
(50% overlap) to provide temporal continuity
of the filtered signal and also to allow the use
of transient artifacts without large processing
delay.

o Sparse Coding: Sparse EEG data received by
each window is expressed as a sparse collection
of dictionary atoms input using the Orthogonal
Matching Pursuit (OMP) algorithm. The sparse

4 I

representation ensures that not so many atoms
are active at once, which allows to segregate
between the activity in the neural network and
the structured artifacts. The implementation in
this stage is done with the help of an optimized,
a-fixed, iteration OMP variant which acclimatized
the expression of accuracy against the real-time
execution.

« Dictionary Learning: A dynamic environment
of artifacts within the MoBl contexts is
accommodated by deforming the dictionary
based on newly accessible pure EEG segments
using an online K-SVD algorithm. This enables
dictionary to change dynamically but still giving
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Fig. 1: Block diagram of the proposed sparse
representation and dictionary learning framework
for real-time EEG artifact removal in mobile brain

imaging.
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high accuracy of artifact separation without
using large training datasets that have previously
been collected.

Artifact Identification

In sparse decomposition, dictionary atoms representing
artifacts are based on their statistical properties
and morphological properties. In particular, kurtosis
coefficients, variance and Pearson correlation
coefficients regarding reference EOG (electrooculogram)
and EMG (electromyogram) channels are calculated.
Artifact atoms are atoms having high kurtosis (>5), large
variance and high correlation with reference signals.
The resulting sparse coefficients are in turn set to zero
so that neural activity components rather than other
components contribute to the reconstructed EEG. This
selective down-regulation approach sharp-reduces the
danger of eliminating actual signals of the brain.

Input: Sparse Coefficients
+ Atom Stats

l

Compute Features

» Kurtosis Ootiari
+ Corr(EOG/EMG) o P
* Energy (e g. Update
» Frequency Band Ratio : “hreshoids /
. Dictionary
+ Learning)

Thresholding

|

|

[ Mark Atom as Artifact

l

[ Zero Coefficients J

l

[ Reconstruction J

¥

l Clean EEG l

Fig. 2: Flowchart for artifact atom detection and
removal based on statistical and correlation-based
thresholds.

Real-Time Implementation

In order to work in real-time, the framework uses sliding-
window processing, whereby every segment of the EEG
is processed shorter than the time span of a single
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window (500 ms), creating a lag of less than 50 ms. C++
implementation uses ARM NEON SIMD vectorization to
realize parallel design benefits of embedded processors,
e.g. the ARM Cortex-A53. Memory consumption is pre-
optimised to minimise dynamic RAM use, and wherever
possible all matrix operations are carried out with fixed-
point and not floating-point arithmetic, with further
reductions in CPU overhead with no loss of precision.
The entire system is implemented in a Raspberry Pi 4B to
verify its implementation and confirm that the proposed
solution is real-time and power optimal in its artifact
removal.

Hardware Platform

!

Data |,
Acquisition

Fig. 3: System architecture of the real-time EEG ar-
tifact removal framework deployed on an embedded
ARM platform.

EXPERIMENTAL SETUP
Dataset

The given framework was tested with the help of the
publicly accessible University of Oldenburg Mobile Brain/
Body Imaging (MoBI) dataset. The data set includes high-
density EEG recording over so-called naturalistic tasks
such as walking, cycling, and interactions with virtual
reality (VR). All sessions of recording were done using
a 64-channel active electroencephalographic system
(EEG; g.tec) synchronized with other motion capture
and peripheral bio-monitoring tools. Given the realistic
artifacts caused by movement in these conditions, such
a dataset is likely to be of interest in the evaluation of
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methods used to remove artifacts related to movement
in mobile brain acquirements.
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Fig. 4: Illustration of the MoBIl experimental setup
showing a participant wearing a 64-channel EEG cap
while performing walking, cycling, and VR tasks.

Hardware Implementation

The artifact removal framework of real time was executed
on a Raspberry Pi 4B with quad-core ARM Cortex-A53
processor and 4 GB RAM. This was embedded platform
selection in order to replicate the computational
limitations of wearable neuroimaging systems. EEG data
captured on the g.tec amplifier were relayed to the
Raspberry Pi through USB to be preprocessed, subjected
to sparse coding, identified as artifacts, and resurrected
over the device. This was optimized in C++ and ARM
NEON SIMD vectorization meaning processing latency of
less than 50 ms on a 500 ms segment.

Baseline Methods

In order to evaluate the quality of the suggested
framework three popular EEG artifact removal
approaches were used as a baseline:

—> @ @ ® @cco |—>

Amplifier

Raspberry Pi
processing pipeline output

o Blind Source Separation based on Independent
Component Analysis (ICA) and FastICA algorithm.

« Daubechies-4 mother wavelets- guiding Wavelet
Thresholding to do multi-resolution denoising.

» Regression-Based Artifact Removal using EOG
and EMG reference channels that can be used to
remove correlated artifacts. The methods were
selected because they are well represented in
the literature on EEG, and they have different
underlying principles, which allowed comparing
them exhaustively.

Evaluation Metrics

We evaluated the performance of the proposed EEG
artifact removal framework with respect to a group of
well-known and descriptive performance measures. The
change in signal quality was measured in Signal-to-Noise
Ratio ( 0 SNR) which was calculated as the logarithm of
the ratio of signal power to noise power--a larger 0 SNR
signifies a stronger artifact rejection, which is typical
in EEG denoising studies. Secondly, the retention of ERP
(Event-Related Potential) peak amplitude was assessed
to explain that there was no distortion of the crucial brain
responses after the processing stage, which would distort
the cognitive indicators. Third, latency per window was
taken, measured- test per window, or segment of EEG
equal to 500 ms that was assessed with regard to the
real-time registration since this denotes a very critical
parameter of mobile and embedded BCI systems. Finally,
we measured computational load as percentage CPU
usage in ARM Cortex-A53 platform to determine resource
efficiency required to ensure the on-going functionality
with wearables. Taken altogether, these metrics lead
to an overall assessment of both denoising capacity
and feasibility of its practical realization in real time.
The relative performance of the principal metrics of
evaluation is depicted in Figure 6.

Clean EEG
BCl interface

Fig. 5: System-level diagram showing data flow from EEG cap — amplifier — Raspberry Pi processing
pipeline — clean EEG output — BCl interface.
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Fig. 6: Comparative evaluation of artifact remov-
al methods across key metrics: SNR improvement
(ASNR), ERP peak amplitude preservation, processing
latency, and computational load.

ResuLTS

The results of the comparative performance analysis
of the proposed framework and baseline techniques
of artifact removal such as ICA, wavelet thresholding
and regression are outlined in Figure 7 and Table 2.
The highest SNR improvement (26) was 6.8 dB obtained
by the proposed framework followed by ICA (5.1dB),
wavelet thresholding (4.2 dB) and regression (3.0 dB),
implying that the proposed framework performed
better at suppressing noise as compared to others. Our
approach preserved 94.5 percent of the neural signal
compared to 89.3 percent with ICA, 85.6 percent with a
wavelet threshold, and 80.2 percent with regression and
therefore kept distortion of underlying brain activity to
a minimum.

Concerning processing latency, the modern framework
using a 500 ms EEG segment was 47 ms processing latency,
which was substantially less than ICA (220 ms) and wavelet
thresholding (95 ms), and marginally more than regression
(35 ms). This proves that our approach satisfies the real-
time constraint and yet has superior performance in
denoising. The ARM Cortex-A53 platform had a CPU load

of 38 percent load compared to 84 percent and 52 percent
in ICA and wavelet thresholding, respectively, thus more
computational efficiency in embedded systems but higher
than regression in 20 percent.

On the whole, the findings support that the suggested
technique achieves a good trade-off between artifact
removal, preservation of the neural signal, and
computation rates, thus can be effectively used in a
real-time settings leading to mobile brain imaging.

I ASNR | ERP Preservation M Latency
9 - 250
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Wavelet
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Removal Methods
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Proposed ICA
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Figure 7: Comparison of artifact removal
performance across methods, showing ASNR, ERP
retention, and latency.

DiscussiON

The offered sparse representation based system
presents an attractive tradeoff between successful
artifact removal and critical brain signals protection
in mobile brain imaging applications. The fact that the
framework led to a 6.8 dB increase in SNR and preserved
ERP peak at the level of 94.5 percentage pointing out to
strong rejection of variety of artifacts including ocular,
muscular and motion artifacts without disturbing the
event-related brain responses. These findings prove the
adequacy of the sparse coding and adaptive dictionary
learning approaches to the tutorial of same neural and
artifact in the complicated, dynamic setting.

The proposed framework also results in similar or
better artifact suppression, with a drastic reduction in
computational load, compared to traditional methods

Table 2: Comparison of artifact removal performance across methods in terms of SNR improvement, ERP preservation,
processing latency, and computational load.

Method ASNR (dB) ERP Preservation (%) Latency (ms) CPU Load (%)
Proposed Framework 6.8 94.5 47 38
ICA 5.1 89.3 220 84
Wavelet Thresholding 4.2 85.6 95 52
Regression 3.0 80.2 35 20
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like Independent Component Analysis (ICA). Third party
validation of the proposed framework on a different
data set shows that the proposed framework can
generate results comparable to and preferable to those
of the independent component analysis (ICA) method
with a significant reduction of computational load when
compared to their traditional counterparts. With a single
processor, the proposed framework was found to use
less than half the computational load when compared to
independent component analysis (ICA), with more than
50 percent reduction in the In addition, the per-segment
processing latency was reduced almost five times (47
ms vs. 220 ms with ICA) and actual real-time operation
is possible on embedded platforms, such as the ARM
Cortex-A53. This delay minimization is important in
applications of closed-loop brain computer interface
(BCI) where the feedback is vital and should be almost
instant. The competitive measure of the framework with
regards to wavelet thresholding and regression-based
techniques further underscores the multifacetedness of
the framework and its feeble-robust nature.

Sparse representation approaches to EEG artifact removal
had already been demonstrated to be promising,l® '
but were often restricted to off-line, batch-mode
application, with fixed dictionaries. This limitation is
overcome by our online update on the K-SVD dictionary
which lets the model adjust to nonstationary signal and
artifact properties found in the mobile environment
continuously. This flexible responsiveness facilitates
improved discrimination of artifacts and removes the
necessity to pretrain heavily or to fine-tune, a general
pinch point during real-world BCl-use.

Limitations:Although the framework is beneficial, there
are limitations associated with the proposed framework.
To begin with, although the latency and CPU load
reduction rates are by far better than in the case of ICA,
the computational load is still greater than that of simple
regression techniques, which will limit the applicability
on devices requiring maximal power conservation
without improvements. Second, the present artifact
identification is based on correlation with EOG/EMG
reference channels and it might not be always accessible
in all mobile EEG because of which the generalizability
of the findings might be limited. This dependency ought
to be addressed by future work incorporating blind
artifact detection methods into the context of sparse
coding. Third, the framework was evaluated only on
a mixed MoBIl dataset, so that its effectiveness would
need to be confirmed on clinical populations and other
real-life environments to prove greater generalizability.
Although in the current framework one would identify
the artifacts by correlating with the reference EOG and

S I

EMG channels, future work will seek to gain an insight on
the blind artifact detection technique where no auxiliary
channels are necessary to detect the interference.
Unsupervised clustering of dictionary atoms, statistical
divergence patterns, and deep learning-based blind
source separation might increase the flexibility and
reliability of the system in various EEG recordings
setups, in particular, in setups that lack the availability
of reference channels.

In conclusion, the given technique is a much-needed
filler that helps balance complexity in signal processing
techniques with the restrictions of an embedded
environment, a real-time mobile EEG artifact removal.
Nevertheless, its successful outcomes precondition the
development of new neurotechnology applications that
presuppose precise, low-latency brain monitoring out of
the context of a laboratory setting.

CONCLUSION

The proposed paper provides a general framework
of real-time EEG artifact attenuation based on sparse
representation and dictionary learning of the mobile brain
image, involving a proper removal of ocular, muscular,
and motional artifacts and keeping the important
neural information. When run on an embedded ARM
Cortex-A53 platform, the system has a 94.5 percent ERP
preservation, a 6.8 dB 2SN improvement, a low latency
(~ 47 ms per 500 ms segment) and a moderate CPU usage
(~ 38 percent), which proves its practicality in wearable
neurotechnology. The adaptive online dictionary
learning adaptively tracks the nonstationary artifacts,
better than the standard ICA, wavelet thresholding, and
regression approaches in both reliability and processing
speed and as such it has the possibility to be used in
brain-computer interface and cognitive monitoring in
naturalistic environments. The implementation of this
work is in the forefront of biomedical signal processing
in that we present a scalable, real-time artifact removal
framework which improves signal fidelity of the EEG in
highly mobile environments. Artifact suppression and
processing latency improvement demonstrated in this
paper justifies the use of wearable neurotechnology that
could be used to relate the high-tech developments of
signal processing and actual practice in healthcare.

FUTURE WORK

Future directions will involve investigating how deep
dictionary learning can be incorporated to even better
accommodate more complex and nonlinear artifact
patterns, generalizing the framework to combine
multimodal sensor data like inertial measurement
units and electromyography to allow better artifact
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detection, and validating clinically and over time both in
neurorehabilitation and during neuropsychological and
cognitive workload tasks. Also, there will be some level
of optimization of the system to operate with ultra-low-
power devices by relying on algorithmic compression and
hardware acceleration that will allow deployment to
wearable and implantable systems. Such instructions are
intended to continue to develop real-time, embedded
EEG processing to allow broad, practically useful
neurotechnology.
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