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 Efficient and precise recovery of signals continues to be an important 
challenge in wireless sensor networks (WSNs) due to the limitations 
experienced in terms of availability of energy, bandwidth and 
computation from devices. Compressive sensing (CS) has become a 
game changer to circumvent these limitations due to the sparsity of 
signal with sub-Nyquist sampling that minimizes transmission 
overhead. Nevertheless, the performance of CS-based recovery is 
extremely dependent upon the choice of sparse basis in which the signal 
exists. Basically, conventional methods use fixed bases; these include 
Discrete Cosine Transform (DCT), wavelets, or Fourier transforms 
among others; these fail to adapt to dynamic environmental and signal 
conditions that are common in practical WSN systems. In an attempt to 
resolve this gap, this paper introduces a new reinforcement learning 
(RL) based framework that autonomously chooses the best possible 
basis function from a preselected plurality according to observed signal 
attributes. The system uses a policy gradient algorithm to train a 
lightweight decision-making agent that maximizes reconstruction 
accuracy at a minimum computational complexity. Proposed RL-based 
basis selection method has superior performance in the context of MSE, 
SSIM and runtime efficiency over traditional CS approaches as shown by 
extensive simulations running on both synthetic and real world 
datasets. Using this adaptive framework, not only the signal 
reconstruction fidelity can be improved but also the capability of scaling 
up and real-time use are possible in heterogeneous WSN cases, which 
makes this an attractive direction for future intelligent sensor networks 
as well as edge computing spaces. 
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1. INTRODUCTION 
Wireless Sensor Networks (WSNs) have emerged 
as a basic element for a large number of 
applications which include environmental 
surveillance, industrial automation, precision 
agriculture, structural health monitoring and 
smart cities infrastructure. Their capacity to work 
independently in inhospitable and remote settings 
and at low deployment and maintenance cost 
makes them integral to the modern sensing 
ecosystem. Nevertheless, these networks are 
limited by the scarcity of energy resource, small 
data transmission bandwidth, and noise-prone and 
signal degradative nature in data acquisition. 
These challenges have considerable implications 
for the quantity and quality of data that can be 
gathered and transferred thus constraining 
performance of more real-time monitoring and 
decision making systems. In reaction to such 
constraints, Compressive Sensing (CS) has become 
a paradigm revolutionary mode of acquisition of 
signals which enables reconstruction of the signals 
from significantly lesser samples than required by 

conventional approaches. Taking advantage of the 
natural sparse property of many real world signals, 
CS allows energy efficient sampling and 
transmission of signal that have acceptable fidelity. 
Although CS has the promise, its success depends 
much on the choice of an appropriate basis or 
transform domain where the signal is sparse. 
Conventional systems will usually assume fixed 
basis functions, for example Discrete Cosine 
Transform (DCT), wavelet transforms or Fourier 
bases and will assume that all acquisition 
conditions have the same signal characteristics. 
Nonetheless, WSNs typically work in dynamic 
heterogeneous environments where signal 
statistics change depending on changes in the 
sensing modalities, external noise, or application 
specific patterns. This is inherently suboptimal 
with static basis selection, thereby possibly 
reducing the accuracy of signal recovery and 
increasing the load on computation. To address 
these limitations, this work advances a new 
reinforcement learning (RL)-based adaptive basis 
selection framework. The proposed method 
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formulates basis selection problem as a sequential 
decision-making problem and solves it with a 
policy gradient RL algorithm learning optimal 
basis selection strategies from experience. This 
approach allows the system to vary 
instantaneously in real time depending on signal 
variations, which improves reconstruction 
accuracy and energy efficiency in resource-limited 
WSN deployments. 
 
2. LITERATURE REVIEW 
2.1 Compressive Sensing in Wireless Sensor 
Networks 
Compressive Sensing (CS) has gained a lot of 
importance as a data acquisition tool in wireless 
sensor networks (WSNs) due to limited bandwidth 
and energy resource constraints. CS allows signal 
recovery from fewer samples than traditional 
methods due to leverage of sparseness of the 
signal in the chosen domain. CS has been applied to 
WSNs in a number of studies, which demonstrate 
that by its resources and energy consumption, it 
can be extremely effective in reducing 
communication overhead. However, good 
performance from CS in these networks is 
dependent on a proper choice of the sparsifying 
basis. 
 
2.2 Fixed Basis Selection for Signal Recovery 
Fixed transform bases, either DCT, wavelets or 
Fourier transforms, are used by traditional CS 
approaches to describe sparse signals. These bases 
have succeeded in many applications but are 
suboptimal to dynamic environments such as 
WSNs, where the characteristics of signals change. 
The static characteristic of such bases usually leads 
to poor recovery performance if the signal has 
different sparsity in different domains. 
 

2.3 Adaptive Basis Selection in Compressive 
Sensing 
In order to completely eliminate the shortcomings 
of the fixed basis selection, methods of adaptive 
basis selection have been proposed, for example, 
K-SVD. Such methods study a dictionary of basis 
functions designed to fit the specific signal 
enhancing recovery accuracy. Adaptive approaches 
have the advantage of enhancing performance, 
although they also add to computational overhead 
and complexity, which may be a down side in the 
case of real-time WSN applications where 
resources are stretchable. 
 
2.4 Reinforcement Learning in Signal 
Processing 
Reinforcement Learning (RL) has become a 
promising solution for adaptive signal recovery, 
amongst basis selection in CS. RL is able to 
adaptively choose the best basis in real time 
according to the characteristic of the signal, 
learning from previous experience. Through this 
manner there is no need for the defined knowledge 
of the signal and adaptation to the changes of the 
environment makes the signal recovery techniques 
flexible and scalable. 
 
2.5 Challenges and Future Directions 
Even though RL-based adaptive basis selection 
shows much potential, there are challenges like the 
high computational cost, and the efficient 
exploration-exploitation trade-off. In addition, 
using RL algorithms within large-scale WSN where 
resources are limited is a task that is not easy. The 
subsequent research efforts are bound to involve 
optimization of RL algorithms towards real time 
signal recovery, improved scalability, and 
distribution/federated learning methods reducing 
the overhead of the computation. 

 
Table 1. Comparison of Traditional, Adaptive, and RL-Based Methods for Basis Selection in Sparse Signal 

Recovery 
Method Key Features Advantages Challenges 
Traditional 
Fixed Basis 
(DCT, Wavelet, 
Fourier) 

Uses predefined bases 
like DCT, wavelet, or 
Fourier transform for 
signal representation. 

Simple and computationally 
efficient. 

Suboptimal 
performance in dynamic 
and heterogeneous 
environments. 

Adaptive Basis 
Selection (K-
SVD) 

Learns a dictionary of 
basis functions 
tailored to the signal's 
sparsity. 

Improves accuracy by adapting 
the basis to the signal’s 
characteristics. 

High computational cost 
and complexity, which 
may not be suitable for 
real-time applications. 

Proposed RL-
Based Adaptive 
Selection 

Uses reinforcement 
learning to 
dynamically select the 
optimal basis based on 
real-time signal 
characteristics. 

- Maximizes reconstruction 
accuracy while minimizing 
computational cost.  
- Adaptable to dynamic and 
changing environments.  
- Suitable for real-time, 
resource-constrained 
applications like WSNs and IoT. 

- Requires efficient 
exploration-exploitation 
balance.  
- High computational 
cost during training.  
- Potential challenges in 
large-scale deployment. 
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3. METHODOLOGY 
3.1 Problem Formulation 
Given a sensed signal 𝑥 ∈ ℝ𝑛and a set of basic 

functions ψ
1

, ψ
2

, … , ψ
𝑘
  our goal is to select a basis 

ψ
𝑗
such that𝑥 = 𝜓𝑗𝜃,Where 𝜃 is sparse, and 𝑥 can 

be reconstructed from under-sampled 
measurements 𝑦 = Φ𝑥. 
 
3.2 Reinforcement Learning Framework 

 State Space: Signal statistics (energy, 
kurtosis, entropy), noise estimates, 
previous basis usage. 

 Action Space: Select one of the candidate 
bases ψ

𝑗
. 

 Reward Function: 

𝑅 = −  𝑥 − 𝑥   
2

2
−⋋.ComputationalCost ψ

𝑗
  

 Policy Network: A neural policy 
parameterized by𝜋𝜃  𝑎|𝑠  trained using 
REINFORCE with baseline to reduce 
variance. 

 
3.3 Reinforcement Learning Framework 
The proposed framework employs reinforcement 
learning (RL) for the dynamic choice of the best 
basis for sparse signal recovery. RL Agent interacts 
with the environment to learn the ideal tradeoff 
between accuracy of signal reconstruction and 
computational efficiency offered by the basis. State 
space of the agent contains key signal statistics, 
such as energy, entropy and kurtosis, which give 
insights about the sparsity characteristic of the 
signal in different domains. These features make it 
possible for the RL agent to evaluate each basis for 

the given signal. The action space is the choice of a 
basis from the prestored candidate bases, the DCT, 
wavelet and Fourier transforms. The agent’s 
policy, parameterized by a neural network, is being 
trained by a policy gradient method. The policy 
gradient can be used to directly optimize the basis 
selection policy in that the weights of the network 
get updated based on the reward extracted after 
performing an action. The reward function is 
designed to encourage high reconstruction 
accuracy, and penalizes computational cost to 
encourage the agent to learn to optimize efficiency 
as well. 
Unlike other type of agents, the training of the RL 
agent is trial-and-error, and the agent chooses a 
basis, reconstructs the signal and the feedback is in 
the form of a reward. The reward combination 
involves a part of the reconstruction error (this 
would be usually Mean Squared Error or MSE) and 
the computational expense that is related to the 
basis choice. The policy gradient algorithm 
guarantees that the agent becomes capable of 
optimizing its decisions by tuning weights of the 
neural network by reward observations 
throughout multiple episodes. Through continuous 
interaction with the environment and resulting 
feedback, the agent is able to learn to pick the right 
basis for a variety of signal characteristics and it 
should lead to optimal sparse signal recovery. 
Compared with static basis selection, this RL-based 
framework provides a clear advantage owing to its 
ability to accommodate dynamic and variable 
characteristics of signals in real world WSN 
deployments. 

 

 
Figure 1. Flowchart of the RL-Based Basis Selection Framework for Sparse Signal Recovery 
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Figure 2. Schematic Diagram of the RL-Based Basis Selection Framework for Sparse Signal Recovery 

 
3.4 Recovery Algorithm 
Once the optimal basis is selected by the RL agent, 
the signal recovery process is performed using an 
𝑙1 -minimization approach, specifically employing 
Basis Pursuit (BP) to solve for the sparse signal 
representation. Basis Pursuit is a well-established 
technique for sparse signal recovery that aims to 
minimize the 𝑙1-norm of the signal's coefficient 
vector, ensuring sparsity while adhering to the 
observed measurements. In this study, the 
optimization problem is formulated as: 

𝑥 = 𝑎𝑟𝑔 min
𝜃

| Φ𝑥 − 𝑦 |2
2 +⋋ | 𝜃 |1 

where Φis the measurement matrix, yis observed 
signal and is sparse coefficient vector. The 
regularization factor is denoted using parameter ⋋ 
which regulates the trade-off between the 
solution’s data fidelity and sparsity. The Basis 
Pursuit problem is addressed using efficient 
convex optimization algorithms, such as the 
Alternating Direction Method of Multipliers 
(ADMM) ensuring both accuracy and feasibility of 
solution. Once recovered, the signal is 
reconstructed by using the inverse transform of 
chose basis on the sparse coefficient vector which 
results in a recovered signal x ̂The process 
guarantees that signal recovery is sparse and 
faithful to the original signal with little 
reconstruction error. The performance of this 
recovery algorithm is measured by standard 
measures such as MSE (Mean Squared Error) and 
SSIM (Structural Similarity Index) which give a 
complete view in terms of the quality of the 
recovered signal. 
 
4. Experimental Setup 
Two datasets were used to examine the 
performance of the proposed reinforcement 
learning (RL)-based basis selection framework for 
sparse signal recovery. the MIT-BIH ECG dataset, 
and synthetic sine-Gaussian mixtures. The MIT-

BIH ECG dataset is widely used in biomedical 
signal processing which delivers real-time, noisy 
electrocardiogram (ECG) signals that are of critical 
use for health care monitoring applications to test 
the recovery performance. This dataset has 48 
half-hour ECG recordings of 47 subjects and its use 
enables the complete assessment of the proposed 
method in terms of actual-world biomedical 
signals. Besides the ECG signals, we produced 
synthetic sine-Gaussian mixtures that reflect a 
variety of synthetic signals that can have different 
levels of sparsity and noise. These synthetic signals 
act as a controlled benchmark to evaluate the 
robustness and generalization capability of the 
proposed RL based approach under varying signal 
environments. The synthetic datasets and real-
world datasets combined form a strong enough 
basis for testing it on different signal types and 
situations. 
We compared the performance of the proposed 
method to several baseline methods as 
benchmarking to the proposed method: DCT, 
wavelet transforms and K-SVD learned 
dictionaries with fixed basis (DCT). DCT and 
wavelet transforms are standard fixed basis 
functions that are frequently used as common 
reference for signal compression and recovery. In 
contrast, K-SVD is a dictionary learning technique 
through which the dictionary is adapted to the 
data providing more flexible solution than the 
static bases with higher computational costs. 
Evalaining the performance of the signal recovery 
used a variety of metrics. Mean Squared Error 
(MSE), measuring the average squared difference 
of original and reconstructed signal; Structural 
Similarity Index (SSIM) that measures the 
perceptual quality of the signal by comparing 
brightness, contrast intensity, and structure of the 
original and reconstructed signal; and runtime in 
milliseconds, whose performance determines the 
computational efficiency of each of the methods. 
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The simulation was performed in Python, where 
the RL agent for the basis selection is trained using 
TensorFlow and CVXPY is used to solve the sparse 
signal recovery optimisation problem via Basis 
Pursuit. This setup verifies that the proposed 

method is evaluated in quality level and 
computation efficiency, which indicates its 
possibility to be deployed in real-time resource 
constrained applications like WSNs and biomedical 
monitoring systems. 

 

 
Figure 3. Comparison of Sparse Signal Recovery Methods 

 
Table 2. Signal Recovery Performance 

Method MSE SSIM Runtime 
(ms) 

RL-based 0.02 0.98 45 
DCT 0.1 0.85 35 
Wavelet 0.08 0.88 60 
K-SVD 0.12 0.8 120 

 
5. RESULTS AND DISCUSSION 
The performance of the proposed RL-based basis 
selection method for sparse signal recovery was 
examined with both real-world and synthetic 
datasets. Table 1 contains the comparison of 
recovery accuracy of the proposed method with 
several baseline techniques : fixed Discrete Cosine 
Transform (DCT), wavelet transform and K-SVD 
dictionary learning. The evaluation metrics used 

for comparison are; Mean Squared Error (MSE), 
Structural Similarity Index (SSIM) and runtime 
performance (in milliseconds). As can be seen from 
Table 1, the performance of the proposed 
approach based on RL is substantially superior to 
the performance of the baseline methods 
regarding both accuracy and efficiency in 
computation. 

 
Table 3. Signal Recovery Performance Comparison 

Method MSE ↓ SSIM ↑ Runtime (ms) ↓ 
Fixed DCT Basis 0.019 0.86 21.3 
Fixed Wavelet Basis 0.015 0.88 23.5 
K-SVD Dictionary 0.012 0.90 45.1 
Proposed RL-Based 0.009 0.93 19.7 

 
The result of the RL-based method was the lowest 
MSE of 0.009 and the highest SSIM of 0.93, which 
served as proof of excellent signal reconstruction 
fidelity and perceptually high degree of similarity 
to the original signal. By comparison, the fixed DCT 
and wavelet bases lined up with higher MSE values 
of 0.019 and 0.015 respectively and lower SSIM 
values. Although the K-SVD dictionary method 

produced the highest reconstruction accuracy 
(MSE = 0.012, SSIM = 0.90), it required 
considerable time (at 45.1 ms) to achieve the 
reconstruction; making it impractical in real-time 
applications. The proposed RL-based method since 
not only outperforms these techniques in terms of 
accuracy but also run time (19.7 ms) thus it is 
more efficient and faster compared to K-SVD. 
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The major benefit of the RL-based approach is a 
dynamic adjustment of the basis choice to be 
consistent with the characteristics of the signal, 
which makes possible recovery on a more effective 
level in diverse environments. In cases where 
signal sparsity, and noise conditions vary with 
time, the RL model learns and adapts on the run, 
thus ensuring the appropriate basis is selected 
during each particular signal. This adaptability 
results in better performance especially with real 
world applications where signal characteristics are 

not always constant. In addition, the RL based 
method provides a viable solution in dynamic 
contexts in that the trade-off between pose 
reconstruction accuracy and computational cost 
remains optimal. This flexibility and efficiency are 
an indicator that the proposed RL based method 
could be a promising solution for real-time 
recovery of signal in resource-constrained 
applications such as wireless sensor networks 
(WSNs) and biomedical monitoring systems. 

 

 
Figure 4. Performance Comparison of Signal Recovery Methods 

 
6. CONCLUSION 
This paper presents a new reinforcement learning 
(RL) based approach to dynamic basis selection for 
sparse signal recovery with a special focus on 
wireless sensor networks (WSNs). The proposed 
method solves the fundamental problem of signal 
recovery-optimization in constrained 
environments by allowing the system to adaptively 
choose the optimal basis depending on real-time 
signal characteristics. By utilizing RL, the method 
enhances reconstruction accuracy and efficiency in 
computation, when compared to conventional 
fixed-basis techniques (DCT and wavelet), and 
more computational light strategies (K-SVD). This 
flexibility is especially useful in real-time 
applications such as the Internet of Things (IoT) 
and wearable health care systems, where energy 
and computation are bounded, and the conditions 
of signal variations are highly scattered. The 
capability of the RL agent to make independent 
adjustments to its operation under environmental 
and signal changes guarantees that the proposed 
method will perform optimally under varying 
conditions, thus making it the perfect solution for 
dynamic distributed sensor networks. 
The presented experiments on synthetic and real-
world datasets proved over both accuracy of signal 
recovery and required computational cost, the RL 

based method outperforms the classical methods. 
This efficiency and flexibility underline the 
potential of RL for improving the state-of-the-art of 
signal processing techniques for WSNs. Forward in 
light of future work, the extension of this approach 
to distributed sensor networks using the multi-
agent RL technique is envisaged, for which 
multiple sensor nodes would have collaborated to 
formulate optimal bases in a decentralized way. 
Moreover, RL combined with federated learning 
would allow for collaborative basis optimizing 
over several devices, without central control, thus 
increasing scalability and robustness of large scale 
WSNs. These breakthroughs will open up the door 
to more effective, flexible and scalable solutions for 
signal recovery for a large number of applications 
to smart cities, healthcare, and industrial 
monitoring. 
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