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 In the context of ever growing urbanization and aging structures, safety 
and longevity aside, Structural Health Monitoring (SHM) have played a 
very important role in assuring the safety and continued life of civil 
infrastructure. Continuous monitoring using dense sensor networks is 
now feasible with the coming of Internet of Things (IoT). But yet, the 
challenges such as high communication overhead, latency, and power 
consumption to hinder real time responsiveness and scalability. In this 
paper, we present a novel edge-aware signal processing framework that 
addresses the aforementioned limitations by utilizing an edge 
computing capability available within the IoT sensor nodes. The 
proposed framework integrates a lightweight, yet efficacious signal 
processing pipeline consisting of real time wavelet based noise 
reduction, feature extraction and computation of important vibration 
and strain parameters, and localized anomaly detection through 
compressed machine learning models designed for the edge. We 
introduce a hierarchy, in which raw sensor data is processed on the 
edge, thus reducing the need to send high bandwidth transmissions to 
the cloud. To prove the merit of the framework, we developed a 
simulated SHM testbed of bridge infrastructure, and performance 
improvements were experimentally demonstrated as a result. It was 
demonstrated that the system achieved anomaly detection accuracy of 
96.4%, reduced the data transmission bandwidth by 42% while still 
providing real time operation with decision latency minimal than 120 
ms. The results illustrate the framework’s potential as a scalable, energy 
efficient, intelligent, and enable standalone or precursory systems to 
populate smart cities and industrial environments of the next 
generation. 
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1. INTRODUCTION 
Structural Health Monitoring (SHM) plays an 
important role in the modern civil infrastructure 
management by enabling the evaluation of 
structural integrity, early warning of damage, and 
preventing catastrophic damage. As more and 
more critical infrastructure such as bridges, 
buildings, and dams become complex and age, 
there is a greater and greater demand for real-
time, continuous, autonomous real time 
monitoring systems. Typically, in traditional SHM 
systems, data collected from sensors is transmitted 
to a central data acquisition platform remote from 
the site in question, where it is sent for analysis 
and processing. Though this model provides us 
with powerful computation and data storage 
capabilities, it enables us to break many of the 
above rules; as such, we incur greater latency, 
greater sensitivity to network failures, greater 
power consumption, and bandwidth restrictions. 
Furthermore, the centralized approach is unable to 

cost effectively scale with the amount of data 
produced by densely deployed sensors in large 
infrastructure networks. 
To address these challenges, there has been a 
convergence of IoT and edge computing 
technologies onto a more distributed, responsive 
SHM paradigm. Preliminary data processing and 
decision making takes place at or near the source 
of data generation, the edge nodes, thus cutting 
down on the use of cloud resources and latency. A 
novel edge-aware signal processing framework for 
SHM in IoT-enabled environment is proposed in 
this paper. It is a modular architecture that applies 
real time noise filtering, feature extraction, and 
anomaly detection at the edge (right where the 
data are) using lightweight (trained specifically for 
resource constrained devices) machine learning 
models. This approach locally distributes the 
intelligence of the SHM monitoring system as 
means to improve the responsiveness and 
reliability of SHM, as well as provide advanced 
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advantages with regard to scalability, energy 
efficiency, and bandwidth conservation. 
Simulations and empirical evaluations validate the 
system and show the system to be capable of 
detecting structural anomalies while satisfying real 
time operational needs. 
 
2. LITERATURE REVIEW 
2.1 IoT-Based Structural Health Monitoring 
Systems 
Internet of Things (IoT) technologies have now 
revolutionized SHM by offering the capacity of real 
time sensing, communication and remote 
diagnostics. A large number of studies, like the 
ones done by Li et al. (2022) and Zhang et al. 
(2021) have explored wireless sensor network 
deployment for continuous structural assessment. 
They tend to carry large quantities of raw data in 
bulk to centralized servers or to the cloud platform 
for analysis. However, this cloud centric 
architecture is plagued with major drawbacks like 
delay, limited bandwidth and potential for 
communication bottlenecks especially in big 
deployments or in remote environment with 
breeding connectivity. 
 
2.2 Edge Computing in SHM Applications 
In order to solve these problems of centralized 
processing, researchers are increasingly 
embedding edge computing into the SHM 
framework. This paradigm was formulated by 
Ahmed et al. (2023), which proposed an edge-
enhanced architecture that pre processes and 
analyzes sensor data locally on edge devices that 
reduces the load of the cloud infrastructure and 
faster response time. All these efforts are an 
important step forward, however, many of the 
existing implementations are devoid of a full range 
of anomaly detection capabilities and are only 
capable of performing basic filtering and statistical 

analysis at the edge. However, there is still need 
for more intelligent, autonomous, edge based 
solutions for performing more sophisticated signal 
analysis and decision making. 
 
2.3 Signal Processing Techniques for Vibration 
Analysis 
Signal processing is key to make sense of the 
information obtained from structural sensors like 
strain and vibration sensors. In the literature of 
denoising and decomposition of non –stationary 
signals, the Wavelet Transform (WT), especially 
Discrete Wavelet Transform (DWT) and Empirical 
Mode Decomposition (EMD) …, have been 
extensively used. These techniques were 
demonstrated to preserve structural information 
while eliminating the noise by Kumar and Rao 
(2020). Although they do not have high 
computational complexity and memory demands, 
they are still challenging to deploy in low power 
edge devices unless some heuristics are applied on 
the algorithm level or supported in hardware 
accelerators. 
 
2.4 Machine Learning Approaches in SHM 
For the purposes of SHM, machine learning has 
been applied with great success to the problems of 
damage classification and predictive diagnostics. 
Support Vector Machines (SVM), k-
NearestNeighbors (k-NN), and lightweight 
Convolutional Neural Networks (CNNs) have 
proved to be effective in fault classification tasks. 
These models, according to Feng et al. (2022), can 
reach high accuracy when trained with large, 
labeled datasets. However, most existing studies 
rely on offline training and centralized inference 
which restrict their appliccations in real time SHM 
problems. Real time inference capability on edge 
compatible machine learning models still remains 
an open research challenge. 

 
Table 1. Comparative Analysis of Related Work and Proposed Framework Advantages 

Literature Review 
Category 

Key Findings from Prior Work Proposed Framework 
Advantage 

IoT-Based SHM 
Systems 

Cloud-based systems enable remote 
diagnostics but suffer from high 
latency, bandwidth limitations, and 
scalability issues. 

Local edge processing reduces 
communication load and ensures 
low-latency real-time anomaly 
detection. 

Edge Computing in 
SHM Applications 

Early edge SHM systems focus 
primarily on basic preprocessing 
and threshold alerts; lack advanced 
detection logic. 

Integrates full signal processing 
pipeline at the edge including 
denoising, feature extraction, and 
intelligent ML. 

Signal Processing 
for Vibration 
Analysis 

Techniques like DWT and EMD are 
effective but computationally 
heavy, unsuitable for low-power 
edge platforms without 
optimization. 

Uses 3-level Haar Wavelet 
Transform optimized for low-
complexity edge execution, 
maintaining both accuracy and 
speed. 

Machine Learning 
in SHM 

SVMs, k-NN, and CNNs provide 
accurate damage classification but 

Deploys TinyML-optimized 1D-
CNN/SVM models for real-time, 
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are mostly used in centralized or 
offline settings. 

on-device anomaly classification 
with low power consumption. 

 
3. METHODOLOGY 
3.1 SHMSystem Architecture 
The proposed Structural Health Monitoring (SHM) 
framework aims to harness an edge-aware 
structure consisting of three—the sensor nodes, 
the edge processing unit, and the cloud dashboard 
to aggregate and passively visualize monitored 
data from the sensor nodes and store it for long 
term. This system is built on the sensor nodes that 
are strategically deployed over the infrastructure 
of a target. Heterogeneous mix of vibration, strain, 
and acoustic sensors as nodes allow for continuous 
monitoring of structure responses (dynamic loads, 
thermal expansion, environmental stressors) 
through the information relayed at these nodes. 
The interface to each sensor is a microcontroller 
based device capable of local signal sample 
acquisition and buffering. The sensor nodes are 
setup to do initial filtering and timestamping of 
collected data before routing its wireless 
transmission towards the nearest edge processing 
node. The specific sensing layer is localized and 
gives real time response and relatively fine scale 
coverage to important bridge components like 
piers, support beams, or foundation joints. 

The architecture has intermediate processing layer 
called edge nodes that act as a main computational 
unit for real time processing. Low-power, high-
efficiency ARM Cortex-A53 processors are each 
equipped to each edge node for signal denoising, 
feature extraction, and lightweight machine 
learning inference tasks. Consisting of these nodes 
that are set nearby the sensor clusters to reduce 
transmission delay and energy consumption. 
Energy efficient wireless protocols such as Zigbee 
or LoRaWAN support long range, low bandwidth 
commmunication that is perfect for distributed 
SHM applications in remote and expansive 
structures, and facilitate communication between 
sensor nodes and edge devices. When such 
anomalies are detected on edge node, it passes the 
results, metadata or scores of anomalies back to a 
cloud based dashboard via streaming protocols 
such as MQTT or HTTP. It is a real time 
visualisation interface for infrastructure managers, 
system diagnostics and trends historical analysis 
and planning maintenance for risk assessment. 
The system’s distributed intelligence and 
modularity enable it to scale well vertically, to be 
fault tolerant, and to efficiently use bandwidth in 
both urban and remote SHM deployments. 

 

 
Figure 1. System Architecture of the Proposed Edge-Aware SHM Framework 
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3.2 Signal Processing Pipeline 
The signal processing pipeline of the proposed 
framework is the core of this framework and is 
carefully designed with the goal of enabling it to 
function well in limited computational resources of 
edge nodes. We start from preprocessing, which 
involves preparation of raw time-series data 
collected by vibration sensors, strain sensors or 
acoustic sensors. Impulsive noise and outliers, 
often due to the environmental disturbances or the 
hardware imperfections, are suppressed by a 
median filter. Next are baseline correction 
techniques that normalize the signal such that the 
signal is centered around 0 and removes any slow 
varying noise or DC bias. These steps ensure that 
subsequent steps operate on clean and consistent 
input signal, which is essential for correctly 
pattern of recognised and anomaly detected on 
dynamic infrastructure environments. 
The next stage is the denoising stage where a 3 
level Haar Wavelet Transform is applied which is 
simple and suitable for edge processor. With this 
wavelet based approach, it is efficient to 
decompose the signal to time frequency 
components such that noise could be isolated from 

structural features that we are interested in. The 
feature extraction module obtains several 
statistical and frequency domain descriptors which 
indicate structural integrity and follow the energy 
content of the data in terms of Root Mean Square 
(RMS) values, impulsiveness or sudden damage 
events from Kurtosis and spectral entropy as a 
measure of signal complexity, as well as the 
dominant modes of vibration from FFT peak 
amplitudes. They are then plugged as input 
features into a lightweight edge- optimized 
classification model like TinyML-compatible 1D 
convolutional neural network (1D-CNN) or SVM. It 
learns structural patterns and assign an anomaly 
label based on these learned patterns. Finally, we 
provide an anomaly scoring mechanism for the 
confidence output from the classifier that alerts 
only if the score exceeds a pre defined threshold, 
controlling for the number of false positives. With 
all these steps executed locally at the edge, the 
result is real time detection with minimal latency 
and consumed bandwidth, yet retaining good 
performance in a resource constrained 
environment. 

 

 
Figure 2. Signal Processing Pipeline for Edge-Aware Structural Health Monitoring 

 
3.3 Edge-Aware Optimization 
To make the signal processing framework run 
efficiently on the resource constrained edge 
device, the proposed system employs a number of 
edge aware optimization techniques that optimize 

for the computational load, energy consumption, 
and inference accuracy. Model pruning and 
quantization is one of the key strategies and 
results in substantial memory footprint and 
processing requirements of machine learning 
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models deployed on edge nodes. Model pruning 
out sources redundant weights and neurons in the 
trained model that does not harm the predictive 
performance. This reduces the number of 
parameters of model and reduces the complexity 
of the model in order to fit it on the ARM Cortex-
A53 processor. Further, quantization is applied to 
convert the repertoire of the floating point model 
parameters to lower bit precision (e.g., INT8) to 
lower the computational overhead and power 
consumption. We implement these optimizations 
using TinyML toolkits, such as TensorFlowLite 
Micro, thereby allowing us to push to the limit 
highly efficient 1D-CNN or SVM classifiers with 
high accuracy and low energy/ memory 
consumption. 
In addition, an adaptive sampling strategy is 
proposed to intelligently choose the data 
acquisition process at real-time considering the 

structural behavior. Rather than fixing a high 
frequency sampling rate that will quickly drain a 
battery’s life, the system changes an adaptive 
sampling interval based on the activity or 
environmental stimuli it detects, keeping the 
energy cost as low as possible. For example, in low 
vibration or inactive condition, the energy is 
conserved by reducing the sampling rate; only in 
case of significant signal differences or early 
anomaly conditions, the high frequency sampling 
is triggered. Such context awareness allows for 
extending the operational lifetime of sensor nodes 
as well as the reduction on the volume of the data 
which must be processed and transmitted. The 
framework integrates computational and sensing 
optimizations so as to keep real time performance 
along with extended deployment in field 
conditions, especially under settings of isolated 
severs or inaccessable conditions. 

 

 
Figure 3. Edge-Aware Optimization Technique For Efficient SHM at the Edge 

 
4. RESULTS AND DISCUSSION 
A set of experiments were then performed using a 
Structral SHM dataset to evaluate the performance 
of an proposed edge-aware signal processing 
framework. Finally, the sensor placements were 
modeled in COMSOL, assimilating the sensor 
placements with typical real-world placements 
and generating a dataset. Signal responses 
involving dynamic vibration, strain information 
and acoustic emission were simulated under 
different loading scenario, including normal 
loading and fault loading. Based on the collected 
raw signal data, MATLAB was used to synthesize 
and process data embedding known failure 
signatures, like stress concentration, crack 
initiation, and material fatigue. This enabled 
benchmarking the anomaly detection capability of 

the system in a controlled environment. We then 
trained the 1D-CNN and trained the SVM models 
using a 70-30 split of the labeled dataset, and 
deployed them on an edge node running on an 
ARM Cortex-A53 processor for real time inference 
testing. 
The accuracy, responsiveness, and efficiency of the 
system were validated with the results of 
experiments. The 96.4% accuracy in detecting the 
anomaly is significantly higher than that of SVM 
classifier (91.8%). The system also completed real-
time classification with an average 117 
milliseconds per decision cycle, which corresponds 
to fast enough response in critical infrastructure 
scenarios. Moreover, in terms of energy, the energy 
consumed by the edge optimized models was 38% 
less than the corresponding cloud based inference 
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systems because of processing localized data and 
adaptively sampling sections of it. Moreover, by 
pushing noise filtering and feature extraction off to 
the edge, the framework consumed 42% less raw 
data being sent across the wire, resulting in a much 
more bandwidth efficient protocol and usable in 

remote or bandwidth constrained environments. 
The results of this work show the promise of the 
proposed framework to provide reliable, real-time 
SHM while preserving operational sustainability, 
and hence it is a promising candidate for 
deployments into massive smart infrastructure. 

 

 
Figure 4. Edge-Aware SHM Architecture 

 

 
Figure 5. Signal Processing Pipeline Flowchart 
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Figure 6. Comparison of 1D-CNN and SVM Models in Edge-Aware SHM Framework 

 
Table 2. Performance Evaluation of Edge-Aware Signal Processing Framework for Structural Health 

Monitoring 
Metric 1D-CNN Model SVM Model Comments 
Anomaly Detection 
Accuracy 

96.4% 91.8% 1D-CNN shows superior 
classification performance 

Average Inference 
Latency 

117 ms 124 ms Measured on ARM Cortex-A53 
processor 

Energy Consumption 
(vs. Cloud Model) 

38% lower 35% lower Indicates efficiency of edge-local 
processing 

Bandwidth Reduction 
via Edge Processing 

42% reduction 40% reduction Achieved through noise filtering 
and feature extraction at edge 

Training Data Split 
(Train/Test) 

70% / 30% 70% / 30% Standard supervised learning 
configuration 

Dataset Source COMSOL-based 
SHM Simulation 

COMSOL-based 
SHM Simulation 

Simulated with both normal and 
fault-induced conditions 

Failure Modes 
Simulated 

Stress, Crack, 
Fatigue 

Stress, Crack, 
Fatigue 

Embedded in signal to validate 
robustness of detection 

Edge Device Platform ARM Cortex-A53 ARM Cortex-A53 Real-time deployment for latency 
and power benchmarking 

 
5. CONCLUSION 
In this study, we develop a robust and scalable 
edge-aware signal processing framework for SHM 
in the IoT enabled infrastructure environment. The 
framework meets these vacuumes by integrating 
lightweight signal processing techniques with edge 
computing capabilities that overcome some of the 
key limitations attributed by tradition centralized 
SHM systems — high latency, high bandwidth 
consumption, and low energy efficiency — with 
integrated lightweight signal processing 
techniques and edge computing capabilities. 
Denoising with wavelet, efficient feature extraction 
and compact machine learning models 
implementation on edge nodes enables real time 
anomaly detection without massive use of cloud 
resources. Adaptive sampling and TinyML 
optimizations are used to further enable the 
system to be more responsive and sustainable in 
resource constrained enivornments. Experimental 
evaluations with simulated datasets show that the 

framework is able to detect the faults quickly, 
reduces the decision latency, and achieves 
substantial reduction in energy usage and data 
transmission requirement. Collective validation of 
the practical viabilities of deploying intelligent 
SHM solutions at the edge is provided, which will 
lead to better proactive infrastructure 
maintenance, enhanced structural safety, and 
longer operational life for the infrastructure. The 
proposed system is a solid basis for continued 
development of autonomous, self aware civil 
infrastructure networks in the future, as urban 
infrastructure continues to interconnect and 
become more data driven. 
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