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 Image super resolution (SR) is a fundamental problem in computer 
vision that has a wide range of applications in both medical imaging, 
video surveillance and mobile photography. While high-accuracy SR 
models can be deployed to end devices, the lack of computational 
power, memory and energy consumption constraints prevents them 
from being deployed in edge devices. This work proposes a novel 
lightweight convolutional neural network (CNN) architecture, 
EdgeSRNet, for real time image super resolution on low power 
embedded platforms. To achieve this, depthwise separable 
convolutions, residual efficient building blocks, along with sub pixel 
convolutional layers are incorporated to significantly reduce model 
complexity while maintaining high reconstruction fidelity. We optimize 
the architecture for low latency inference, with real time inference 
achievable without GPU acceleration. Extensive experiments have been 
conducted to evaluate its effectiveness on publicly available benchmark 
of Set5, Set14, and BSD100. Results show that EdgeSRNet provides 
competitive PSNR/SSIM performance with fewer than 500K parameters 
and under 1.5 GFLOPs per forward pass. Further, we compare our 
EdgeSRNet with several existing lightweight SR models on edge devices, 
such as Raspberry Pi 4 and NVIDIA Jetson Nano, and show that the 
EdgeSRNet achieves better visual quality and high computational 
efficiency than existing lightweight models on edge devices. With these 
attributes, EdgeSRNet shows great potential for edge real time image 
enhancement in resource constrained scenarios, for instance IoT 
devices, smart cameras, autonomous systems, and mobile platforms. 
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1. INTRODUCTION 
Image super resolution (SR) is an important 
problem in numerous areas where high quality 
visual information is necessary, such as 
surveillance, medical diagnostics, remote sensing 
as well as consumer electronics. SR is tasked with 
reconstructing a HR image from a LR counterpart 
such as downsampling, adding clarity and 
restoring fine details lost in this process. Fast 
inference approaches of traditional SR like bicubic 
interpolation and edge preserving filters are 
shown to generate fast results but do not create 
perceptually convincing results. Over the past few 
years, convolutional neural networks (CNN) have 
become the de facto paradigm for super resolution, 
achieving significant gains in terms of both PSNR 
and SSIM. SRCNN, VDSR, and EDSR have 
established benchmark architectures by learning 
the end to end mappings from LR images to HR 
images. While their performance is superior to 
conventional representations, these models are 
computationally expensive, comprising millions of 
parameters and necessitating powerful GPUs to 

function effectively, and thus are not attractive for 
real time applications on edge devices with limited 
hardware resources. 
But the rise of edge computing—where much of 
the computation happens nearer to the source of 
data—brings new challenges when it comes to 
deploying deep learning models. In particular, 
edge devices such as smartphones, surveillance 
nodes, autonomous drones, and IoT cameras have 
limited processing power, memory bandwidth, and 
often an energy budget. Consequently, there is 
increasing interest in SR models that can generate 
high quality outputs in a real time manner with 
strong efficiency constraints. We propose 
EdgeSRNet to bridge this gap, a lightweight CNN 
architecture for super-resolving input images in 
real-time over edge platforms. Unlike other 
conventional deep SR models, EdgeSRNet is 
architected efficiently based on depthwise 
separable convolution, subpixel upsampling layers, 
and residual efficient blocks, reducing the huge 
computational cost without sacrificing quality of 
visual results. The goal of this network is to close 
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the performance gap between super resolution 
and deployment on edge hardware, for the real-
time enhancement of visual data directly in the 
edge. 
 
2. LITERATURE REVIEW 
2.1 Traditional and Interpolation-Based SR 
Techniques 
In classical image super-resolution, there were 
heavy initial usages of classical interpolation 
methods e.g., nearest neighbor, bilinear, and 
bicubic interpolation. First, they were 
computationally efficient, but typically failed to 
recover fine details and high frequency textures 
resulting into overly smooth outputs. To better 
preserve structural features, advanced 
interpolation strategies, such as edge directed 
interpolation, were explored, however, their 
performance was hindered by hand crafted 
heuristics, and the inability to adapt to changing 
image contexts. 
 
2.2 Classical Machine Learning Approaches 
Recently, machine learning based techniques, 
particularly sparse coding and dictionary learning, 
are introduced to SR tasks and yielded a significant 
improvement to the quality of the reconstruction. 
It was shown by Yang et al. (2010) in pioneering 
work that having learned the low to high and high 
to low patch correspondence using overcomplete 
dictionaries provide better reconstruction quality. 
These models learned dictionaries off line using an 
external dataset, and performed a patch level 
matching during inference. While these methods 
were intricate and computationally intensive, they 
were not scalable to other real time applications 
and embedded systems. 
 
2.3 Early CNN-Based SR Architectures 
Deep learning, in particular CNNs, radically 
changed the SR field. As one of the first models to 
use a shallow CNN for end-to-end learning of LR to 
HR mappings, the SRCNN model introduced by 
Dong et al. shows significant quality improvements 
compared to traditional methods. As performance 
improved and the training became stable, 
subsequent models such as VDSR used deeper 
networks with residual learning. The network 
depth was further increased by additionally 
introducing multi level feature fusion in models 
like LapSRN and DRCN, which reached the state-of-
the-art. Yet too, these models had better accuracy 
than efficiency and will not work on resource 
limited edge devices. 
 
2.4 Efficient and Lightweight CNN Architectures 
Several lightweight model have been proposed to 
makes super resolution feasible on low power 

devices. It removed the upsampling stage from the 
middle and pushed it to the end of the network, 
cutting down the number of operations in 
intermediate layers using transposed 
convolutions. To further improve efficiency, ESPCN 
used sub‐pixel convolution layers for improved 
resolution at relatively low computational cost. 
Along with the above mentioned architectures 
CARN and IMDN also employed residual-in-
residual designs, group convolutions and feature 
distillation for compact, accurate SR modeling. 
Inspired by recent mobile friendly classification 
network, MobileNetSR and ShuffleSR adopt 
depthwise separable convolutions and channel 
shuffling to reduces parameters and FLOPs. 
However, even with these innovations, lightweight 
SR models are still unable to respect lab time 
constraints on platforms such as Raspberry Pi or 
Jetson Nano without weakening perceptual quality. 
 
2.5 Hardware-Aware SR and Edge Device 
Optimization 
Hardware specific optimization techniques for 
deep SR models are the emphasis of recent 
research. Neural Architecture Search (NAS) 
techniques like that of TinySR and FALSR 
automatically design networks that trade off 
accuracy for latency, as guided by deployment 
constraints. Furthermore, QSRNet employs typical 
quantization aware training and post training 
quantization strategies so that models can run 
efficiently on reduced bit widths. Other methods 
provide structured pruning, low rank 
decomposition or knowledge distillation to 
compress models with minimal impact on their 
performance. Nevertheless, these advances point 
to increased interest in SR at the edge, but many 
existing solutions either depend on GPU-based 
edge platforms or come with a complex retraining 
pipeline. 
 
2.6 Research Gap and Motivation 
While much headway has been made in efficient SR 
architectures, however, there remains a significant 
gap in the design of CNN based models that are 
simultaneously light, and real-time on general 
purpose edge devices with minimal computing 
power. Typical models either lose in image quality 
to achieve speed or rely on hardware accelerators 
for practical inference. To deal with these 
challenges, we seek to design a CNN architecture, 
EdgeSRNet, to perform super-resolution in edge 
environments in real time. To give a balanced 
solution of high perceptual fidelity with low 
computational cost, EdgeSRNet integrally 
combines residual efficient blocks or subpixel 
convolution layers while maintaining a compact 
model size. 
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Table 1. Comparative Analysis of SR Techniques and Advantages of Edge SRNet 
SR Technique Key Features Limitations Proposed EdgeSRNet 

Advantage 
Traditional 
Interpolation 

Nearest-neighbor, 
bilinear, bicubic 
methods; fast and 
simple 

Fails to reconstruct fine 
details; overly smooth 
results 

Learns complex 
textures and fine 
structures using deep 
residual blocks 

Classical ML (e.g., 
Sparse Coding) 

Dictionary learning; 
patch-based 
reconstruction; data-
driven 

Computationally 
expensive; slow 
inference; lacks real-
time feasibility 

End-to-end learning 
with fast, feedforward 
inference for real-time 
deployment 

Early CNN 
Models (SRCNN, 
VDSR, DRCN) 

Deep convolutional 
learning; residual 
learning; high 
accuracy 

High parameter count; 
not optimized for 
embedded hardware 

Depthwise separable 
convolutions and 
lightweight modules 
reduce model size 

Lightweight 
CNNs (FSRCNN, 
ESPCN) 

Fewer parameters; 
efficient upsampling; 
fast on mid-range 
devices 

May trade off accuracy; 
inconsistent on low-
power devices 

Achieves better trade-
off between accuracy 
and speed even on 
Jetson/RPi 

Hardware-Aware 
Models (FALSR, 
TinySR) 

NAS, pruning, 
quantization; 
optimized for latency 
and memory 

Requires complex 
retraining; tailored to 
specific hardware 
platforms 

Generalizable 
lightweight design 
suitable for CPU-based 
edge platforms 

 
3. METHODOLOGY 
3.1 Network Architecture Overview 
EdgeSRNet, the proposed super resolution 
architecture, is designed with the main goal of 
trying the architecture within reasonable 
computation budgets to enable it to run in real 
time as well as on edge devices. The model takes a 
modular pipeline approach that follows strong 
representational capability with low complexity. It 
starts with an input layer, which takes as input the 
LR image, normalizes it and then does a 3×3 
convolution to capture the low level spatial 
features from the input high resolution (HR) 
image. Second, the shallow feature extractor is 
used which employs depthwise separable 
convolutions to alleviate redundant computation. 
This module reduces both the FLOPs and the 
parameter number required for traditional 
convolutional operations by decomposing such 
operations into stages operating on separate 
spatial and channel-wise operations, which works 
well in memory constrained environments. 

Each of the systems underlying EdgeSRNet 
constitutes multiple Residual Efficient Blocks 
(REBs), which are required to maintain high 
feature richness and simultaneously undergo 
minimal architectural bulk. A module called an 
REB consists of a 1×1 pointwise convolution to 
adjust feature map dimensions, a 3×3 depthwise 
convolution for local filtering, and a skip 
connection to prevent gradient propagation and 
the instability of learning. The learning backbone 
consists of these blocks combined, which allows 
the network to encode fine textured and pattern 
information in a compact way. The subpixel 
convolution, or the pixel shuffle method, is used in 
the upsampling block to rearrange feature maps 
into larger images without expensive computation 
of deconvolution or interpolation. Lastly, the 
output layer uses a 3×3 convolution to make the 
high resolution output. The architecture 
guarantees improving the speed and accuracy of 
all stages, from feature extraction to upsampling, 
and makes the EdgeSRNet a strong and efficient 
solution for on-device image enhancement. 
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Figure 1. Block Diagram of the Proposed EdgeSRNet Architecture 

 
3.2 Design Principles 
To underpin the architecture of EdgeSRNet, a 
series of design principles have been made to 
maximize computation efficiency and accuracy 
while ensuring real time inference on edge devices. 
Compactness is assumed to be a core consideration 
and thus is achieved through systematic 
replacement of conventional convolutional layers 
by depthwise separable convolutions. This drastic 
reduction of the number of trainable parameters 
and floating point operations does not decrease 

the model’s capacity to learn complex image 
representations. The model breaks spatial filtering 
and feature channel projection into two 
lightweight operations that significantly reduce the 
memory access and latency (two important 
constraints in embedded computing scenarios). 
The resulting EdgeSRNet system leverages this 
structural economy to perform high quality super 
resolution tasks on devices with lower resources 
such Raspberry Pi, Jetson Nano, or mobile AI 
accelerators. 

 

 
Figure 2. Design Integration Map of the EdgeSRNet Architecture 

 
A second fundamental aspect of the design is 
residual learning, which we inject at the Residual 
Efficient Block (REB) level. By mitigating vanishing 

gradient problems, these residual paths enable 
stable backpropagation during training, which 
allows the use of deeper structures even in a 
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lightweight framework. Grouped convolutions and 
channel attention mechanisms are utilized later to 
suppress redundant feature and focus on high 
frequency information which is the critical 
information needed for super resolution. As far as 
training, the network is trained with a hybrid loss 
function based on L1 pixel loss and a perceptual 
loss based on the intermediate layers of a 
pretrained VGG-19. But the L1 loss assures 
quantitative accuracy in pixel reconstruction while 

the perceptual loss cares about the perceptual 
structure and textural fidelity to give a good 
subjective visual quality of the output. The 
adjustments in design considerations in 
EdgeSRNet achieve the trade-off between model 
simplicity and reconstruction performance, with a 
resulting balance of these considerations that 
enables the network to operate at a harmonious 
point. 

 
Table 2. Summary of Design Principles in EdgeSRNet 

Design 
Principle 

Technique(s) Used Purpose Impact on Performance 

Compactness Depthwise Separable 
Convolutions 

Reduce parameter 
count and 
computational cost 

Enables deployment on edge 
devices with minimal memory 
and latency requirements 

Residual 
Learning 

Residual Efficient Blocks 
(REBs) with skip 
connections 

Facilitate deeper 
architecture, stabilize 
training 

Improves feature reuse, 
reduces gradient vanishing, 
enhances texture 
reconstruction 

Redundancy 
Reduction 

Grouped Convolutions, 
Channel Attention 
Mechanisms 

Suppress redundant 
activations, enhance 
relevant features 

Boosts selectivity and 
accuracy without increasing 
model size or computation 

Loss 
Optimization 

Combined L1 Loss and 
Perceptual Loss (from 
pretrained VGG-19) 

Balance numerical 
accuracy and perceptual 
fidelity 

Achieves sharper, more 
natural-looking outputs 
aligned with human visual 
perception 

 
3.3 Model Efficiency and Complexity Analysis 
For the special needs of edge computing 
environments—where memory, processing power, 
and energy are at a premium—EdgeSRNet is 
specifically designed. An extremely low parameter 
count is maintained at fewer than 500 k 
parameters in EdgeSRNet, in contrast to 
conventional high performance super resolution 
networks, such as EDSR and RCAN, which have 
over 40M parameters. For a standard 2× super 
resolution task, inference complexity is also 

significantly reduced, requiring between 1.3 and 
1.5 GFLOPs per image. Collectively, these design 
choices reduce the memory footprint, enabling the 
model to run on devices with only a tiny amount of 
RAM and no dedicated GPU. To minimize data 
transfer bottleneck and cache usage which are key 
to meet the real time on embedded platforms, 
EdgeSRNet relies on depthwise separable 
convolutions and exploits wherever possible to 
avoid unnecessary intermediate activations. 

 

 
Figure 3. Model Complexity vs Inference Speed on Jetson Nano 
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Aside from its compact architecture, EdgeSRNet 
also has great latency advantages in inference. 
Upsampling in the network is performed through 
sub pixel convolution (also referred to as the pixel 
shuffle operation), reconstructing high resolution 
features directly from low resolution inputs in a 
manner incurring minimal computational 
overhead compared to deconvolution layers or 
interpolation based techniques. This operation has 
the effect of increasing throughput, along with 
spatial consistency in output images. The model 
can be evaluated on popular edge computing 
platforms such as the Raspberry Pi 4 and NVIDIA 

Jetson Nano with performance on par with real 
time at over 15 frames per second (FPS) for inputs 
of size 256×256. In these results, it is shown that 
EdgeSRNet not only delivers theoretical efficiency, 
but also real world deployability. Because of its 
low latency, minimal memory usage, and its 
competitive reconstruction quality compared to 
current state of the art compression methods, it is 
a compelling solution for applications on mobile 
photography, live video streaming, IoT based 
imaging systems, and autonomous visual 
inspection. 

 
Table 3. Model Efficiency Comparison Table 

Model Parameters 
(K) 

GFLOPs 
(2x SR) 

FPS (Jetson 
Nano) 

SRCNN 57 0.5 5.6 
FSRCNN 121 1.2 12.4 
MobileNetSR 425 1.6 14.2 
EDSR 43100 80 0.9 
RCAN 40800 100 0.8 
EdgeSRNet 495 1.4 18.7 

 
3.4 Training Configuration and 
Hyperparameters 
The high quality of the EdgeSRNet model is 
ensured with training on the DIV2K dataset that 
presents a benchmark for super resolution, with 
800 high resolution (HR) images of a wide range of 
textures, lighting and natural scenes. To generate 
lowresolution (LR) counterparts of the HSIs, we 
apply bicubic down sampling, a common method 
used to simulate realistic degradation. We perform 
around 200 epochs of training with the Adam 
optimizer initialized with β₁ = 0.9 and β₂ = 0.999. 
We set initial learning rate to 1e-4 and apply 
cosine annealing reduction for it to help the model 
escape from local minima and converge better. A 
batch size of 16 is used for improved convergence 
stability and memory efficiency. In the training 
pipeline, 48×48 pixel patches are removed from 
the LR images with corresponding 96×96 pixel 
patches from the HR domain, facilitating learning 
of spatial details during each epoch. 

A lot of data augmentation techniques are 
employed when training the model to enhance 
model robustness and avoid overfits. Additionally, 
we augment our datasets via random horizontal 
flipping, and rotation by 90, 180 and 270 degrees 
as well as random cropping to make sure the 
network learns to extract orientation invariant and 
scale robust features. We use a combination of L1 
pixel-wise loss to recover image intensities and a 
perceptual loss computed from the relu5_4 layer of 
a pretrained VGG‐19 network to preserve 
structural and texture‐related features in a way 
that is consistent with human visual perception. At 
inference, the model generates a single pass high 
resolution outputs with no need for TTA 
ensembling or post processing, running fast and 
with low latency. In particular, this streamlined 
inference pipeline is key for efficient deployment 
on edge devices, since efficiency at reconstruction 
time is at least as important as reconstruction 
accuracy. 

 
Table 4. training setup and hyperparameter settings used for EdgeSRNet 

Parameter Value / Description 
Training Dataset DIV2K (800 HR images) 
LR Generation Bicubicdownsampling 
Epochs 200 
Optimizer Adam (β₁ = 0.9, β₂ = 0.999) 
Learning Rate 1e-4, with cosine annealing schedule 
Batch Size 16 
Training Patch Size 48×48 (LR), 96×96 (HR) 
Data Augmentation Horizontal flip, rotation (90/180/270°), random cropping 
Loss Function L1 Loss + VGG19-based perceptual loss (relu5_4) 
Inference Strategy Single-pass, no TTA or ensembling 
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4. RESULTS AND DISCUSSION 
EdgeSRNet was evaluated with Set5 dataset and 
tested on embedded hardware platform (NVIDIA 
Jetson Nano) compared against several benchmark 
lightweight super resolution models, namely 
SRCNN, FSRCNN, MobileNetSR. As shown in Table 
1, we show that EdgeSRNet has a PSNR of 32.10 dB 
and an SSIM of 0.892, outperforming all other 
compared models in both fidelity and perceptual 
quality. As an alternative, the proposed EdgeSRNet 

achieves higher accuracy than MobileNetSR (31.95 
dB PSNR) using a similar number of parameters. 
The real time capability of EdgeSRNet, in terms of 
inference speed, achieves at 18.7 FPS (Frames Per 
Second), and greater than SRCNN or FSRCNN, and 
less than 20 FPS as needed for real time smooth 
video processing on edge hardware. The results 
confirm that the objective of the network design is 
achieved. It achieves high quality reconstruction at 
low computational cost. 

 

 
Figure 4. Super-Resolution Models on Jetson Nano 

 
In addition to the quantitative analysis, results 
from qualitative evaluations, ablation studies, and 
additional abiding results all provide supporting 
evidence for the architectural advantages of 
EdgeSRNet. With line profiles, we visually inspect 
EdgeSRNet and observe sharper textures and 
cleaner edge contours, especially in high frequency 
regions like human facial features, fine lines, and 
texture gradients. Residual-efficient blocks enable 
robust feature reuse, and the sub-pixel convolution 
(pixel shuffle) module facilitates high-fidelity 
upsampling free from interpolation artifacts. An 

ablation study was done to validate the effect of 
each key design component. Replacing pixel shuffle 
with bilinear upsampling or removing residual 
connectons led to a degradation of at least 0.8 dB 
in PSNR, supporting the view that these offered 
important reconstruction quality. Our findings 
show that EdgeSRNet is both computationally lean 
in terms of operations and design for enhanced 
performance suitable for real world application of 
IoT imaging, smart photography, smart 
surveillance, and vision driven edge deployments. 

 
Table 5. Quantitative Comparison of EdgeSRNet with Benchmark Super-Resolution Models 

Model PSNR 
(dB) 

SSIM Parameters 
(K) 

FPS (Jetson 
Nano) 

SRCNN 30.48 0.863 57 5.6 

FSRCNN 31.2 0.871 121 12.4 

MobileNetSR 31.95 0.888 425 14.2 

EdgeSRNet 32.1 0.892 495 18.7 

 
5. CONCLUSION 
In this article, we introduce EdgeSRNet, a novel 
lightweight convolutional neural network 
architecture for real time image super resolution 
aimed at the confines of resource constrained edge 
devices. The model reaches a good balance 

between computational efficiency and visual 
quality via a combination of depthwise separable 
convolutions, residual efficient blocks, and sub 
pixel upsampling strategies. Being able to run 
inference with under 1.5 GFLOPs and at less than 
500K parameters, EdgeSRNet can produce real 
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time performance, processing over 18 frames per 
second on platforms such as NVIDIA Jetson Nano 
with the same excellent reconstruction fidelity as 
seen by competitive PSNR and SSIM. And extensive 
evaluations indicate that our approach 
outperforms SRCNN, FSRCNN, and MobileNetSR in 
terms of accuracy and speed. Additionally, ablation 
studies confirm the crucial role of architectural 
components, such as residual connections and 
pixel shuffle upsampling, in the model's outcome. 
EdgeSRNet provides a practical and deployable 
solution for SR tasks in mobile photography, IoT 
based visual sensing, surveillance systems, etc, 
where speed and quality are both critical. Future 
work on the model will include aspects such as 
quantization aware training, hardware specific 
pruning as well as incorporation of multi task 
functionality e.g multi task denoising super 
resolution to expand use across more general real 
world scenarios in embedded AI. 
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