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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
Transformer architectures have already boosted the automatic speech recognition (ASR) 
and natural language understanding (NLU) fields, and this has resulted in the state-of-
the-art performance in capturing various languages and difficult acoustic conditions. 
The following paper examines how the design and use of transformer variants-
Conformer models as well as self-supervised models, i.e, wav2vec 2.0 were modified 
and used in a specific setting of robust speech processing in noisy and multilingual 
setups. Our configuration integrates data augmentation with domain adaptation, 
and together with cross-linguistic learning, focus on boosting the generalization and 
robustness of the model towards noise. The experiments carried out using benchmark 
multilingual speech corpora and noisy datasets in the real world reveal that transformer 
based models perform significantly better than conventional recurrent neural network 
and convolutional neural networks yielding lower word error rates (WER) and higher 
semantic accuracy. The findings indicate the success of self-attention mechanisms and 
convolutional augmentations in the ability to capture both the far and local relationships 
in a signalled speech. Lastly, the paper presents important issues and areas of future 
research, such as the creation of low latency inference techniques, model compression 
techniques toward implementing models on the edge, and ethical concerns related to 
multilingual speech and language applications. This rich through study can be of great 
help in promoting efficient and high quality, supportive and scalable transformer based 
speech and language systems that can be adapted appropriately into real life contexts.
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Introduction

The modern voice assistants, transcription services, 
human-computer interaction platforms such as those 
provided by the Amazon cloud are complemented with 
robust automatic speech recognition (ASR) and natural 
language understanding (NLU) systems. Nevertheless, it 
is still difficult to use such systems in noisy environments 
of an acoustic transmission and multiple languages 
support because of the natural acoustic variations and 
language diversity. Recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs) have traditional 
methods with drawbacks in the efficiency of describing 
long-range dependencies and learning to generalize in a 
variety of circumstances.[1, 2] Efficient modeling of global 
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contextual information along the sequence of speech 
and languages using self-attention mechanisms has been 
made possible through the emergence of transformer 
architectures,[3] which represent a paradigm shift. 
Improved versions like the Conformer[4] add convolutional 
modules in order to extract local patterns of features 
and, thus, gain noise and acoustic variance robustness. 
In addition, self-supervised learning systems, such as 
wav2vec 2.0,[5] use unlabeled datasets on a large scale, 
decreasing the ability to use annotated speech data and 
implementing efficient multilingual transfer learning.

In spite of the achievements, the current study on robustness 
in severely noisy and in code-switching multilingual set-
ups and scalable use in real world applications already 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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constrained by resources, remains a problem left unresolved 
in the current research. The paper explores transformer-
based architectures designed to perform well in even the 
very difficult settings of robust ASR and NLU. We test them 
on well-established multilingual and noisy speech test sets, 
compare domain adaptation and transfer learning methods, 
and make recommendations on how the models can be 
deployed in low latency settings.

Related Work

Self-attention mechanisms Self-attention Self-attention 
mechanisms With the introduction of the transformer 
architecture by Vaswani et al.,[6] sequence modeling 
was transformed by introducing the concept of self-
attention. Originally designed to work within the domain 
of natural language processing (NLP) tasks, transformers 
have now also been adapted to speech processing. 
Conformer architecture[7] upgrades the transformer by 
adding convolutional ones, thus permitting the model to 
adequately gather local and global dependencies. This 
hybrid structure has proved to have better performance 
in automatic speech recognition (ASR) more so in noise 
conditions. More recently, self-supervised learning 
models have stepped forward in speech processing 
with wav2vec 2.0[8] learning a robust representation of 
speech on large unlabeled datasets. The models permit 
successful cross-lingual transfer learning and effectively 
decrease the reliance on labeled datasets. In search of a 
solution, noise robustness, there are different methods 
attempted such as data augmentation [9], domain 
adversarial training,[10] and noise-aware training .[11]  
In the case of multilingual ASR, joint training with 
common vocabularies and the application of language 
embeddings are suggested as the approaches to improve 
the recognition rates among various languages [12].

Irrespective of these developments, there are other 
challenges to be dealt with. The models based on current 
transformers tend to be computationally intensive, 
which restricts their use in time-sensitive or resource-
poor applications. In addition, it is not sufficient to 
target robustness over high levels of different noisy and 
multilingual scenarios as it continues to be a challenge 
since the domain mismatch and lack of data is still 
an issue. These deficiencies are a motivation to seek 
lightweight, flexible models that can do efficient cross-
domain and cross-lingual generalization.

3. Methodology
Model Architectures

This paper will compare three distinguished models 
of robust speech recognition and natural language 

understanding, namely the Transformer Encoder-
Decoder, the Conformer, and the Self-Supervised 
wav2vec 2.0 model (Figure 1).

• The Transformer Encoder-Decoder is used as 
a baseline where we used multi-head self-
attention layers performing efficient acoustic 
feature encoding and reconstructing textual 
sequences.[13]

• Conformer architecture supplements the 
transformer with convolutional modules 
included in each block of the transformer, thus 
overcoming the need to model local context and 
global dependencies better.

• The Self-Supervised wav2vec 2.0 model makes 
use of pretrained speech encoders that can be 
finetuned to downstream tasks like ASR and NLU 
enabling robust features during multi-language 
and different acoustic conditions.

Fig. 1: Model Architectures for Robust Speech 
Recognition and Natural Language Understanding

Visual comparison of Transformer Encoder-Decoder, 
Conformer, and Self-Supervised wav2vec 2.0 models 
with their main building blocks and data flow showing 
how they might be used to perform ASR and NLU tasks.

Robustness Strategies

Some of the major strategies used to make the model 
robust entail data augmentation, which uses synthetic 
noise and reverberation and perturbing speed in 
training; use of domain adaptation that involves fine-
tuning the model in target domain data sets via the 
use of adversarial loss to reduce domain shift; and 
language-specific fine-tuning and sharing parameters via 
a cross-lingual transfer approach that uses multilingual 
pretraining and subsequently trains on target languages 
(Figure 2).

Figure displaying some important robustness methods 
(e.g., data augmentation, domain adaptation, cross-
lingual transfer) that aim at enhancing the generalization 
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analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
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primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
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• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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in the model and performance of the model in different 
acoustic and linguistic environments.

Evaluation Metrics

The metrics of interest are most relevant to each 
of the two tasks: Word Error Rate (WER) with various 
noise-dampened and language variables on automatic 
speech recognition (ASR); semantic accuracy and intent 
classification F1-score on multilingual datasets on 
natural language understanding (NLU) (Figure 3).

Fig. 3: Evaluation Metrics for ASR and NLU 
Performance

Salient measures of evaluation such as Word Error Rate 
(WER) of speech, and Semantic Accuracy and Intent 
Identification F1-Score of natural language understanding 
under multilingual and noisy state are discussed.

Experimental Setup

In this section, the article explains datasets and training 
procedures used to be rigorous in the evaluation of the 
use of proposed transformer-based models to robustly 
recognize speech and implement natural language 
understanding in noisy and multilingual settings.

Table 1 gives an overview of the most important datasets 
and training parameters used in the experiments.

Datasets

• Multilingual LibriSpeech (MLS): A large scale 
corpus with wide range of languages with 
objective to train and benchmark ASR on 
multilingual settings. It is also large in size 
and linguistically diverse in nature to present 
a comprehensive test bed to the cross lingual 
learning abilities.

• CHiME-6: A conversational speech corpus 
taken in realistic, noisy scenarios to offer a 
difficult benchmark against which to evaluate 
the robustness of a model to ambient noise, 
reverberation and simultaneous speakers.[14]

• Fleurs: A multilingual curated dataset dedicated 
to NLU tasks allowing to not only evaluate the 
semantic accuracy but also to find out the 
intentions of the dialog partners regardless of 
the language combination and dialects.

Figure 4 shows an overview of such important speech 
corpus that is often used in multilingual and robust 
speech recognition research.

Fig. 4: Overview of Speech Datasets for Multilingual 
and Robust Speech Recognition

Such as Multilingual LibriSpeech (MLS), CHiME-6 and 
Fleurs whose experimental focus covers the area of 
multilingual training, conversational noise robustness, 
semantic goodness in natural language understanding.

Fig. 2: Robustness Strategies for Transformer-Based 
Speech and Language Models
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Training Details

• Optimizer: AdamW optimizer is used, with the 
weight decay regularization included, and 
with cosine annealing learning rate scheduling 
included to facilitate stable convergence using 
learning rates that are not at maximum.

• Batch Size: The batch size is set at 32 based on 
the trade off between efficiency of training and 
memory limitations of contemporary GPUs.

• Input Features: Log-Mel spectrograms are 
computed with the acoustic signals and assume 
the dimensions 80, where rich spectral and 
temporal information are preserved and can 
help the model learn.

• Training Technique: The mixed precision training 
technique is utilized to make the computations 

faster and lower memory usage without loss of 
model accuracy by using the tensor core feature 
of modern GPU architecture.

Figure 5 can summarize the details of the training of 
the Transformer based model of speech and language 
models in such experimental setup.

Such a setup in the experiments makes the training 
process rigorous, efficient and scalable such that the 
proposed models would generalize well in a variety of 
acoustic and linguistic scenarios.

Diagram that summarizes major components of training 
such as using AdamW optimizer and weight decay with an 
optimizing type of cosine annealing, a batch size of 32, 
eighty-dimensional log-Mel spectrogram input features, 
and mixed-precision training to use the computational 
efficiency.

Results and Discussion

Table 2 once again summarizes the evaluations of the 
proposed models with the Word Error Rate (WER), 
Semantic Accuracy, and F1-Score reported over two 
benchmark datasets the clean Multilingual LibriSpeech 
(MLS) and the noisy CHiME-6.

Figure 6 is illustrative of the cumulative values of 
performance parameters of the speech recognition 
models on clean and noisy datasets.

Based on these findings, it is shown that the wav2vec 
2.0 and Conformer architectures produce consistent 
improvements over the baseline Transformer on all 

Table 1: Summary of Datasets and Training Parameters

Category Details

Datasets Multilingual LibriSpeech (MLS): Large-scale multilingual corpus for ASR.

CHiME-6: Real-world noisy conversational speech dataset for robustness evaluation.

Fleurs: Multilingual dataset for natural language understanding (NLU) tasks.

Optimizer AdamW with weight decay and cosine learning rate decay schedule.

Batch Size 32

Input Features 80-dimensional log-Mel spectrograms

Training Method Mixed precision training for computational efficiency and memory optimization

Fig. 5: Training Details for Transformer-Based Speech 
and Language Models

Table 2: Performance Comparison of Speech Recognition Models on Multilingual and Noisy Datase6ts

Model Dataset Noise Condition WER (%) Semantic Accuracy (%) F1-Score (%)

Transformer MLS Clean 6.8 92.3 90.1

Transformer CHiME-6 Noisy 14.5 88.7 86.4

Conformer MLS Clean 5.4 93.8 91.2

Conformer CHiME-6 Noisy 11.2 90.5 89.0

wav2vec 2.0 MLS Clean 4.9 94.1 92.0

wav2vec 2.0 CHiME-6 Noisy 9.8 92.7 90.8
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length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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metrics; the largest improvements are seen during noisier 
conditions. In particular, wav2vec 2.0 demonstrates the 
best noise robustness on CHiME-6 having the lowest WER 
9.8 percent, due to self supervised pre training on big 
unlabeled databases. In the same way, the integration 
of convolutional modules to the Conformer allows 
improved extracting of local features with the result of 
improved semantic accuracy and F1-score in clean and 
noisy scenarios.

Besides that, data augmentation and domain adaptation 
measures significantly increase the robustness of the 
models to acoustic variability as shown by our large 
performance improvements across challenging CHiME-6 
corpus. The findings support the idea of effective 
training models that can be used in the field in a variety 
of situations.

In total, the comparative test confirms the effectiveness 
of advanced transformer-based approaches to both ASR 
and NLU activities in multilingual and noisy conditions, 
which should hold future voice-enabled applications as 
well.

Fig. 6: Combined Performance Metrics of Speech 
Recognition Models on Clean and Noisy Datasets

Transformer, Conformer and wav2vec 2.0 models, 
comparison of the Word Error Rate (WER), Semantic 
Accuracy and F1-Score evaluated on MLS Clean and 
CHiME-6 Noisy datasets, showing recognition accuracy-
robustness trade-offs.

Challenges and Future Work

Although transformer-based architectures currently 
demonstrate great performance in multilingual and noisy 
speech recognition, there are still some issues. These 
challenges deserve attention: minimizing inference 
latency to support real-time performance constraints, 
creation of model compression methods that can 
facilitate efficient real-world applications to limited-
resource edge devices and the limited amount of training 
data available to support low-resource languages, to 
achieve parity in performance. Besides, the aspect of 
fairness and ethical inclusion in the various minority 
linguistic and demographic segments is instrumental in 
mass acceptance.

The next directions will be aimed at creating lightweight 
transformer-based versions optimized to minimize 
latency and power consumption, the development 
of continual learning frameworks to enable domain 
adaptation and robustness, and the promotion of privacy 
preserving speech analytics to enhance the protection 
of user data without compromising on the utility of the 
models. These guidelines are meant to make speech 
recognition systems more scalable, inclusive and 
trustworthy in the real world.

Conclusion

The present work introduces a full analysis of the 
transformer-based models--Conformer and self-supervised 
wav2vec 2.0 models of robust speech recognition and 
natural language understanding in noisy and multilingual 
settings. The proposed methods have shown great gains 
in accuracy, semantic understanding, and robustness 
by exploiting state-of-the-art training techniques, like 
mixed precision training, and using a wide variety of data 
to reflect realistic acoustic variation. The experimental 
findings support the possibility of such architectures to 
spur the realization of next-generation voice-enabled 
applications that are extensible as well as flexible across 
different, linguistically-nuanced contexts. Latency, model 
compression, and ethics are topics that future research 
will strengthen their practical deployment even further.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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