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ABSTRACT

One challenge is speech enhancement in noise, which is of great importance in
enhancing communication in real world scenarios like teleconferencing, using
hearing aids, and automatic speech recognition (ASR). Although recently developed
audio-visual speech processing methods have shown that visual information of the
lips motion of a speaker can be used to enhance noise robustness to a high degree,
temporal misalignment between the audio and video data has remained a performance
limit. In this paper, a novel Lip-Reading-Guided Speech Enhancement architecture is
presented relying on Self-Aligning Cross-Attention Networks (SACAN), and serving to
dynamically synchronize and allure together multi-modal features to recover clearer
speech. The two streams of visual data and audio data are processed through a spatio-
temporal convolutional encoder to capture discriminative features of lip movements
and are encoded through log-mel spectrogram encoding to achieve representations in
spectral and time dimensions. These features are adapted to align frame-wise with
a bidirectional self-aligning cross-attention mechanism that helps mitigate distortions
caused by latencies and articulation mismatch between modalities. A U-Net based
enhancement network is used to decode the fused representation to produce a clean
speech spectrogram that in turn is reconstructed into waveform through inverse short-
time Fourier transform. The GRID and LRS3-TED datasets are experimented on under
three plausible conditions of noise (babble, street and cafe) at various signal-to-noise
ratio (SNR) levels. PESQ, STOI, and WER comparisons of quantitative assessments show
that SACAN is evaluated to have a PESQ gain of 0.41, a STOI gain of 0.05 and WER
reduction of 17.3 percent against state-of-the-art audio-only enhancement baselines.
Improved speech naturalness and intelligibility is further verified by subjective listening
tests. The results demonstrate the usefulness of cross-modal temporal matching in
reliable multimodal speech enhancement and its feasibility to be applied in realtime
hostile communication conditions.
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INTRODUCTION

Improving speech in a noisy acoustical condition has
always been regarded as an essential issue in audio signal
processing. It has many areas of practical use, including
hearing aids, teleconferencing, in-car communication
text interfaces, and automatic speech recognition in
consumer and industrial speech transcriptors. In this
case, the speech has a tremendously impaired perceptual
quality and intelligibility, due to noise sources in the
environment, e.g. chatter in cafes, car horns, purring
of machinery, or echoes in rooms. Traditional speech-
enhancement algorithms (both on the traditional
paradigm of digital signal processing such as spectral
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subtraction and Wiener filtering and more modern deep
learning-based audio-only models) mostly use acoustic
information. Although their performances are exemplary
in moderate levels of noise, performance levels begin
to deteriorate quickly once background noise becomes
widely distributed non-stationary or under low signal to
noise ratios at high SNRs.

The recent introduction of the third modality in
lip-reading-guided speech enhancement has been
recognized as an interesting development that can
be used to address these shortcomings of speech
communication, i.e. visual information based on the lip
movements of the speaker. Unlike the acoustic, visual
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speech cues do not vary with unrelated background
noise, and therefore, can offer orthogonal cues that may
lead to speech-separation procedures amidst adverse
circumstances. The improved deep learning has led to
the generation of advanced audio-visual fusion models
where convolutional and recurrent structures provide
the extraction of spatio-temporal lip features and fuse
the features with spectral spectro-temporal audio
features. There has been a distinct advantage to such
multimodal systems compared to audio only systems
especially in unfavourable environments. Nevertheless,
the temporal mismatch between the two modalities is
one of the permanent problems of this paradigm. Other
manifestations of the same -- variability in speech rate,
inconsistency in correspondence between phonemes and
visemes, visual--acoustic latency added during video
recording or processing, among others -- can considerably
reduce fusion effectiveness unless handled directly.
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Fig. 1: Lip-Reading-Guided Speech Enhancement
Pipeline Using Self-Aligning Cross-Attention Networks

In addressing this issue, the proposed work proposes
Self-Aligning Cross-Attention Network (SACAN), a new
deep learning paradigm that has a built-in form of
learning alignments between the visual and auditory
feature sequences in a shared latent embedding space
before being fused. At its heart is a self-aligning cross
attention mechanism that dynamically aligns sequences
of features encoding the motion of lips in video with
audio in spectrogram format, also on a frame-by-
frame basis. This tuning alleviates the repercussions of
the temporal derailment and guarantees that visually
pertinent image markers are matched or affiliated with
proper acoustic groupings. The corresponding features
are in turn fed into a multimodal fusion architecture
aimed at benefitting both the spatio-temporal dynamics
with the visual stream and the spectral-temporal nature
of the audio stream.

Widespread experiments are performed on publicly
accessible benchmark corpus, together with GRID and
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LRS3-TED, under numerous realistic noisy conditions,
such as, babble, street, and cafe noise at a different level
of SNR. These findings show that the suggested SACAN
is always superior to state-of-art audio-based baselines
and traditional lip-reading-guided enhancement models.
Subjective listening tests and quantitative measures,
including PESQ, STOI, WER, demonstrate the feasibility
of the suggested cross-modal way of aligning time to
enhance not only speech quality but also intelligibility.
In this job, besides having established the effects of
accurate time synchronization information in audio-visual
speech augmentation, it also initiates the directions of
the new line of research in robust multimodal speech
processing even in real world conditions.

RELATED WORK

The development of speech enhancement research
has spanned the spectrum between the older single-
modality audio-related technique with multimodal
frameworks that focus on visual features, especially
lip motion which has been used to achieve successful
speech recovery. Surveys are conducted in three
groups covering audio-only speech enhancement, lip-
reading-guided speech enhancement, and system-level
attention-based multimodal fusion, and as well as how
these prior studies have limitations within our proposed
comprehensive system.

Audio-Only Speech Enhancement

Traditional speech improvement algorithms are based
largely on digital signal processing (DSP)-based algorithms,
including spectral subtraction!™ and Wiener filtering,™ to
process noisy speech into clean speech (the removal of
noise components) via estimation of clean speech spectra.
These methods are computationally well-behaved, but
generally assume stationary noise and as such have low
generalization when noise conditions are highly non-
stationary, or signal to noise ratios are low (SNR). Deep
learning recently has resulted in substantial progress in
audio-only speech enhancement. Model-specific gains in
perceptual speech quality and intelligibility have been
achieved with complex-valued operations® as exemplified
by the Deep Complex Convolutional Recurrent Network
(DCCRN) and time-domain waveform processing as
exemplified by the Demucs architecture. These systems,
however, have no access to non acoustic information and
as such are inherently limited in the presence of highly
corrupted acoustic cues.

Lip-Reading for Speech Enhancement

Researchers have investigated the role of lip-reading in
combining it with the audio-only methods to counter the
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vulnerability of the audio-only means to noise. One of
the first strategies utilized viseme based classification
of reconstructing the waveforms of the speech [5][15]
however, it was limited by vocabulary and speaker
dependent structures. Other more recent frameworks
like Audio-Visual Speech Enhancement (AVSE) [6][12]
and VisualSpeechGAN [7] to utilize convolutional neural
networks (CNNs) and generative adversarial networks
(GANs) to process noisy audio along with mouth-region
video frames simultaneously. The techniques have a great
advantage of enhancing robustness under unfavorable
acoustic scenarios. Nonetheless, these developments
are subject to limitations on the extent to which the
existing systems imply a fixed temporal synchronization
between the visual and audio data streams, or rely on
convergent synchronization rules which are bound to fail
when speaking rate, phoneme to viseme mapping, or
video- audio capture delay oscillate. Such disparity may
result in mixing irrelevant visual frames with irrelevant
audio portions eroding performance.

Attention Mechanisms in Multimodal Fusion

Attention methods have been so significant in capturing
relations between sequences in different tasks. Networks
of cross-attention, introduced into machine translation®
and video-text alignment,” '3 allow a query sequence of
one modality to attend selectively to relevant elements
of another modality, allowing more contextually aware
fusion. Audio-visual Attention has been used to tackle
speech separation!'® ! and lip-reading recognition,'" 4
but not in a frame-level self-alignment of parts of lip
sequences and audio spectrograms as in the speech
enhancement setting.

To fill this gap, we have proposed the concept of
Self-Aligning  Cross-Attention Network  (SACAN)
which incorporates bidirectional cross-attention into
synchronizing features of lip movement and audio
spectrogram on a dynamic basis before fusion. In contrast
to the previous work!® 7 based on hard alignment, SACAN
learns the best temporal alignment on the fly during
training, contributing to better enhancement quality and
speech intelligibility in harsh real-word noise situations.

PROPOSED METHODOLOGY
System Overview

We require an explicit learning process to solve
the temporal misalighment problem in the speech
enhancement tasks guided by the lip-reading method,
and this is the aim of introducing the Self-Aligning Cross-
Attention Network (SACAN). SACAN includes five major
parts as shown in system architecture.

National Journal of Speech and Audio Processing | Oct - Dec 2025

The Video Encoder is based on a 3D Convolutional Neural
Network (3D CNN) to acquire spatio-temporal features
of cropped frames in the videos of the mouth-region.
The features will capture a static lip shape as well as the
dynamic motion patterns that will be required to provide
a phoneme-viseme mapping. The Audio Encoder uses a
2D Convolutional Neural Network (2D CNN) on log-mel
spectrograms obtained on the noisy speech waveform,
learning spectraltime style patterns that represent both
harmonic structure and time variation of speech.

As the backbone alignment module, a Self-Aligning
Cross-Attention Module uniquely learns frame-by-frame
correspondence between the synchronous feature
sequences of the cross-modal features (visual and audio).
These feature representations which are aligned are then
entered into a Fusion and Enhancement Network which
has a U-Net like encoder-decoder with skip connections.
This network merges multi-scale contextual data, and
rebuilds an improved speech spectrogram. Lastly, a
Waveform Reconstruction step is then used to do the
inverse Short-Time Fourier Transform (iSTFT) on the
spectrogram which has been enhanced and reconstruct
a time-domain clean speech waveform.Figure 2 -
Illustration of the SACAN architecture, showing video/
audio encoding, self-aligning cross-attention, fusion via
U-Net, and waveform reconstruction.
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Fig. 2: Self-Aligning Cross-Attention Network (SACAN)
Architecture

Self-Aligning Cross-Attention

Let and denote the visual and audio feature sequences,
respectively, where Tv and Ta are the video, audio
frame numbers and d is the feature dimensionality.
Self-aligning cross-attention calculates attention both
on the visual-to-audio path and audio-to-visual path so
that cross-attention iterates to more accurately capture
the temporal alighment. The attention operation can be
given by in case of query q, key k and value v matrices.

T
Attention(Q, K, V) = Eﬂftmax[%)b’ (1)
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In the visual-to-audio alignment, keys and values are
audio features whereas queries are visual features to
which the network can indicate the most applicable
acoustic frames to each of the visual ones. In the
audio-to-visual alignment on the other-hand, the act is
switched in such a way that the audio modality is able
to focus on affected temporally aligned lip frames. Such
two-way attention provides strong performance in terms
of temporal synchronization despite the inconsistency
in speech rates, phoneme and visemes mismatch, and
the time lag in capturing. It is part of the training loop
within the network and thus the alignment parameters
can be learnt alongside the enhancement model.

Training Objective

The SACAN framework is trained using a multi-objective
loss function designed to balance waveform fidelity,
intelligibility, and perceptual quality.

1. L1 Spectrogram Loss:

The mean absolute error (MAE) between the enhanced
and clean spectrogram magnitudes is used to encourage
accurate spectral reconstruction:

T 2
Lyy =I5 =51y (@)
where 8 and S represent the enhanced and clean
spectrograms, respectively.
2. Perceptual Loss:

To preserve linguistic content and intelligibility, a pre-
trained ASR model is used to extract intermediate
feature embeddings from both enhanced and clean
audio, and the L2 distance between them is minimized:

Lper'c =|| ¢(i’) - 'qb'{x] ”% (3)
where ¢(+) denotes the ASR feature extraction function.

3. Adversarial Loss:

Adiscriminator network, trained to distinguish enhanced
from clean speech, provides an adversarial loss term
that encourages perceptually realistic output:

Loz = E[logD(S)] + E[log(1 — DS)] ()

The total training loss is a weighted sum of these
components:

Ltoral = AILLI + ;{EL‘perc + ASLadtr (5)
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where A ,A,,A, are hyperparameters chosen empirically
to balance the contributions of each term.

EXPERIMENTAL SETUP
Datasets

The suggested Self-Aligning Cross-Attention Network
(SACAN) is tried on two benchmark sets of data. The
GRID Corpus is a controlled audio-visual speech corpus
containing the speech of 33 speakers each uttering
1,000 words in a constrained six-word configuration
to use words in order. Acquisition of the dataset is
backed up by clean, studio-quality recording conditions,
which makes it suitable to use in controlled checks
on modeling performance under conditions of noise
injected artificially. In comparison, the LRS3-TED dataset
is a large scale in-the-wild audio-visual speech corpus
derived off of TED and TEDx talks. It includes thousands
of utterances of the various speakers, in varied recording
conditions, speaking styles and by varied degrees of
realistic variation in lighting, head poses and background
noise. This training mixture of a structured corpus (GRID)
and naturally changing such dataset (LRS3-TED) enables
the overall testing of SACAN strength stipulated in both
optimal and extremely tough to-a-degree setting.

Noise Conditions

In order to simulate conditions in the real-life
noisy settings, three kinds of backgrounds noise are
proposed: babble noise (crowd talking with multiple
speakers), street noise (traffic, street sounds, and city
atmosphere), and cafe noise (conversation, the sound of
cutlery). Noise type is added to each of the three signal
levels of signal-to-noise ratio (SNR) 0 dB, 5 dB, and 10
dB, which includes the entire range of conditions, from
most challenging to noisy. The samples of the noise used
are available in well-known databases of environmental
noise and are combined with the clean audio, combining
them according to conventional augmentation
guidelines. This arrangement will make sure that the
effectiveness of evaluation will have a real-life situation
that audio-visual systems might be most wanted. Figure
3 is example spectrograms of clean speech and noisy
versions that were used in experiments: babble noise at
5 dB, street noise at 0 dB, and cafe noise at 0 dB. The
imagery of two distortions of the spectrum up to the
different types of noise in the real world.

Baselines

In order to calculate how effective SACAN is, the
performance is measured by contrasting and comparing
it to three baseline models:
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Fig. 3: Spectrogram Examples of Clean and Noisy Speech Conditions Used in SACAN Evaluation

e Audio-only DCCRN- An advanced deep complex
convolutional recurrent network which receives
only audio modality as input to improve speech.

e« AVSE- A lip-reading-constrained audio-visual
speech enhancement model, which incorporates
visual attributes with the audio attributes
with the assumption of invariance of temporal
alignment.

« VisualSpeechGAN Audio-visual, generative
adversarial network-based model that maps
noisy audio to clean speech by conditioning the
reconstruction on visual input, without overt
temporal alignment.

Such baselines represent the following classes: audio-
only enhancement, traditional audio-visual fusion, and
GAN-based multimodal synthesis.

Evaluation Metrics

Three commonly used evaluation criteria are used to
statistically measure the possible success of SACAN and
the baseline models. Perceptual evaluation of speech
quality (PESQ) is an ITU-T P.862 standard that is used
to determine the perceived speech quality, in which
a higher score is used to refer to the improvement
in overall speech perception. Short-Time Objective
Intelligibility (STOI) The STOI is an Open Source metric to
predict speech intelligibility on a scale of scale-invariant
0-1, with higher values indicating increased ease of
understanding. The Word Error Rate (WER) measures
intelligibility using a transcription accuracy measure
by piping the processed speech to an automatic speech
recognition (ASR) backend and computing the number
of misrecognized words. The three metrics allow us,
by considering the three aspects perceptual quality,
objective intelligibility, recognition accuracy together,
to rate the performance of SACAN comprehensively
under a wide range of noise conditions and test
sets.

National Journal of Speech and Audio Processing | Oct - Dec 2025

RESULTS AND DISCUSSION

The performances of the suggested Self-Aligning Cross-
Attention Network (SACAN) in regard to two baseline
models audio-only DCCRN and conventional lip-reading-
assisted AVSE are shown in Table 1 and Figure 4. Such
an assessment is performed on a hybrid of the GRID and
LRS3-TED datasets under varying noise scenarios, and its
performance is computed in terms of PESQ, STOI and
WER.

Table 1: Objective Performance Comparison of DCCRN,
AVSE, and SACAN on Speech Enhancement Tasks

Model PESQT | STOIT | WER!
DCCRN (Audio-only) 2.19 0.82 27.6%
AVSE Baseline 2.46 0.86 23.8%
SACAN (Proposed) 2.87 0.91 19.7%

The findings are also clear that SACAN brings tremendous
increments in all measures. In particular, SACAN has a
gain of 0.41 points in PESQ and 0.05 point in STOI relative
to AVSE baseline, which means higher perceptual quality
and better intelligibility. More significantly, SACAN
shows a 17.3% improvement over AVSE, a feature that
indicates how SACAN can ensure that linguistic contents
are maintained, in spite of the noisy environment. The
audio-only DCCRN is improving even more, with 0.68
increment on PESQ, 0.09 increment on STOl and 7.9
reduction on percentage points on the WER.

The improvement in their performance can be credited
to the fact that SACAN has a bidirectional self-aligning
cross-attention module such that the visual and audio
features are temporally aligned prior to being fused
together. By contrast, AVSE uses fixed or heuristic
alignment method that can break down in case of change
of speech rate or phoneme-viseme correspondences
or video-audio latency. SACAN uses alignment-aware
fusion to guarantee that all the frames concerned with
the relevant lips are combined with the precise parts
of the audio, thus lettering speech reconstruction and
noise suppression occur more precisely. The objective
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Fig. 4: Objective Metric Comparison for DCCRN, AVSE, and SACAN

data are also confirmed by the subjective listening
tests where ten participants took part. Listeners always
rated SACAN outputs as more natural and less distorted
than the baselines, especially under low-SNR, e.g., 0 dB
babble noise. Such an increase in the perceived sound
quality is well matched with the recorded enhancement
of PESQ and STOIl, and an enormous decline in
the WER.

Figure 4 (PESQ, STOl and WER bar plots) gives a
graphical presentation on the performance trends.
The stability of the proposed approach of temporal
alignment is reflected in the consistent superiority of
SACAN with respect to all measures and assessment
scenarios. The associated relative gains in WER also
indicate that SACAN holds great promise of downstream
use in noise-robust automatic speech recognition (ASR)
and in real-time communication systems. Conclusively,
these findings confirm the potential of integrating
self-aligning cross-attention in multimodal feature
synchronization in relation to speech enhancement
as the visual and acoustic modalities build a bridge
creating better performance in difficult real-noise
conditions.

CASE STUDY: REAL-WORLD APPLICATION IN
TELECONFERENCING

In order to test the real-life applicability of the proposed
Self-Aligning Cross-Attention Network (SACAN), we ran
it in a live teleconferencing setting with popular tools
like Zoom and Microsoft Teams and used a standard
laptop webcam (720p, 30 fps) and an omnidirectional
USB microphone as inputs. The system was designed to
receive audio-visual streams in playback time and the
improvement was done before being put into play by the
remote attendants. The experimental conditions in the
test environment emulated the problems of a difficult
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workplace environment with multiple participants
talking at the same time, a precedence of strong non-
stationary noise sources of both mechanical keyboard
typing and coffee machine use, as well as background
office chatter as one might experience in an open office
environment.

SACAN was a constant improvement over the lip-reading-
guided AVSE baseline with fixed temporal alignment as
well as over the audio-only DCCRN (summarized in Table
2). In SACAN, word recognition accuracy was highest (92
per cent), listening fatigue reached a lowest subjective
point rating recorded, lip synchronization suffered no
drift and the highest robustness was observed during
extreme noisy circumstance (<= 5 dB SNR). Although its
mean processing latency (145 ms) was a little above the
baselines, this was still within the acceptable range of
the real-time communication.

The subjective listener scores, shown in Figure 6 also
affirms the advantage of the SACAN and the consistently
high scores in the three tests by the listeners of
naturalness, clarity and lip audio synchronization.
Specifically, the lip to audio synchronization rating of
SACAN was near the top of the 1-5 point proposition
with a tremendous difference between SACAN and AVSE
and precluding application of DCCRN in this parameter
because the method is audio-only.

Figure 5 depicts that SACAN can combine real-time
viability with a high level of intelligibility by displaying
a dual-axis comparison of recognition accuracy and
experimentally measured word-level processing delays
of recognition. The combined findings of Table 2, Figure
5 and Figure 6 demonstrate the possibility of SACAN to
provide both quantifiable performance improvements
and enhanced user experience to teleconferencing
scenarios in realistic noisy conditions.
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Table2: Comparative Teleconferencing Performance of SACAN, AVSE, and DCCRN Under Real-World Noise Conditions

Metric / Observation DCCRN (Audio-only)

AVSE (Fixed Alignment)

SACAN (Proposed)

Word Recognition Accuracy (%) 78 85 92

Subjective Listening Fatigue High Medium Low

Lip-Audio Synchronization Quality | Not Applicable Medium (occasional drift) High (no noticeable drift)
Robustness under Severe Noise Low Medium High

(<5 dB SNR)

Average Processing Latency (ms) 115 130 145

LIMITATIONS

Although the proposed Self-Aligning Cross-Attention
Network (SACAN) acquires great boosts in performance,
there are some limitations. Its performance also
deteriorates when it has low lights, camera low
resolution, or blurriness of movement, which decreases
the credibility of lip-movement characteristics. Face and
lip detection should be precise, and occlusion cannot
be avoided when using masks, hand gestures, or quick
movements of the head which will harm the quality
of the enhancement. SACAN can recover moderate
amounts of audio-visual timing offsets, but such offsets
beyond moderation due to network jitter or hardware
incompatibility can be too great to compensate.
The two-stream processing and the cross-attention
mechanism are more computationally intensive, and
is currently difficult to implement on ultra-low-power
embedded devices that lack hardware acceleration,
though the latency of ~145 ms makes it acceptable
for most real-time applications, tools that need more
careful timing will likely require additional work. Also,
the model having been heavy-trained on English training
datasets, additional solutions can include retraining or
fine-tuning on other languages and dialects that have
distinct viseme-phoneme representations. Distracting
visual images in the background may also interfere
with lip feature extraction in case the mouth region is
not fully isolated, and video stream data on faces has
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possible privacy and security issues that need to be
resolved within the bounds of associated regulations.

CONCLUSION AND FUTURE WORK

The present work proposed a new Self-Aligning
Cross-Attention Network (SACAN) to perform speech
enhancement via lip-reading predictions, in order to
mitigate the ever-present issue of temporal mismatch
between audio and visual modalities in the fusion
process. Isolating an audio-spectrogram feature and
the lip motion feature, SACAN synchronizes these
two features dynamically, level to level, by using a
bidirectional self-aligning cross-attention to guarantee
that the semantically interesting host information is
merged to the specific acoustic bits. Spatio-temporal
video encoder, spectral and temporal audio encoder
as well as a U-Net-based enhancement network are
incorporated into the system to generate high-quality,
intelligible speech that can be achieved even in extreme
conditions of noise.

Substantial experiments on GRID and LRS3-TED
datasets with different noise types in real-life noise
(babble, street, and cafe) as varied SNR levels showed
SACAN uniformly surpasses state-of-the-art baselines.
Combined with SACAN as compared to audio-only DCCRN
and the traditional AVSE framework, the PESQ increment
rose to up to 0.68 and the WER decreased by 17.3%, and
there were demonstrable increases in terms of STOI and

23



R. Rudevdagva and G.C. Kingdone : Lip-Reading-Guided Speech Enhancement via Self-Aligning
Cross-Attention Networks

listener opinionated naturalness. A real case study of
teleconference work further supported the robustness
of SACAN, as the participants could testify they had a
better speech clarity, lower listening strain and better lip
and audio synchronization even under poor conditions.

What is important about these results is that they
indicate that the success of audio-visual speech
enhancement is based on their explicit, learnable
alignment in time. In contrast with the fixed or heuristic
synchronization approaches, SACAN can self-align to
differences in speaking rate, phoneme viseme matching
and capture latency thus proving more robust in real
world deployment behaviours.

FUTURE WORK

In the future, multiple areas of research can be used to
increase the applicability of SACAN and its functionality.
Low-light visual feature enhancement is one of the
potential directions, under the pre-processing phases of
which deep learning-based video denoising and super-
resolution may be added as modules to make the lip
featuresmore reliablein poor-lighting and low-resolution
situations. The other area of interest is lightweight
architectures to deploy the models at the edge, with a
focus on model compression and quantization, as well
as efficient neural operators to support deployment
on resource-limited embedded devices and mobile
systems without compromising accuracy. Any extension
of SACAN to multi-speaker audio-visual separation, such
as speaker tracking and visual speaker diarization could
benefit conversational clarity in a group. Besides, the
evaluation and adaptation in cross-language and dialect
by training and evaluation using various datasets will
assist in measuring and increasing the generality between
distinct viseme phoneme associations and language
forms. Lastly, the data security and compliance issues
in the application of such sensitive video-based speech
enhancement could be mitigated by use of privacy-
preserving inference through on-device processing,
federated learning or encrypted computation, and so
on.
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