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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
 
The speed of development in deep learning has brought major changes in speech and 
audio processing, where deep learning today is able to significantly reduce noise, 
improve speech enhancement, and even allow voice analysis in real time, just to name 
a few modern applications: smart assistants, hearing aids, web-based call centers, 
and teleconferencing systems. The paper presented below will have the purpose of 
examining recent developments in algorithm and deployment methods that pursue the 
accuracy as well as efficiency issues. The latest architectures, such as convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), transformer-based models, 
and self-supervised learning frameworks, are discussed in terms of their potential in 
dealing with non-stationary noise, maintenance of speech intelligibility, and low-latency 
processing. The suggested evaluation approach would use benchmark data, such as 
CHiME, LibriSpeech, and VoiceBank-DEMAND to measure effects on signal-to-noise ratio 
(SNR) gain, perceptual evaluation of speech quality (PESQ), and word error rate (WER) 
reduction. We show experimental results that transformer-based enhancement models 
show up to +11.5 dB SNR improvement and significant PESQ gains on embedded platforms 
with a processing latency requirement of under 50 ms. The paper also investigates the 
process of quantization and pruning of lightweight models, making it possible to be 
deployed to low resources settings. It ends with a discussion of the remaining open 
problems, including domain adaptation, robustness to multilingual corpora, and ethics, 
and finally a vision of possible future research areas to close the gap between lab and 
real-world systems AI-based speech and audio systems back to larger applications.

Author’s e-mail: Yeonj.kim@snu.ac.krg, kim.h.s@snu.ac.kr

How to cite this article: Yeonjin K, Hee-Seob K. Deep Learning-Driven Speech and 
Audio Processing: Advances in Noise Reduction, Speech Enhancement, and Real-Time 
Voice Analytics. National Journal of Speech and Audio Processing, Vol. 1, No. 4, 2025   
(pp. 9-16). 

Introduction
Human computer interaction, multimedia and assistive 
technologies heavily rely on speech and audio processing, 
which takes the form of teleconferencing and smart 
assistants, hearing aids and robotics, among others. 
These solutions were historically based on the concept 
of digital signal processing (DSP) namely spectral 
subtraction, Wiener filtering, and statistical model-
based enhancement which, despite showing marked 
success in controlled environments, have suffered 
significant performance loss in highly-non-stationary or 
hostile acoustic backgrounds.[1, 2] Recently introduced 
deep learning has facilitated the strong modeling of 
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intricate temporal spectral phenomena in audio, leading 
to profound noise reduction, speech enhancement and 
analytics accuracy. Other architectural methods that 
have proved to perform better in the extraction of noise-
tolerant features, enhance intelligibility and low-latency 
analysis are convolutional neural networks (CNNs),[3] 
recurrent neural networks (RNNs),[4] and transformer-
based models.[5] New advances in self-supervised learning 
also boost adaptation to low-resource and multilingual 
contexts.[6, 7]

Even though these developments have been made there 
still are a number of limitations associated with current 
research including:
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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• Domain Generalization - Generalization across 
inappropriate noise and acoustic domains in 
many models fails to be robust [8].

• Constraints of resources - Drives intensive 
computations and memory demands and has to 
be impractical on embedded and mobile systems 
[9].

• Latency Problems. Real-time workload 
requirements are one area that is still a problem, 
especially when streaming speech analytics [10].

• Ethical and Privacy Concerns- Voice data pro-
cessing is sensitive and creates trust and security 
issues.[11]

These gaps are covered through this paper as follows:

1.	 A review of deep learning systems used in 
reducing noise and enhancing speech, and deep 
learning in real-time voice analytics.

2.	 Assessment of commercial models on the 
benchmark datasets with offline and real-time 
scenario.

3.	 On the issues of lightweight model optimization 
and deployment as applied to embedded-
systems.

4.	 The discovery of research gaps and the 
identification of scale and low latency, and 
ethical AI-based speech processing directions.

Related Work

Initial work on noise reduction and speech enhancement 
technologies had made use very extensively of classical 
digital signal processing (DSP) algorithms, such as 
spectral subtraction,[12] minimum mean-square error ( 
MMSE ) estimators,[13] and Kalman filtering.[14] Although, 
computationally these methods proved to be efficient and 
worked well in controlled conditions the assumptions of 
stationary noise proved to make the methods ineffective 
in highly dynamic acoustic environments where noise 
was to have non-linearity and varied across time. 
Deep learning introduced a very different perspective 
of enhancing speech. Properly trained supervised 
models like Deep Denoising Autoencoders (DDAEs)[15]  
exhibited dramatic enhancements in the scope of 
abilities on denoising through training complex spectral 
combinations directly on the data. Likewise, Long Short-
term Memory (LSTM) networks[16] successfully used 
the long distance temporal information to effectively 
preserve the structure of the speech in the case of 
going through a tough noise environment. Recently, 
transformer-based architectures, consisting of a 
combination of attention mechanisms and convolution 

modules such as SepFormer[17] and Conformer,[18] have 
made state-of-the-art performance in separate and/or 
enhancement benchmarks. These models have better 
parallelization and scalability, which is expected to work 
great on wards in large scale deployment. Deep speaker 
embeddings like x-vectors,[19] ECAPA-TDNN,[20] have 
established new state of the art in speaker verification 
accuracy in the voice analytics field. In the meanwhile, 
the self-supervised learning algorithms such as wav2vec 
2.0[21] and HuBERT[17] have demonstrated a substantial 
increase in the performance on low-resource and 
multilingual tasks, which requires fewer databases with 
transcriptions.

Although these developments have been witnessed, 
there are a number of challenges that are still faced:

• Generalization Across Domains: Most deep 
learning models have a drop in their performance 
when transferred to unused acoustic setting.

• Limited Resources: They have high memory and 
computational requirements which make them 
not as applicable to embedded devices and real-
time systems.

• Latency Inconveniences: Transformer-based 
architectures are exact but introduce delays 
in processing which can slow the streaming 
applications.

• Interpretability: Deep models have a so-called 
black box problem of trust and debugging, 
especially in safety-critical applications.

The solutions to those challenges involve studying 
lightweight, domain-adaptive and explainable deep 
learning designs that are confined to speech and audio 
processing in a robust and real-time fashion.

Methodology

The offered structure incorporates three fundamental 
modules, including noise reduction, speech enhancement 
and real-time voice analytics in order to provide a 
single deep learning-based speech and audio processing 
pipeline. All modules are tuned and built with safety-
critical performance, low latency and the ability to run 
on constrained power embedded designs.

Noise Reduction Framework

A ConvolutionalRecurrent Hybrid Network (CRN) 
incorporating attention based mechanism of masking 
was used in noise reduction stage (Figure 1).

• Selection of Architecture: CRNs have shown to 
combine CNN layers to extract local features 
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is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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in the spectrally and time dimension and a 
bidirectional gated recurrent unit (Bi-GRU) to 
capture the long-range temporal dependencies 
efficiently, and thus work well in non-stationary 
noise conditions.

• Input Features: Log-Mel spectrograms are 
derived with raw audio with a 25 ms Hamming 
window, 10 ms hop size and accurate temporal 
resolutions are achieved.

• Training Goal: To provide effective training of 
the noise suppression there is the application of 
a mean-squared error ( MSE ) loss function to the 
difference between the clean and the estimated 
speech magnitude spectra to promote accurate 
noise suppression.

• Datasets: Data is trained and tested on VoiceBank-
DEMAND (diverse forms of background noise) 
and CHiME-4 (realistic multi-microphone noisy 
speech) datasets (both popular benchmarks of 
speech enhancement studies).

Fig. 1: Noise Reduction Framework Using Convolu-
tional–Recurrent Hybrid Network

Proposed CRN-noise reduction framework workflow, 
which shows feature extraction in preprocessed raw 
audio, convolution and a bidirectional modified gated 
recurrent unit (Bi-GRU) layers, and optimization with 
the mean square error (MSE) loss on standard datasets.

Speech Enhancement Pipeline

Speech enhancement stage uses multi-task learning (MTL) 
paradigm which integrates the speech enhancement and 
phoneme recognition into a single network (Figure 2).

• Architecture: An encoder-decoder system based 
on Transformer architecture with cross-attention 
layers has been implemented to align enhanced 
speech representations and phonetic features on 
the one hand and to achieve perceptual quality 
and linguistic intelligibility on the other hand.

• Multi-Task Rationale: The model trains for 
the purpose of noise removal and phoneme 
recognition; and by harmonizing their objective, 
the model is better able to generalize to unseen 
acoustic environments.

• Ways of Measuring it:

o PESQ (Perceptual Evaluation of Speech 
Quality).

o STOI (Short-Time Objective Intelligibility) as 
the intelligibility measure.

o Measurement of signal fidelity by SDR (Signal-
to-Distortion Ratio).

Fig. 2: Speech Enhancement Pipeline  
Using Multi-Task Learning

A multi-task learning framework with transformers 
owned speech enhancement and phoneme recognition 
tasks and their performance were assessed with PESQ, 
STOI, and SDR criteria (Figure 3).

Real-Time Voice Analytics

The voice analytics module takes processed enhanced 
speech in real time where tasks include speaker 
identification, keyword spotting and emotion recognition.

• Mode Implementation: A lightweight CNN-
TDNN is taken up as this can model long term 
spectral patterns (through conv useful guidelines 
astrophysical neutrino search lightweight CNN-
TDNN rather (via time-delay neural networks)).

• Optimization of Deployment 1: TensorRT is used 
to accelerate models on NVIDIA Jetson-class 
devices with end to end latency of less than 50 
ms.

• The techniques of reducing latencies include:

o Quantization-aware training (QAT): It reduces 
model-preshision to INT8 that preserves 
accuracy.

o Structured pruning: Removes the unnecessary 
parameters aimed at reducing the computation 
overhead.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 3: Real-Time Voice Analytics with Lightweight 
CNN–TDNN Model

Real-time voice analytics framework of an optimized 
CNN–TDNN hybrid through quantization savvy training 
and structured algorithmic reduction for low-latency 
execution on applying devices.

Integrated Processing Pipeline

The three modules are combined in streaming 
architecture based on processing in a frame-by-frame 
process (Figure 4). The noise reduction and enhancement 
blocks work in successive cascade which is then followed 
by the real-time analytics. This ensures:

• Interactive applications Low-latency operation.

• Modular flexibility, whereby discrete modules 
may be modified without re-training the overall 
system.

• The possibility of edge deployment on embedded 
IoT, wearable and robotics.

Fig. 4: Integrated Processing Pipeline for Real-Time 
Speech and Audio Analytics

Real-time, low-latency and edge-ready speech process-
ing solution integrating noise reduction, speech en-
hancement and real-time analytics into an end-to-end 
streaming pipeline.

Experimental Setup

Experiments to achieve the proposed deep learning-driven 
structure based on speech and audio processing delivered 
on embedded edge systems and high-performance offline 
platforms were undertaken in an attempt to compare 
the performance with the differentiated computational 
limitations (Table 1, Figure 5).

Configuration of Hardware:

• Embedded Platform: NVIDIA Jetson Xavier 
NX, which offers both compute performance 
(384 CUDA, 48 Tensor Cores) plus low power, 
and therefore meets the requirements of an 
operational edge device, such as IoT devices or 
wearables, in real time.

• Workstation Platform: Intel core i9-based 
workstation 64 GB RAM and NVIDIA RTX GPU to 
enable faster training and large scale offline 
evaluation.

Environment /Framework For Software

• Model Training and Evaluation: PyTorch 2.2, 
because it is flexible and convenient to 
accommodate custom forms of deep learning 
architectures.

• Edge Deployment: TensorFlow Lite to do 
quantized inference on embedded systems, to 
allow a smaller memory footprint and execution 
speedup.Training Protocol:

• Training was accomplished via Adam optimizer 
applying an initial learning rate to be 1 10 - 4.

• The batch size of 32 was chosen, which 
represented a good trade-off between the 
stability of convergence and GPU memory limits.

• Early stopping was also used to avoid overfitting, 
which included monitoring of validation loss.

Benchmark Datasets:

• LibriSpeech: speech recognition and speech 
enhancement large-scale corpus.

• VoxCeleb1: General speaker spreads of speaker 
identification and verification.

• RAVDESS: Emotional speech data to perform 
emotion recognition experiments.

• CHiME-4: Robustness experiments using a noisy 
speech in the real world on a multi-microphone 
noisy dataset.

This two-platform configuration had the benefit of 
exhaustive testing in terms of accuracy, latency and 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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resource consumption metrics, and was used to confirm 
pause-time+jitter behavior that satisfies both high-
performance and embedded real-time applications.

Fig. 5: Experimental Setup Architecture

Pipeline of model training and optimization on the 
development hardware with PyTorch on benchmark 
datasets, and real-time deployment by optimizing them 
to run on embedded hardware using TensorFlow Lite 
with no overheads.

Results and Discussion

A fixed three essential tasks were used to measure the 
performance of the suggested framework, which are 
reduction of noise, enhancement of the speech and real-
time voice analytics (Figure 6). Table 2: Results given as 
Perceptual Evaluation of Speech Quality (PESQ), Short- 
Time Objective Intelligibility (STOI), Signal-to-Noise 
Ratio (SNR) gain, and Word Error Rate (WER) and Equal-
Error Rate (EER) over individual tasks.

Key Observations:

1. Superior Enhancement Performance:

The speech enhancement model based on Transformers 
performed better than the CRN with regard to PESQ 
and STOI that show better perceptual quality and 
intelligibility. Such enhancement can be credited to 
the multi-head cross-attention mechanism, as it allows 
aligning the enriched speech with the phonetic features 
effectively and leads to better generalization under 
conditions of complex noise.

2. Effective Noise Suppression:

The attention masking CRN had an SNR gain of +10.2 
dB exhibiting robustness to non-stationary noise. 
Nevertheless, its intelligibility score had a slightly 
lower score than the Transformer SE, which implies 
that noise suppression cannot be assumed to maximize 
the intelligibility unless there is contextual phonetic 
alignment.

3. Low-Latency Real-Time Analytics:

The CNN-TDNN voice analytics hybrid scored an Equal 
Error Rate (EER) of 2.3 per cent with a processing latency 
of less than 50 ms on the NVIDIA Jetson Xavier NX. This 
satisfies the latency demands shifted to interactive apps 
like smart-assistants and real-time checking systems.

1. Impact of Multi-Task Learning:

Multi-task learning helped produce more robustness 
on unseen noise domains with higher STOI scores and 
lower WERs on several datasets in the strengthening  
pipeline.

Table 1: Experimental Setup

Category Details

Hardware Embedded Platform: NVIDIA Jetson Xavier NX (384 CUDA cores, 48 Tensor Cores, 8 GB LPDDR4x RAM, 
15 W power budget) Workstation Platform: Intel Core i9 CPU, 64 GB RAM, NVIDIA RTX GPU

Software Model Training: PyTorch 2.2 Edge Deployment: TensorFlow Lite (quantized inference)

Training Parameters Optimizer: Adam Initial Learning Rate: 1 × 10⁻⁴ Batch Size: 32 Early stopping with validation loss 
monitoring

Benchmark Datasets LibriSpeech: Speech recognition/enhancement VoxCeleb1: Speaker identification/verification 
RAVDESS: Emotion recognition CHiME-4: Noisy speech robustness testing

Table 2: Performance Evaluation of the Proposed Framework

Task Model PESQ ↑ STOI ↑ SNR Gain (dB) ↑ WER ↓ / EER ↓
Noise Reduction CRN + Attention 3.25 0.94 +10.2 9.1% WER

Speech Enhancement Transformer SE 3.38 0.96 +11.5 8.4% WER

Voice Analytics CNN–TDNN – – – 2.3% EER
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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2. Edge Deployment Feasibility:

QAT and structured pruning demonstrated that the 
framework could be applied to embedded and low-
power application with a minimised cost of computation 
without substantial accuracy losses.

Discussion

The findings verify that CRN based noise reduction and 
Transformer based enhancement will create quality and 
intelligible speech output. Moreover, the combination 
of CNN-TDNN real-time analytics would make the 
downstream applications have access to the clean and 
semantically rich speech features. Noise suppression, 
enhancement, and analytics modules have their 
synergetic relationship and evidence the framework 
capacity to work efficiently in various conditions since 
it can address both powerful and resource-limited 
environments.

Fig. 6: Comparative Performance Results

Bar chart showing how CRN+ Attention, Transformer 
SE, and CNN–TDNN do across PESQ, STOI, SNR Gain, and 
WER/EER metrics.

Challenges and Future Directions

The presented framework has a high performance 
regarding noise suppression, speech improvement, 
and real-time voice analysis. Nevertheless, there are 
a number of practical and research issues still to solve 
before the wider adoption and robust deployment to 
different environments are possible (Figure 7: Roadmap 
of Future Research in the Speech and Audio AI).

1. Domain Adaptation

• Current Weakness: The performance of the 
system is good on benchmark datasets, however, 
the generalization of the model reduced when 

applied on noise profiles or different recording 
conditions than during a training session.

• Future Direction: The possibility to become 
more robust through using unsupervised 
domain adaptation and data augmentation. 
Meta-learning strategies could also allow quick 
adaptation to new noise conditions at very little 
retraining.

2. Low-Power Deployment

• Current Limit: Edge-optimized models can infer 
in sub-50 ms, but it is still not possible to run 
such models at the ultra-constrained devices 
of wearable applications because of limited 
memory and energy budgets.

• Future Direction hardware-aware neural 
architecture search (NAS), binary/ternary 
quantization, and event-driven computations 
could also reduce computational overhead, at 
the same accuracy level.

3. Privacy & Ethics

• Present Limit: Explicit privacy risks are inherent 
in the process of handling voice data especially 
where voice is used in biometrics authentication 
or to identify the emotions.

• Future Direction: The risk of exposure of data can 
be alleviated by instituting federated learning 
and on-device inference. Also, by considering 
homomorphic encryption and privacy-respecting 
speech representation learning, the security 
compliance can be enhanced on sensitive 
deployments.

4. Explainability and Trust

• limiting the current approach: The deep learning 
models are known as a black box, meaning it 
is not very interpretable, which is particularly 
undesirable in the forensic or legal context 
aimed at having a transparent decision making 
process.

• Future Direction: Incorporating explainable AI 
(XAI) methods e.g. to generate saliency maps 
of spectrograms, the visualization of attention 
weights, and post-hoc interpretability methods 
will ensure less suspicion and make debugging 
possible.

Contributions and Outlook:

The current work combines CRN-based noise suppression, 
Transformer-based speech enhancement with multi-task 
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can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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learning and CNNTDNN-based voice analysis into a single 
low latency pipeline that can run on embedded devices. 
Its ability to sustain high perceptual quality, high intel-
ligibility and accurate analytic performance is validated 
under realistic conditions by the results of the experi-
ment (Table 2, Figure 6).

Future work is aimed at scalable adaptation, extreme 
resource efficiency, trustful deployment, transparent 
decisions, and thus closing the gap between high-
performance laboratory models and reliable real-world 
speech and audio AI systems.

Fig. 7: Roadmap for Future Research in  
Speech and Audio AI

A strategic plan laying out of research foci, areas such 
as domain adaptation, low power model deployment, 
privacy preserving learning and interpretable AI for 
enhancing speech and audio intelligence.

Conclusion

This study proposes to unify deep learning-driven speech 
and audio processing with a low latency speech/audio 
signal processing and analysis pipeline that leverages 
multi-task learning and embedding resource constraints 
to combine CRN-based noise reduction, Transformer-
based multi-task speech enhancement, CNN-TDNN-

based real-time voice analytics in an integrated low-
latency framework scalable to both high-performance 
and embedded environments. Utilizing benchmark 
datasets, including LibriSpeech, VoxCeleb1, RAVDESS, 
and CHiME-4, the proposed system can record significant 
enhancements in PESQ, STOI, SNR gain and WER/EER 
(Table 2, Figure 6), and exhibit sound stability across 
various and noisy acoustic conditions. It has optimized 
the architecture to ensure real-time deployment of 
its edge by using structured pruning, quantization-
aware training, latency of less than 0.5 s achieving 
low 50 ms typo of latencies without a significant loss 
of accuracy. This follows the fact that the solution is 
applicable in IoT, wearables, assistive, and smart voice  
interfaces.

Other than the performance improvements, the 
study highlights high-priority research issues- such 
as domain adaptation, ultra-low-power deployment, 
privacy-preserving processing, and explainability, and 
provides a roadmap of how to tackle various issues 
going forward (Figure 7). These issues will be key to 
allowing the step out of controlled laboratory standards 
into trustworthy, scalable, and morally acceptable real-
world applications.

In short, this piece of work offers a practical and 
deployable solution, as well as a vision of what speech 
and audio AI may become by doing this it also closes the 
gap between academic work and industrial applications.
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