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ABSTRACT

The speed of development in deep learning has brought major changes in speech and
audio processing, where deep learning today is able to significantly reduce noise,
improve speech enhancement, and even allow voice analysis in real time, just to name
a few modern applications: smart assistants, hearing aids, web-based call centers,
and teleconferencing systems. The paper presented below will have the purpose of
examining recent developments in algorithm and deployment methods that pursue the
accuracy as well as efficiency issues. The latest architectures, such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs), transformer-based models,
and self-supervised learning frameworks, are discussed in terms of their potential in
dealing with non-stationary noise, maintenance of speech intelligibility, and low-latency
processing. The suggested evaluation approach would use benchmark data, such as
CHIiME, LibriSpeech, and VoiceBank-DEMAND to measure effects on signal-to-noise ratio
(SNR) gain, perceptual evaluation of speech quality (PESQ), and word error rate (WER)
reduction. We show experimental results that transformer-based enhancement models
show up to +11.5 dB SNR improvement and significant PESQ gains on embedded platforms
with a processing latency requirement of under 50 ms. The paper also investigates the
process of quantization and pruning of lightweight models, making it possible to be
deployed to low resources settings. It ends with a discussion of the remaining open
problems, including domain adaptation, robustness to multilingual corpora, and ethics,
and finally a vision of possible future research areas to close the gap between lab and
real-world systems Al-based speech and audio systems back to larger applications.
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INTRODUCTION

Human computer interaction, multimedia and assistive
technologies heavily rely on speech and audio processing,
which takes the form of teleconferencing and smart
assistants, hearing aids and robotics, among others.
These solutions were historically based on the concept
of digital signal processing (DSP) namely spectral
subtraction, Wiener filtering, and statistical model-
based enhancement which, despite showing marked
success in controlled environments, have suffered
significant performance loss in highly-non-stationary or
hostile acoustic backgrounds.[ 2 Recently introduced
deep learning has facilitated the strong modeling of
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intricate temporal spectral phenomena in audio, leading
to profound noise reduction, speech enhancement and
analytics accuracy. Other architectural methods that
have proved to perform better in the extraction of noise-
tolerant features, enhance intelligibility and low-latency
analysis are convolutional neural networks (CNNs),E!
recurrent neural networks (RNNs),[ and transformer-
based models.® New advances in self-supervised learning
also boost adaptation to low-resource and multilingual
contexts.® 7!

Even though these developments have been made there
still are a number of limitations associated with current
research including:
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» Domain Generalization - Generalization across
inappropriate noise and acoustic domains in
many models fails to be robust [8].

o Constraints of resources - Drives intensive
computations and memory demands and has to
be impractical on embedded and mobile systems

[9].

o Latency  Problems. Real-time  workload
requirements are one area that is still a problem,
especially when streaming speech analytics [10].

« Ethical and Privacy Concerns- Voice data pro-
cessing is sensitive and creates trust and security
issues. [

These gaps are covered through this paper as follows:

1. A review of deep learning systems used in
reducing noise and enhancing speech, and deep
learning in real-time voice analytics.

2. Assessment of commercial models on the
benchmark datasets with offline and real-time
scenario.

3. On the issues of lightweight model optimization
and deployment as applied to embedded-
systems.

4. The discovery of research gaps and the
identification of scale and low latency, and
ethical Al-based speech processing directions.

RELATED WORK

Initial work on noise reduction and speech enhancement
technologies had made use very extensively of classical
digital signal processing (DSP) algorithms, such as
spectral subtraction,! minimum mean-square error (
MMSE ) estimators,["* and Kalman filtering.!" Although,
computationally these methods proved to be efficient and
worked well in controlled conditions the assumptions of
stationary noise proved to make the methods ineffective
in highly dynamic acoustic environments where noise
was to have non-linearity and varied across time.
Deep learning introduced a very different perspective
of enhancing speech. Properly trained supervised
models like Deep Denoising Autoencoders (DDAEs)!!
exhibited dramatic enhancements in the scope of
abilities on denoising through training complex spectral
combinations directly on the data. Likewise, Long Short-
term Memory (LSTM) networks!'®! successfully used
the long distance temporal information to effectively
preserve the structure of the speech in the case of
going through a tough noise environment. Recently,
transformer-based architectures, consisting of a
combination of attention mechanisms and convolution
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modules such as SepFormer!'"! and Conformer,'®! have
made state-of-the-art performance in separate and/or
enhancement benchmarks. These models have better
parallelization and scalability, which is expected to work
great on wards in large scale deployment. Deep speaker
embeddings like x-vectors,[' ECAPA-TDNN,[ have
established new state of the art in speaker verification
accuracy in the voice analytics field. In the meanwhile,
the self-supervised learning algorithms such as wav2vec
2.0 and HuBERT!'! have demonstrated a substantial
increase in the performance on low-resource and
multilingual tasks, which requires fewer databases with
transcriptions.

Although these developments have been witnessed,
there are a number of challenges that are still faced:

e Generalization Across Domains: Most deep
learning models have a drop in their performance
when transferred to unused acoustic setting.

« Limited Resources: They have high memory and
computational requirements which make them
not as applicable to embedded devices and real-
time systems.

» Latency Inconveniences: Transformer-based
architectures are exact but introduce delays
in processing which can slow the streaming
applications.

« Interpretability: Deep models have a so-called
black box problem of trust and debugging,
especially in safety-critical applications.

The solutions to those challenges involve studying
lightweight, domain-adaptive and explainable deep
learning designs that are confined to speech and audio
processing in a robust and real-time fashion.

METHODOLOGY

The offered structure incorporates three fundamental
modules, including noise reduction, speech enhancement
and real-time voice analytics in order to provide a
single deep learning-based speech and audio processing
pipeline. All modules are tuned and built with safety-
critical performance, low latency and the ability to run
on constrained power embedded designs.

Noise Reduction Framework

A ConvolutionalRecurrent Hybrid Network (CRN)
incorporating attention based mechanism of masking
was used in noise reduction stage (Figure 1).

o Selection of Architecture: CRNs have shown to
combine CNN layers to extract local features
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in the spectrally and time dimension and a
bidirectional gated recurrent unit (Bi-GRU) to
capture the long-range temporal dependencies
efficiently, and thus work well in non-stationary
noise conditions.

o Input Features: Log-Mel spectrograms are
derived with raw audio with a 25 ms Hamming
window, 10 ms hop size and accurate temporal
resolutions are achieved.

« Training Goal: To provide effective training of
the noise suppression there is the application of
a mean-squared error ( MSE ) loss function to the
difference between the clean and the estimated
speech magnitude spectra to promote accurate
noise suppression.

« Datasets: Datais trained and tested on VoiceBank-
DEMAND (diverse forms of background noise)
and CHIiME-4 (realistic multi-microphone noisy
speech) datasets (both popular benchmarks of
speech enhancement studies).

Convoltional-

Recurrent | Hybrid
Network

CNN Layers

Clean Speech

Raw Audio Spectrogram

v

Estimated Speech
nggjgrealms Spectrogram

Fig. 1: Noise Reduction Framework Using Convolu-
tional-Recurrent Hybrid Network

Proposed CRN-noise reduction framework workflow,
which shows feature extraction in preprocessed raw
audio, convolution and a bidirectional modified gated
recurrent unit (Bi-GRU) layers, and optimization with
the mean square error (MSE) loss on standard datasets.

SPEECH ENHANCEMENT PIPELINE

Speech enhancement stage uses multi-task learning (MTL)
paradigm which integrates the speech enhancement and
phoneme recognition into a single network (Figure 2).

o Architecture: An encoder-decoder system based
on Transformer architecture with cross-attention
layers has been implemented to align enhanced
speech representations and phonetic features on
the one hand and to achieve perceptual quality
and linguistic intelligibility on the other hand.
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o Multi-Task Rationale: The model trains for
the purpose of noise removal and phoneme
recognition; and by harmonizing their objective,
the model is better able to generalize to unseen
acoustic environments.

« Ways of Measuring it:

o PESQ (Perceptual
Quality).

o STOI (Short-Time Objective Intelligibility) as
the intelligibility measure.

Evaluation of Speech

0 Measurement of signal fidelity by SDR (Signal-
to-Distortion Ratio).

Decoder

Multi-Head
Cross-
Attention

Noisy
Speech

{ Recognition

Mutti-task learning framework for speech
enhancement and phoneme recognition

Fig. 2: Speech Enhancement Pipeline
Using Multi-Task Learning

A multi-task learning framework with transformers
owned speech enhancement and phoneme recognition
tasks and their performance were assessed with PESQ,
STOI, and SDR criteria (Figure 3).

Real-Time Voice Analytics

The voice analytics module takes processed enhanced
speech in real time where tasks include speaker
identification, keyword spotting and emotion recognition.

e Mode Implementation: A lightweight CNN-
TDNN is taken up as this can model long term
spectral patterns (through conv useful guidelines
astrophysical neutrino search lightweight CNN-
TDNN rather (via time-delay neural networks)).

« Optimization of Deployment 1: TensorRT is used
to accelerate models on NVIDIA Jetson-class
devices with end to end latency of less than 50
ms.

» The techniques of reducing latencies include:

o0 Quantization-aware training (QAT): It reduces
model-preshision to INT8 that preserves
accuracy.

0 Structured pruning: Removes the unnecessary
parameters aimed at reducing the computation
overhead.
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Fig. 3: Real-Time Voice Analytics with Lightweight
CNN-TDNN Model

Real-time voice analytics framework of an optimized
CNN-TDNN hybrid through quantization savvy training
and structured algorithmic reduction for low-latency
execution on applying devices.

Integrated Processing Pipeline

The three modules are combined in streaming
architecture based on processing in a frame-by-frame
process (Figure 4). The noise reduction and enhancement
blocks work in successive cascade which is then followed
by the real-time analytics. This ensures:

 Interactive applications Low-latency operation.

e Modular flexibility, whereby discrete modules
may be modified without re-training the overall
system.

» The possibility of edge deployment on embedded
loT, wearable and robotics.

End-to-end streaming architecture for real-time speech
and audio analytics for low-latency.

~
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Fig. 4: Integrated Processing Pipeline for Real-Time
Speech and Audio Analytics

Real-time, low-latency and edge-ready speech process-
ing solution integrating noise reduction, speech en-
hancement and real-time analytics into an end-to-end
streaming pipeline.
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EXPERIMENTAL SETUP

Experiments to achieve the proposed deep learning-driven
structure based on speech and audio processing delivered
on embedded edge systems and high-performance offline
platforms were undertaken in an attempt to compare
the performance with the differentiated computational
limitations (Table 1, Figure 5).

Configuration of Hardware:

« Embedded Platform: NVIDIA Jetson Xavier
NX, which offers both compute performance
(384 CUDA, 48 Tensor Cores) plus low power,
and therefore meets the requirements of an
operational edge device, such as loT devices or
wearables, in real time.

e Workstation Platform: Intel core i9-based
workstation 64 GB RAM and NVIDIA RTX GPU to
enable faster training and large scale offline
evaluation.

Environment /Framework For Software

* Model Training and Evaluation: PyTorch 2.2,
because it is flexible and convenient to
accommodate custom forms of deep learning
architectures.

o Edge Deployment: TensorFlow Lite to do
quantized inference on embedded systems, to
allow a smaller memory footprint and execution
speedup.Training Protocol:

« Training was accomplished via Adam optimizer
applying an initial learning rate to be 1 10 - 4.

e The batch size of 32 was chosen, which
represented a good trade-off between the
stability of convergence and GPU memory limits.

« Early stopping was also used to avoid overfitting,
which included monitoring of validation loss.

Benchmark Datasets:

o LibriSpeech: speech recognition and speech
enhancement large-scale corpus.

+ VoxCeleb1: General speaker spreads of speaker
identification and verification.

« RAVDESS: Emotional speech data to perform
emotion recognition experiments.

o CHiME-4: Robustness experiments using a noisy
speech in the real world on a multi-microphone
noisy dataset.

This two-platform configuration had the benefit of
exhaustive testing in terms of accuracy, latency and

National Journal of Speech and Audio Processing | Oct - Dec 2025



Kim Yeonjin and Kim Hee-Seob : Deep Learning-Driven Speech and Audio Processing: Advances in Noise Reduction,
Speech Enhancement, and Real-Time Voice Analytics

Table 1: Experimental Setup

Category Details
Hardware Embedded Platform: NVIDIA Jetson Xavier NX (384 CUDA cores, 48 Tensor Cores, 8 GB LPDDR4x RAM,
15 W power budget) Workstation Platform: Intel Core i9 CPU, 64 GB RAM, NVIDIA RTX GPU
Software Model Training: PyTorch 2.2 Edge Deployment: TensorFlow Lite (quantized inference)

Training Parameters
monitoring

Optimizer: Adam Initial Learning Rate: 1 x 1004 Batch Size: 32 Early stopping with validation loss

Benchmark Datasets

LibriSpeech: Speech recognition/enhancement VoxCeleb1: Speaker identification/verification
RAVDESS: Emotion recognition CHiME-4: Noisy speech robustness testing

resource consumption metrics, and was used to confirm
pause-time+jitter behavior that satisfies both high-
performance and embedded real-time applications.

DEVELOPMENT EMBEDDED DEVICE

[ Datasets ‘ TensorFlow Lite

v : v
G ) .
Edge
Py T h
YESES Deployment

|
H
__ _ = : "
;
l ' v

Model Edge
Training Deployment

N

SESELEE

(s

Fig. 5: Experimental Setup Architecture

Pipeline of model training and optimization on the
development hardware with PyTorch on benchmark
datasets, and real-time deployment by optimizing them
to run on embedded hardware using TensorFlow Lite
with no overheads.

RESULTS AND DISCUSSION

A fixed three essential tasks were used to measure the
performance of the suggested framework, which are
reduction of noise, enhancement of the speech and real-
time voice analytics (Figure 6). Table 2: Results given as
Perceptual Evaluation of Speech Quality (PESQ), Short-
Time Objective Intelligibility (STOIl), Signal-to-Noise
Ratio (SNR) gain, and Word Error Rate (WER) and Equal-
Error Rate (EER) over individual tasks.

Key Observations:
1. Superior Enhancement Performance:

The speech enhancement model based on Transformers
performed better than the CRN with regard to PESQ
and STOIl that show better perceptual quality and
intelligibility. Such enhancement can be credited to
the multi-head cross-attention mechanism, as it allows
aligning the enriched speech with the phonetic features
effectively and leads to better generalization under
conditions of complex noise.

2. Effective Noise Suppression:

The attention masking CRN had an SNR gain of +10.2
dB exhibiting robustness to non-stationary noise.
Nevertheless, its intelligibility score had a slightly
lower score than the Transformer SE, which implies
that noise suppression cannot be assumed to maximize
the intelligibility unless there is contextual phonetic
alignment.

3. Low-Latency Real-Time Analytics:

The CNN-TDNN voice analytics hybrid scored an Equal
Error Rate (EER) of 2.3 per cent with a processing latency
of less than 50 ms on the NVIDIA Jetson Xavier NX. This
satisfies the latency demands shifted to interactive apps
like smart-assistants and real-time checking systems.

1. Impact of Multi-Task Learning:

Multi-task learning helped produce more robustness
on unseen noise domains with higher STOI scores and
lower WERs on several datasets in the strengthening
pipeline.

Table 2: Performance Evaluation of the Proposed Framework

Task Model PESQ T STOI 1 SNR Gain (dB) T WER ! / EER |
Noise Reduction CRN + Attention 3.25 0.94 +10.2 9.1% WER
Speech Enhancement Transformer SE 3.38 0.96 +11.5 8.4% WER
Voice Analytics CNN-TDNN - - - 2.3% EER
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2. Edge Deployment Feasibility:

QAT and structured pruning demonstrated that the
framework could be applied to embedded and low-
power application with a minimised cost of computation
without substantial accuracy losses.

DiscussSION

The findings verify that CRN based noise reduction and
Transformer based enhancement will create quality and
intelligible speech output. Moreover, the combination
of CNN-TDNN real-time analytics would make the
downstream applications have access to the clean and
semantically rich speech features. Noise suppression,
enhancement, and analytics modules have their
synergetic relationship and evidence the framework
capacity to work efficiently in various conditions since
it can address both powerful and resource-limited
environments.

12 B ' 2
115 = CRN + Attention
Transformer SE

10.2 s CNN-TDNN

10 -10
9.1

=) ©

WER / EER (%)

PESQ / STOI / SNR Gain (dB)
IS

325 3.38

N

0.94 0.96

o

PESQ STOI SNR Gain (dB)

WER/EER (%)

Fig. 6: Comparative Performance Results

Bar chart showing how CRN+ Attention, Transformer
SE, and CNN-TDNN do across PESQ, STOI, SNR Gain, and
WER/EER metrics.

CHALLENGES AND FUTURE DIRECTIONS

The presented framework has a high performance
regarding noise suppression, speech improvement,
and real-time voice analysis. Nevertheless, there are
a number of practical and research issues still to solve
before the wider adoption and robust deployment to
different environments are possible (Figure 7: Roadmap
of Future Research in the Speech and Audio Al).

1. Domain Adaptation

e Current Weakness: The performance of the
system is good on benchmark datasets, however,
the generalization of the model reduced when

4 .

applied on noise profiles or different recording
conditions than during a training session.

e Future Direction: The possibility to become
more robust through using unsupervised
domain adaptation and data augmentation.
Meta-learning strategies could also allow quick
adaptation to new noise conditions at very little
retraining.

2. Low-Power Deployment

e Current Limit: Edge-optimized models can infer
in sub-50 ms, but it is still not possible to run
such models at the ultra-constrained devices
of wearable applications because of limited
memory and energy budgets.

e Future Direction hardware-aware neural
architecture search (NAS), binary/ternary
quantization, and event-driven computations
could also reduce computational overhead, at
the same accuracy level.

3. Privacy & Ethics

« Present Limit: Explicit privacy risks are inherent
in the process of handling voice data especially
where voice is used in biometrics authentication
or to identify the emotions.

o Future Direction: The risk of exposure of data can
be alleviated by instituting federated learning
and on-device inference. Also, by considering
homomorphic encryption and privacy-respecting
speech representation learning, the security
compliance can be enhanced on sensitive
deployments.

4, Explainability and Trust

« limiting the current approach: The deep learning
models are known as a black box, meaning it
is not very interpretable, which is particularly
undesirable in the forensic or legal context
aimed at having a transparent decision making
process.

e Future Direction: Incorporating explainable Al
(XAl) methods e.g. to generate saliency maps
of spectrograms, the visualization of attention
weights, and post-hoc interpretability methods
will ensure less suspicion and make debugging
possible.

Contributions and Outlook:

The current work combines CRN-based noise suppression,
Transformer-based speech enhancement with multi-task
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learning and CNNTDNN-based voice analysis into a single
low latency pipeline that can run on embedded devices.
Its ability to sustain high perceptual quality, high intel-
ligibility and accurate analytic performance is validated
under realistic conditions by the results of the experi-
ment (Table 2, Figure 6).

Future work is aimed at scalable adaptation, extreme
resource efficiency, trustful deployment, transparent
decisions, and thus closing the gap between high-
performance laboratory models and reliable real-world
speech and audio Al systems.

Roadmap for Future Research
in Speech and Audio Al

Domain Adaptation

v v
Low-Power Privacy &
Deployment Ethics

I
Unsuper vised
domain adaptation
I
Data augmentation
strategies
I

approaches

On-device inference

encryption

[
[ Federated Iearning]
[ J
[

[Meta-learning ] Homomorphic ]

[ ‘_aliency maps ] [ Saliency maps ]
I |
[Attention visualization] Attention

visualization
Event-driven
computation

Roadmap for Future Research
in Speech and Audio Al

Explainable Al
techniques

Fig. 7: Roadmap for Future Research in
Speech and Audio Al

A strategic plan laying out of research foci, areas such
as domain adaptation, low power model deployment,
privacy preserving learning and interpretable Al for
enhancing speech and audio intelligence.

CONCLUSION

This study proposes to unify deep learning-driven speech
and audio processing with a low latency speech/audio
signal processing and analysis pipeline that leverages
multi-task learning and embedding resource constraints
to combine CRN-based noise reduction, Transformer-
based multi-task speech enhancement, CNN-TDNN-
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based real-time voice analytics in an integrated low-
latency framework scalable to both high-performance
and embedded environments. Utilizing benchmark
datasets, including LibriSpeech, VoxCeleb1, RAVDESS,
and CHiME-4, the proposed system can record significant
enhancements in PESQ, STOI, SNR gain and WER/EER
(Table 2, Figure 6), and exhibit sound stability across
various and noisy acoustic conditions. It has optimized
the architecture to ensure real-time deployment of
its edge by using structured pruning, quantization-
aware training, latency of less than 0.5 s achieving
low 50 ms typo of latencies without a significant loss
of accuracy. This follows the fact that the solution is
applicable in loT, wearables, assistive, and smart voice
interfaces.

Other than the performance improvements, the
study highlights high-priority research issues- such
as domain adaptation, ultra-low-power deployment,
privacy-preserving processing, and explainability, and
provides a roadmap of how to tackle various issues
going forward (Figure 7). These issues will be key to
allowing the step out of controlled laboratory standards
into trustworthy, scalable, and morally acceptable real-
world applications.

In short, this piece of work offers a practical and
deployable solution, as well as a vision of what speech
and audio Al may become by doing this it also closes the
gap between academic work and industrial applications.

REFERENCES

1. Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020).
wav2vec 2.0: A framework for self-supervised learning of
speech representations. Advances in Neural Information
Processing Systems, 33, 12449-12460.

2. Boll, S. F. (1979). Suppression of acoustic noise in speech
using spectral subtraction. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 27(2), 113-120. https://
doi.org/10.1109/TASSP.1979.1163209

3. Braun, G., et al. (2021). Streaming transformer-based
acoustic models using self-attention with augmented
memory for online ASR. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (pp. 6783-6787). IEEE.

4. Desplanques, B., Thienpondt, J., & Demuynck, K. (2020).
ECAPA-TDNN: Emphasized channel attention, propagation
and aggregation in TDNN-based speaker verification. In
Proceedings of INTERSPEECH (pp. 3830-3834).

5. Ephraim, Y., & Malah, D. (1985). Speech enhancement us-
ing a minimum mean-square error log-spectral amplitude
estimator. IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 33(2), 443-445. https://doi.org/10.1109/
TASSP.1985.1164550

15



Kim Yeonjin and Kim Hee-Seob : Deep Learning-Driven Speech and Audio Processing: Advances in Noise Reduction,
Speech Enhancement, and Real-Time Voice Analytics

10.

11.

12.

13.

14.

16

Gulati, A., et al. (2020). Conformer: Convolution-aug-
mented transformer for speech recognition. In Proceed-
ings of INTERSPEECH (pp. 5036-5040).

Heymann, J., Mouchtaris, A., & Gehrig, T. (2021). Domain
adaptation for deep learning based acoustic scene classi-
fication. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP)
(pp. 845-849). IEEE.

Hsu, W.-N., et al. (2021). HuBERT: Self-supervised
speech representation learning by masked prediction.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 29, 3451-3460. https://doi.org/10.1109/
TASLP.2021.3122291

Ji, S., Pan, Y., & Li, X. (2022). Privacy-preserving speech
processing: Cryptographic and learning-based approaches.
IEEE Signal Processing Magazine, 39(6), 24-35. https://
doi.org/10.1109/MSP.2022.3189224

Loizou, P. C. (2013). Speech enhancement: Theory and
practice (2nd ed.). CRC Press.

Lu, X., Tsao, Y., Matsuda, S., & Hori, C. (2013). Speech
enhancement based on deep denoising autoencoder. In
Proceedings of INTERSPEECH (pp. 436-440).

Luo, Y., Chen, Z., & Yoshioka, T. (2020). Dual-path trans-
former network: Direct speech separation with intra- and
inter-chunk attention. In Proceedings of INTERSPEECH
(pp. 2642-2646).

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., & Khu-
danpur, S. (2018). X-vectors: Robust DNN embeddings for
speaker recognition. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (pp. 5329-5333). IEEE.

Weninger, F., Erdogan, H., Watanabe, S., Vincent, E., Le
Roux, J., Hershey, J. R., & Schuller, B. (2015). Single-chan-

15.

16.

17.

18.

19.

20.

21.

nel speech separation with LSTM recurrent neural net-
works. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (pp.
117-121). IEEE.

Xu, Y., Du, J., Dai, L.-R., & Lee, C.-H. (2015). A regres-
sion approach to speech enhancement based on deep neu-
ral networks. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 23(1), 7-19. https://doi.
org/10.1109/TASLP.2014.2364452

Zhang, Z., Xu, Y., & Xu, B. (2021). TinySpeech: Light-
weight and efficient neural models for on-device speech
recognition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 29, 1619-1632. https://doi.
org/10.1109/TASLP.2021.3070336

Velliangiri, A. (2025). An edge-aware signal processing
framework for structural health monitoring in IoT sensor
networks. National Journal of Signal and Image Processing,
1(1), 18-25.

Muralidharan, J. (2024). Compact reconfigurable antenna
with frequency and polarization agility for cognitive radio
applications. National Journal of RF Circuits and Wireless
Systems, 1(2), 16-26.

Vinod, G. V., Vijendra Kumar, D., & Ramalingeswararao,
N. M. (2022). An Innovative Design of Decoder Circuit Us-
ing Reversible Logic. Journal of VLSI Circuits and Systems,
4(1), 10-15. https://doi.org/10.31838/jvcs/04.01.01

Monson, A. K., & Matharine, L. (2023). Unlocking wireless
potential: The four-element MIMO antenna. National Jour-
nal of Antennas and Propagation, 5(1), 26-32.

Yakubu, H. J., & Aboiyar, T. (2018). A chaos-based image
encryption algorithm using the Shimizu-Morioka system.
International Journal of Communication and Computer
Technologies, 6(1), 7-11.

National Journal of Speech and Audio Processing | Oct - Dec 2025



