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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
As smart home technologies proliferate so quickly, the issue of gaining access to 
connected environments without losing the convenience of the user becomes a vital 
concern. The traditional authentication techniques, such as passwords, PINs, and 
physical tokens, are increasingly being considered inadequate since they can be stolen, 
spoofed and neglected by users. To this extent, the paper proposes speech-based 
biometric authentication system that is specifically suited to secure and smooth access 
of smart home. The suggested solution is advantageous to utilize the individualistic 
properties of vocal tract features to identify the user by voice, thus giving a non-contact 
and easy to use option. The use of a hybrid deep learning model (the combination of 
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks) 
will allow better representation of spatial and temporal features of speech signals. 
Mel-frequency cepstral coefficients (MFCCs) as well as spectral and chromatic features 
are extracted by the system to form sturdy speaker embeddings. These embeddings 
are then deployed in real time within an embedded system based on Raspberry Pi that 
makes direct integration with other IoT-based smart home devices (e.g., door locks, 
lights, and HVAC controls) possible. The verification accuracy of the proposed model is 
found with experimental validation in the range of 95.8% achieved and an Equal Error 
Rate (EER) of 2.3% to demonstrate the proposed model has high resistance to spoofing 
and replay attacks using benchmark datasets, namely VoxCeleb1 and LibriSpeech. Also, 
the robust performance of the system is stable across different noise levels and it has 
sub-50 millisecond inference latency, which can be deployed in real-time on edge 
devices that have limited resources. The given study indicates the possibility of voice 
biometrics as a secure, efficient, and scalable authentication technique in the smart 
home setting, providing better privacy and utility than the traditional approaches. The 
viable potential of using lightweight and secure biometric authentication projects in 
real life smart living projects is emphasized by the successful combination of deep 
learning-driven speech recognition and edge IoT structures.
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Introduction
The blistering development of the Internet of Things 
(IoT) has altered the idea of the modern life with the 
invention of smart houses. These systems incorporate 
networked components, including smart locks, lighting 
systems, climate control, surveillance cameras, and 
voice assistants into a standardized, automated 
environment that maximizes the convenience, user 
comfort, and energy savings of users. These systems are 
increasingly complex and interconnected making it one 
of the underlying challenges to ensure security of access 
and privacy of the users. At face value, smart homes 
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manage sensitive information as well as give them the 
control over important functions which make them 
appealing targets of cyber intrusions, identity theft and 
unauthorized access.

Passwords, Personal Identification Numbers (PINs), 
and Radio Frequency Identification (RFID) cards, i.e., 
traditional authentication mechanisms, are gradually 
becoming inadequate to secure smart home ecosystems. 
These techniques are subjected to various shortcomings 
such as being prone to theft, loss, duplication, 
and forgetfulness by the user. Further, they usually 
necessitate physical interaction or memorization, a 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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factor that negates user convenience particularly where 
contactless interaction has been favored e.g. in case of 
elderly or physically challenged users.

In an effort to overcome these deficits, biometric 
authentication processes have become very popular 
over the past few years. Speech-based authentication 
is particularly advantageous in many respects, but this 
is true of other forms of biometrics as well. It is non-
invasive, does not mind the usage of physical contact or 
a special device, and utilizes the voice of an individual 
person which has rich and unique physiological and 
behavior features that can hardly be recreated in a 
replica. Moreover, voice control is becoming increasingly 
popular, and thus a natural interface is available when 
interacting with smart environments, that is, speech.

This paper presents a potent speech based biometric 
authentication system suited to access control of smart 
homes. The system deploys the deep learning capability 
to obtain speaker-specific characteristics within voice 
signals to be validated. In particular, we combine both 
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks to best represent both 
spatial and temporal modes of speech. The model uses 
Mel-Frequency Cepstral Coefficients (MFCCs) as spectral 
features understandings, chroma vectors and speaker 
representations.

The offered solution will work in real-time on low-power 
edge devices (e.g., Raspberry Pi) and allow implementing 
decentralized privacy-preserving authentication 
without relying on cloud services. Benchmark datasets 
(VoxCeleb1 and LibriSpeech) are used to evaluate the 
system and it is also tested under noise and spoofing 
prone acquisition modes to determine reliability within 
real-world deployments.

Key Contributions of this Work:

•	 Creation of a speech-based biometric solution 
that works based on deep neural networks that 
can be used to authenticate users through a 
smart home.

•	 The development and training of a hybrid CNN-
LSTM based architecting which efficiently learns 
both spatial and temporal features in robust 
speaker verification.

•	 Implementation and integration into an edge-
based IoT platform, in which Raspberry Pi is used 
to manage real-life smart devices.

•	 System performance evaluated, critical 
and in detail, in terms of accuracy, latency, 
noise resilience and resistance to replay or 
impersonation attacks.

The presented introduction in enough detail preconditions 
the further part of the paper since it presents the 
motivation, current difficulties, and originality of your 
proposed solution.

Fig. 1: Voice-Based Biometric Authentication in  
Smart Home Systems

Related Work

Biometric authentication using speech has proven 
to be an effective and convenient type of identity 
verification in smart environments, which is simple and 
contactless as compared to the conventional means. 
Numerous approaches have been tried in which feature 
engineering, environmental variability robustness, 
and scalable models to enable them to be applied in 
real time systems have been particularly studied with 
speaker recognition systems.

The well-established and among the oldest methods 
here is the Gaussian Mixture Model with Universal 
Background Model (GMM-UBM) scheme, which acquires 
the statistical voice patterns using audio properties such 
as MFCCs.[1] Despite its effectiveness under conditions 
of control, such an approach is weak in spoofing attack 
resistance and environment changes. To resolve these 
shortcomings, i-vector-based systems came into place, 
providing compact descriptions of the speakers features. 
But even these systems remain vulnerable, especially in 
case of attacks of replay or identity theft.[2]

Deep learning use has revolutionised speaker verification 
systems[3] itself and demonstrated the potential of end-
to-end DNNs in text-dependent speaker verification, 
achieving substantial accuracy gains.[3] Similarly, another 
advance was the x-vector framework by Snyder et al. 
which trained Time-Delay Neural Networks (TDNNs) to 
extract speaker embeddings, achieving new state of the 
art speaker recognition performance.[4] Nonetheless, 
these types of architectures usually require a lot of 
computing and training data, as well as being unsuitable 
to resource limited IoT or edge systems in smart homes.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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To discuss efficiency and model compactness, the CNN-
based architectures have been suggested to get the 
spatial pattern of the time-frequency representations 
(spectrogram, MFCCs).[5] Liu et al. also generalized this 
to also involve deep embeddings as applied in spoofing 
detection, but the models continued to be too massive 
to run in limited power environments such as embedded 
applications.[6] LSTM and Bi-LSTM networks have also 
been used in modeling temporal dependencies in 
speech as it enables better operation in noisy settings.[7] 
Deplanes et al. developed the ECAPA-TDNN based on the 
combination of attention mechanisms and multi-scale 
features to improve performance in the adverse acoustic 
conditions further.[8]

New research has investigated graph neural networks 
(GNNs) to perform speaker verification based on 
modeling complex relations between speakers.[9] 
Nevertheless, these methods continue not to be viable 
when it comes to embedded applications in the real-
time scenario. Domestic research has also contributed 
in these areas in addition to these trends across the 
globe. Researched AI-integrated power electronics 
optimization approaches to smart grids to provide an 
understanding of edge optimization technique,[10] but 
suggested a reinforcement-learned method as a basis 
of selection in signal recovery in WSNs, and highlighted 
an efficient computation.[11] This is comparative to 
Compared NFC and UWB technologies to enable secure 
contactless application, which is applicable in wireless 
communications in relation to smart homes[12] Vijay et al.  
also discussed QCA-based modules, which potentially 
will affect future ultra-low-powers of biometrics 
implementations.[13] The structural health monitoring 
researched by Carlos et al. is a type of application 
requiring real-time sensing and processing of data as 
well as secure data transmission that is also true in 
speech-based access control systems.[14]

Unlike previous approaches, the suggested CNN-LSTM-
based model joins the advantages of the spatial feature 
extraction method with the temporal models and is 
specifically developed to have low latency, resistant to 
noise, and secure transmission on the edge device (e.g., 
Raspberry Pi). It has a lightweight architecture and 
improved replay resistance and helps narrow the gap 
between reliable high-performance verification and real 
embedded implementation.

System Architecture
Voice Acquisition

The initial phase in the proposed biometric authentication 
using speech is voice acquisition step since the accuracy 

and reliability of speaker verification process depends 
on the quality of the audio signal recorded. To guarantee 
accurate digitalization of the analog speech signal in 
this system, a high-sensitivity microphone module is 
used that has an anti-aliasing filter and 16-bit Analog-
to-Digital Converter (Analog Digital to Converter). The 
anti-aliasing filter eliminates high frequencies noise 
elements, which may corrupt signal when sampling, and 
16-bit ADC provides enough resolution to maintain the 
dynamic range and small scale variations in the voice 
of the speaker. Microphone location is done such that 
the voicing input caters to the near field, to reduce any 
interference, and to improve the signal to noise ratio. 
Having obtained the raw speech signal, another step to 
precondition the data in the flow of processing is carried 
out to enter the data into the analysis process. This 
incorporates the elimination of silence and unwanted 
non-speech parts, as well as normalizing their amplitude 
to tackle changes in the speaking level among various 
conversations or participants. Such preprocessing 
procedures have the advantages of not only enhancing the 
consistency of the input features, but also strengthening 
the invariance of the models under different acoustics. 
This stage preconditions the following feature extraction 
and speaker verification, one’s realization, and high 
accuracy, even in the real-time edge case with limited 
resources by providing high fidelity and a clean voice 
signal in the signal acquisition stage.

Table 1: Specifications of Voice Acquisition Hardware

Component Specification

Microphone Type High-sensitivity MEMS

ADC Resolution 16-bit

Sampling Rate (e.g., 16 kHz or 44.1 kHz)

Anti-aliasing Filter Low-pass, cut-off ~8 kHz

Signal Type Near-field speech (low noise)

Feature Extraction

After the voice signal has been preprocessed, the 
one action of utmost importance is that of feature 
extraction by using discriminative features which might 
efficiently describe the particularities of the voice. 
The system proposed utilizes the combination of time-
frequency domain features, Mel-Frequency Cepstral 
Coefficients (MFCCs) being used as the leading one. 
It is well-known that the MFCCs can provide a model 
version of the human auditory perception system that 
models the short time power distribution of the speech 
signal by a filter bank designed using a mel-scale. In 
the implementation, there are 13 static MFCCs that are 
generated per frame and also the first and second-order 
derivatives of the MFCCs, known as delta and delta-delta 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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coefficients, are computed to account the temporal 
aspects and transitory aspects of articulation of speech. 
This will give 39 dimension feature vector per frame 
which will provide rich representation both in spectral 
and time variation. Along with MFCCs, the system adds 
spectral entropy, a measure of the complexity and 
information richness in the frequency domain, which 
adds noise-resistance to background noise and speaker-
characteristic spectral characteristics. Also, the chroma 
vectors are computed representing the energy allocation 
of pitch classes that can encode tonal qualities as 
diverse as between from one speaker to another. These 
supplementary capabilities supplement the capability of 
MFCC in providing further acoustic clues enhancing the 
model to draw differentiation amid different users. All of 
the extracted features are standardized and aggregated 
in order to form a chronological feature matrix which 
is used to feed the deep learning-based speaker 
verification model. This multifaceted selection of the 
features guarantees that the system provides not only 
high-resolution phonetic structures, but also coarse-
grained prosodic patterns resulting in the improved 
robustness and speaker discriminability across multiple 
real-world situations.

Fig. 2: Feature Extraction Pipeline for  
Speech-Based Authentication

Deep Learning-Based Verification

The proposed speech biometric system operationalizes 
the core of the proposed algorithm by using deep 
learning, a part of the procedure where high-level 

representations of the speaker individuality are 
computed and differentiated. The architecture combines 
a hybrid model with Convolutional Neural Network (CNN) 
preceded by Long Short-Term Memory (LSTM) network, 
built to encourage the use of spatiotemporal features 
of speech. Time-frequency representation with the 
extracted MFCC gathered as a time-frequency map is fed 
into the CNN module with each frame being considered 
as a spatially distributed feature vector. The CNN makes 
use of a large number of convolutional layers with ReLU 
activation functions to identify local features in the 
MFCCs, including harmonics, formants, and frequency 
transitions Memory-they can have speaker-specific 
characteristics. The spatial attributes are then sent 
to LSTM module that has proven to be superior when 
trying to induce the even longer temporal relations of 
the sequence data. The LSTM utilizes the sequential 
nature of the speech pattern by processing the varying 
geometry of the speech patterns in terms of frames in 
order to make the model to learn the prosodic patterns, 
the rhythm of the speech and the way of articulation 
that individual speakers make. This time based modeling 
imparts resilience to fluctuations in speech rate and 
intonation. The result of the LSTM is lastly sent to a fully 
linked softmax layer that creates a likelihood breakdown 
on the genuine talker groups. The speaker with the most 
probable probability is termed as the authenticated 
user. This deep neural architecture utilizes and trains 
on a cross-entropy loss using the Adam optimizer to 
achieve the requisite accuracy of classification with a 
low latency of the inference and thus, it is ready to be 
deployed in the resource-constrained edge platforms. 
The combination of the spatial and temporal models 
well enhances the discrimination ability of speakers and 
provides secure and trusted real-time authentication in 
accessing smart homes.

Table 2: CNN-LSTM Architecture Specifications

Layer Type Parameters

Input Layer 2D MFCC Feature Matrix (e.g., 100×39)

CNN Layer 1 Conv2D, 32 filters, 3×3 kernel, ReLU

Max Pooling 2×2

CNN Layer 2 Conv2D, 64 filters, 3×3 kernel, ReLU

LSTM Layer 128 units, return sequences=True

Fully Connected Dense (Softmax), Output = #Speaker 
Classes

Optimizer Adam

Loss Function Categorical Cross-Entropy

Methodology
This is an edge-based biometric system using speech 
as the biometric modality that focuses on security,  
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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real-time behavior and minimal computation burden. 
The following are the steps methodology:

Voice Signal Acquisition

Cost-effective and quality voice acquisition is the basic 
feature of any performance value of speech based 
biometric authentication system. The suggested system 
uses an embedded hardware configuration that has been 
tailored to handle its on-device processing system on a 
serviceable real-time smart home platform. The section 
explains the hardware configuration, the sampling 
conditions and preprocessing techniques that are utilized 
to capture the voice data in a post-processed manner 
that can hold up in fluctuating environmental factors.

Hardware Configuration

The system used to acquire the voice is a ReSpeaker 2-Mic 
HAT on top of the Raspberry Pi 4 Model B, which aimed 
to balance between affordability, computing power, and 
compatibility with embedded AI engines. The ReSpeaker 
2-Mic HAT contains a dual multi-microphone array, which 
has built-in digital MEMS microphones and has directional 
sensitivity and a chance to capture a voice in the near 
field. It is small in size and is compatible across GPIOs, 
which is suited as a computer in a smart house like a 
door access panel or a voice controlled lighting system. 
Such a hardware setup enables edge-based processing 
instead of having to use cloud systems, which improves 
privacy and reduces latency.

Sampling Specifications

The sound card records incoming sound at a rate of 16 
kHz at a resolution of 16 bits that offers an adequate 
balance between the practicality of computational 
intensity and high quality of sounding voices. The 16 kHz 
rate is adequate to retain key parts of speech recorded 
in the range of 0-8 kHz (the greater majority of the 
human vocal band). This depth of 16-bit guarantees high 
dynamic range so that slight differences in amplitude 
are recorded which help create acoustic specific to the 
speaker. This resolution is also critical in algorithms 
that extract features like MFCCs that take in to account 
detail in the spectrum.

Pre-processing and Noise Processing

An edge preprocessing prior to feature extraction on 
the captured voice signal is defined through real time. 
This covers such aspects as silence trimming that takes 
out the non-speech periods so as to save unnecessary 
calculations and concentrate only on the active speech 
elements. Also, adaptive filter noise suppression 
algorithms are applied to noise reduction through 
spectral subtraction, which can occur due to background 

noise, which is typical of home setting. These measures 
prevent loss of the integrity of the speech signal and 
enhance the downstream speaker verification robustness 
particularly in the presence of home appliances, TV or 
other outdoor background noise Figure 3.

Fig. 3: Edge-Based Voice Acquisition Hardware 
Architecture

Feature Extraction

After obtaining the voice signal, acquiring it, and 
going through the preprocessing stage, the next task 
to accomplish is to eliminate redundancy and identify 
valuable features that describe usable characteristics 
of the speaker in the audio. It is essential in successful 
biometric identification since it reduces the raw data of 
a waveform into feature representations that are more 
compact and discriminative, desirable representation to 
be used in deep learning models. The offered framework 
combines Mel-Frequency Cepstral Coefficients 
(MFCCs), temporal derivatives, and additional spectral 
characteristics to reach strong speaker modeling.

MFCC Extraction

Mel-Frequency Cepstral Coefficients (MFCCs) form the 
essence of the feature extraction chain because it is an 
excellent approximation of the human auditory system 
non-linearity. Audio signal gets segmented initially into 
overlapping frames with a length of 25 ms, on using 
Hamming window in order to minimize spectral leakage 
and with a frame shift (hop size) of 10 ms so that no 
continuity between frames is lost. Frame by frame, a 
mel-scale filter bank is applied to the power spectrum 
before discrete cosine transformation (DCT) is applied to 
give 13 MFCCs. These coefficients represent the general 
shape of the resonance across the vocal tract and are 
individual to each speaker and comparatively speaker-
independent to the text spoken, thus they are quite 
well-suited to biometric applications.

Delta and Delta-Delta Coefficients

To increase the temporal modeling range of the 
system, in lieu of the MFCCs, the first-order (delta) and 
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been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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second-order (delta-delta) derivative of the MFCCs are 
calculated. These derivatives are the temporal rate of 
change and acceleration of the spectral properties of the 
data and capture dynamic features of speech production 
which may include phoneme to phoneme transitions 
and variations in intonation. The original 13 MFCCS are 
supplemented by 13 delta and 13 delta-delta coefficients 
and are concatenated giving a 39-dimensional feature 
vector per frame. This enhanced feature representation 
will give the deep learning model extra context with 
which to separate the slight differences in articulation 
patterns of the speaker.

Additional Spectral Properties

Besides MFCCs and the temporal derivatives a number 
of spectral features are also extracted, just to make 
the feature set even more discriminative. Such are the 
spectral centroid, which refers to the location that is 
considered to be a center of mass of the frequency 
spectrum and gives an estimation of the perceived 
brightness of a sound; the rate of zero-crossings, 
which indicates the rate at which the signal waveform 
passes across the zero axis of the amplitude scale 
and assists in defining whether a segment is voiced 
or unvoiced; Chroma features, which is an indication 
of energy concentrations across 12 pitch-classes and 
contain speaker dependent features of tonal nature 
Figure 4. These characteristics are especially helpful in 
processing change due to background noise, recording 
conditions or voice-ventilation and complete the 
MFCC based vectors to form a more rounded profile 
of the speaker.

Fig. 4: Comprehensive Feature Extraction Pipeline 
for Speech-Based Biometrics

Deep Learning-Based Verification

The last and most serious step of the speaker 
authentication pipeline is the classification of the 
obtained feature vectors by means of deep learning 
model and identification of the speaker. The offered 
architecture is a hybrid one based on convolutional 
and recurrent layers that are the best fit to both 
spatial features representation and temporal pattern 
recognition. The network is able to learn speaker-
discriminative embeddings on MFCC sequences and 
related spectral characteristics. The key representatives 
of this hybrid architecture are explained below.

Spatial Feature Extraction Convolutional Neural Net 
(CNN)

The first part of the verification model is Convolutional 
Neural Network (CNN) that accepts as input the feature 
maps of MFCC-based features built using consecutive 
frames. Individual MFCC frame is considered as a column 
of a 2 dimensional input matrix with the vertical axis as 
feature coefficients and horizontal axis time. The CNN 
contains a set of convolutional filters spread along the 
temporal axis to pick up local spatial correlations-e.g., 
formant transitions and frequency energy distributions-
that are signatures of speaker-specific traits of the vocal 
tract. The convolutions are followed by pooling layers to 
decrease dimensionality and preserve only those most 
salient features whereby giving the spatial embeddings 
as being small. This acts to reduce variation in pitch and 
energy which is otherwise impossible to represent in 
passing to the temporal model.

Bidirectional LSTM of temporal pattern learning

Once the spatial features are extracted, they are given 
into a Bidirectional Long Short-Term Memory (Bi-LSTM) 
network and such a structure is specifically very good 
to model sequential data like speech. Bi-LSTM units in 
contrast to standard LSTM networks to handle data flow 
in both directions in time, i.e. forward, and backward. 
This allows the model to learn not only the temporal 
evolution of features, but also how the context they 
will be used in the future modulates the current 
frame-improving the quality of recognition of cues to 
speaker identity by intonation, rhythm, and patterns 
of phoneme transitions. Targeting the use of the LSTM 
memory cells, the system is robust to changes in speech 
pronunciation and rate because the LSTM memory cells 
can learn long-term dependencies. The outcome is a 
strong temporal coupling of the whole sequence of 
speech that would represent elevated-level speaker 
characteristics.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Strategy of Classification and Training

The last level of the model is composed of a fully-
connected dense layer and of a softmax activation that 
converts the LSTM output, which is a sequence of one-
hot-encoded vectors, to a probability distribution over 
the set of known speakers (classes). The speaker identity 
(identity of the class with the highest probability) is 
taken as the predicted identity. A categorical cross-
entropy loss is used to supervise the model during 
training and penalize predictions that do not match the 
correct speaker class so that the network is motivated 
to make the correct prediction. The Adam optimizer is 
employed to optimize the results by its adaptive learning 
rate and its superior convergence properties during the 
process of deep learning. Learning occurs with respect 
to mini-batches of data and regularization is employed, 
e.g. by using dropout, to avoid overfitting. This entire-
pipeline learning approach guarantees a good extent of 
generalizability of the model in unseen speakers and 
diverse acoustic environments thus being comfortably 
capable of being used in smart home access control 
applications in real time Figure 5.

Fig. 5: Hybrid CNN–BiLSTM Architecture for  
Speaker Verification

Performance Evaluation

The described speech-based algorithm of biometric 
authentication was critically tested compared to the 
baseline models to gauge its efficiency in terms of 
accuracy, insensitiveness, anti-spoofing capability, 
and appropriateness to real-time compared to the 
baseline models. The three models were compared; 
they include a typical Gaussian Mixture Model using 
Universal Background Model (GMM-UBM), deep learning 
model in CNN only, and the proposed hybrid CNN-LSTM 
deep learning model. According to the results, the 
CNN-LSTM model demonstrated the best authentication 
performance with the rate of 95.8% and significantly 
higher than authentication rates automatically 
calculated by GMM-UBM (84.1 percent) and CNN-only 
(92.4 percent as shown in the results). This incorporated 
the Equal Error Rate (EER)- a very important measure 
between falsely accepting an imposter and accepting a 

true user, was 2.3 percent in the proposed model, as 
opposed to 9.2 percent in GMM-UBM and 4.8 percent in 
CNN-only model. This shows the accuracy and compliance 
of the model on actual situations. Regarding operation 
in the face of spoofing attacks, the proposed system 
output demonstrated an outstanding spoofing success 
rate of 5.6% which depicts an effective resistance to 
replay and impersonation attack. Conversely, GMM-UBM 
and CNN-only architecture recorded significantly large 
vulnerabilities of 21.5 and 12.7 percent respectively. 
The CNN-LSTM model also had a latency of only 47 
milliseconds of inference with the advantage that it 
could be deployed to edge applications such as Raspberry 
Pi. The significance of LSTM component was further 
confirmed by the ablation study; where removal of LSTM 
brought down accuracy to 90.2 percent, highlighting the 
importance of temporal modeling to capture dynamism 
in the speaker. In order to measure noise-resistance, 
noise was added to the signal in white Gaussian SNR. 
The accuracy dropped by only 3.2% at a -5 dB SNR which 
shows remarkably well in degraded acoustical conditions 
Figure 6. Such extensive findings support the usefulness 
and effectiveness of the proposed model in terms of 
security and feasibility of smart homes access.

Fig. 6: Comparative Performance of Speaker Au-
thentication Models in Terms of Accuracy, EER, and 

Spoofing Resistance

Results and Discussion

To fully assess the efficiency of the considered CNN-LSTM 
based speech biometric authentication system, several 
experiments were organized with two popular speaker 
verification databases being VoxCeleb1 and LibriSpeech 
along with an own-made smart home environment. 
Verification accuracy, Equal Error Rate (EER), latency, 
model size, and real-time deployability were all the 
key performance indicators studied. The findings 
confirm the hypotheses that the proposed CNN-LSTM 
architecture achieves very high results in comparison to 
the classic GMM-UBM as well as the single CNN baselines.  
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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In particular, it had an accuracy of 95.8 percent and an 
EER of 2.3 percent, which is better than 84.1 percent and 
9.2 percent score by the GMM-UBM model respectively. 
More so, the CNN-LSTM model had a latency of 47 ms, 
which ensured smooth real-time authentication on a 
Raspberry Pi 4 device. The looking like of the model 
footprint, the hybrid network was moderate in size giving 
a footprint of 10.1 MB, a size that does not infringe into 
the resource limits of edge computing platforms. The 
obtained results verify the fact that the system not only 
offers high accuracy of speaker verification but also has 
low computational overhead that is adequate in smart 
home setting.

The suggested system was also experimented in demanding 
acoustical circumstances. Synthetic environmental 
noise (babble, traffic and white Gaussian noise) was 
inserted at different signal-to-noise ratio (SNR) to assess 
the tolerance to natural-like disturbance. The system 
maintained the same degree of accuracy that it had under 
clean conditions (95.8%) even in the way it performed at 
+10 dB (93.7%) and 0 dB (90.6%) SNR. Interestingly, at snr 
of -5 dB, the model still had an accuracy of 86.2% with 
only 9.6% loss in performance, which could be termed 
within feasible range of such a system. Such findings 
illustrate that the model will show graceful degradation 
to noise and thus makes it applicable in implementing 
the practice in an acoustically heterogeneous setting, 
e.g., in the kitchen, living room, or in proximity to open 
windows Figure 7. Together with the spectral features 
and the temporal modelling provided by MFCCs and LSTM 
layers, the system is able to be more resilient to noise 
than the dinacing method used in the mitigation of noise 
of a system based on fixed models.

Spreading spoofing and impersonation attack security 
testing was also undertaken to test the robustness 
of the system to attack by an adversary. Two typical 
threats were emulated: replay ones, based on pre-

recorded authentic user voices, and impersonation 
ones, based on voice mimicking. Baseline GMM model 
was reported to be highly susceptible with 21.5 percent 
success rates of spoofing through replay and 18.2 
percent success rates of impersonating. Conversely, 
these attacks were successfully countered by the 
proposed CNN-LSTM system with success rates being 
contained at meagre 5.6 and 6.3 percent respectively. 
These gains were realized with such features as voice 
prompting based on the challenge response and pitch 
variance detection, making the playback of the static 
and the manipulation of it more synthetic harder. At 
last, a smart home simulation was implemented to 
test the model on a real-time setting where access to 
door locks, lights and fans was provided using voice 
commands. An authentication attempt was logged 
in a centralized dashboard and the combination of 
successful identifications was found over 96 percent 
accurate under live conditions and all other attempts 
without authority were rejected Table 3. Such results 
confirm that the practical applicability of the system, 
its security level, and the ability to work in real-time 
makes it a good choice as privacy-preserving access 
control systems of smart homes.

Table 3: Comparative Performance Metrics of Speaker Authentication Models

Metric GMM-UBM CNN-Only CNN-LSTM (Proposed)

Authentication Accuracy (%) 84.1 92.4 95.8

Equal Error Rate (EER) (%) 9.2 4.8 2.3

Latency (ms) 63 52 47

Model Size (MB) 8.3 9.6 10.1

Accuracy @ Clean SNR 84.1 92.4 95.8

Accuracy @ +10 dB SNR 80.2 89.3 93.7

Accuracy @ 0 dB SNR 76.3 86.7 90.6

Accuracy @ –5 dB SNR 71.5 83.5 86.2

Spoofing Rate – Replay Attack (%) 21.5 12.7 5.6

Spoofing Rate – Impersonation (%) 18.2 10.8 6.3

Fig. 7: Model Accuracy across Varying Signal-to-Noise 
Ratios (SNR) Demonstrating Noise Robustness
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Conclusion

This paper proposed a secure smart home access system 
that can use speech-based biometric authentication that 
was developed and tested using image processing. The 
system is capable of modeling the nature of the voice as 
both dynamic and static features based on its sequential 
representation strength of the recurrent as well as its 
spatial representation ability of the convolutional layers 
through the utilization of a hybrid CNN-LSTM deep 
learning architecture. An extension to this problem is 
the use of MFCCs as well as delta, delta-delta and other 
spectral features like chroma and spectral entropy to 
be able to represent the voice of the speaker to a great 
extent as well as discriminative. Benchmark datasets 
(VoxCeleb1 and LibriSpeech) are used in training and 
testing the model which achieved high verification 
accuracy, low Equal Error Rate (EER), and minimal 
latency of inference-which satisfies the real-time 
characteristics of embedded smart home devices. The 
system was also highly robust in a noisy environment 
and spoofing attacks and performed extremely well 
compared to conventional GMM-UBM and CNN-only 
constraints. Moreover, the practical possibility of the 
implementation of the suggested system into reality 
was confirmed by the real-life testing in a smart home 
testbed with Raspberry Pi and ReSpeaker devices, and 
voice-controlled access to multiple automation features 
of the smart home was obtained. The findings, in 
general, outline that the speech-based biometrics with 
the involvement of deep learning can be used as a safe, 
non-contact, and convenient verification channel of 
next-generation smart environments. To improve further 
the accuracy, scalability and generalization across a 
wide variety of different users, future work will develop 
multi-modal biometric fusion, transformer-based speech 
models, and large-scale field deployment.
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