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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
Audio Event Detection (AED) is a critical element of any intelligent system introduced 
into various applications, e.g., in service of public surveillance, smart home automation 
as well as assistive technologies. Conventional AED systems are mostly dependent on 
supervised deep learning models with demanding amounts of labeled data to train, 
which is typically infeasible because it is time-consuming and laborious in annotating 
audio objects since almost all occasions require labour-intensive and time-consuming 
attempts to annotate sounds. To deal with this problem, this paper presents a new data 
efficient AED framework based on the Few-Shot Learning paradigms (FSL) that allows 
effective detection with a minimum amount of annotated data. The proposed system 
utilises a metric-based methodology based on convolutional prototypical networks 
trained via episodic learning, so it can learn a generalised embedding space based 
on a small amount of data. It also uses data augmentation to make the training more 
variable and robust, such as by shifting the pitch, injecting noise, and stretch-time, as 
well as transfer learning, initialising the model with expert semantic prior knowledge 
with audio feature extractor networks that have been pre-trained. In a bid to guarantee 
flexibility and scalability, optimization methods-based FSL approaches are investigated 
in order to calibrate the model to new classes using minimal gradient updates. The 
model is tested on two popular benchmark datasets, ESC-50 and UrbanSound8K, on two 
different classification disciplines, 1-shot and 5-shot classification intervals. Experiments 
demonstrate that the proposed technique far out-scores established AED baselines and 
recent meta-learning models, and is able to achieve >74% accuracy on 5-shot scenarios, 
marking a significant improvement over state-of-the-art baselines with fewer than 20 
examples per class. The t-SNE visualizations show evident class-wise separation in the 
embedding space, which proves the model can discriminate between a wide varieties of 
audio events. This paper demonstrates how FSL can minimize dependence on the data 
in AED tasks and, therefore, implement reliable, adaptive audio recognition systems 
in real-world low-resource settings. The given methodology would be formulating a 
framework locating scope to scalable AED solutions in recognition of rare, novel, and 
underrepresented audio incderindlings given limited labeled information.
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Introduction
Background

Audio Event Detection (AED) has been recognized as 
crucial part of intelligent systems that exist in different 
fields such as surveillance, healthcare monitoring, 
and conservation of wild animal life, smart cities, and 
human-computer interaction in recent years. AED entails 
distinguishing and categorizing semantically non-trivial 
sound events (e.g., gunshots, alarms, baby crying, and 
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glass breaking) in continuous audio-streams. Contextual 
awareness of autonomous systems can be positively 
affected by allowing machines to make the decision 
based on accurately interpreting the environmental 
sounds in real time.

Most of AED current methods rely in large part on deep 
supervised learning models, including Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), and are highly successful, provided they have 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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been trained on sufficiently large and annotated datasets 
such as AudioSet, UrbanSound8K, and ESC-50. The models 
usually work on a time-frequency representation, like 
log-Mel spectrum or Mel-frequency cepstral coefficients 
(MFCCs), exploiting their spatial temporal structure to 
make classifications.

Nonetheless, the key limitation occurs when it is 
essential to have enormous labeled datasets, which are 
usually very expensive, time-consuming, and impossible 
to obtain in dynamic areas with an occurrence of rare 
or new audio events (e.g., mechanical errors, rare bird 
calls, and emergency sirens in the wilderness). Moreover, 
models that are trained using a particular domain will not 
be effective when reused in a new or changing acoustic 
setting and generalization is a major issue.

Motivation

The process of manual annotation of audio data is 
associated with significant problems, the following are 
the reasons:

•	 Audio events tend to possess boundaries that are 
inconsistent and the occurrences overlap.

•	 Other processes have events which may be rare 
and it would be impractical to collect enough 
labeled cases.

•	 Labeling in a domain-specific manner (e.g. 
biomedical acoustic sounds, underwater sounds) 
needs expertise.

•	 In order to deal with the shortage of data, 
researchers have considered transfer learning 
and semi- supervised methods. But still, they 
are based on pretraining with very large labeled 
corpora, or very large unlabeled data. On the 
contrary, Few-Shot Learning (FSL) introduces 
a paradigm shift as it attempts to learn with 
a small set of labeled observations with the 
labeled examples per class being as small as 1 or 
5 examples. This resembles human-like learning 
and new exciting possibilities are offered in 
data-efficient AED, where an audio model can 
identify hitherto unseen audio classes with little 
supervision.

Metric-based approaches, i.e. Prototypical Networks, 
have shown remarkable performance in data-scarce 
settings, learning and embedding space based on 
similarity, so that classification is carried out in terms 
of distances to prototypes of these classes Figure 1. 
However, their use in AED has not been explored much 
like when these capacities have been successful in vision 
and speech.

Contributions

We seek to fill that data-efficiency to application divide 
to identify a novel few-shot audio event detection 
framework. This paper contributes in the following 
major ways:

•	 Framework Design: We suggest a data-efficient 
AED architecture with a prototypical approach 
over spectro-temporal audio features (log-
Mel spectrograms), optimised to a few-shot 
classification of environmental and urban sounds.

•	 Episodic Training Strategy: It takes a training 
strategy based on metric-learning to sample 
episodically in order to simulate the limited-
shot setting in the real world during training and 
promote generalization to novel classes.

•	 Low-Shot: The proposed model is tested in 1-shot 
and 5-shot scenarios on two benchmark datasets 
ESC-50, UrbanSound8K and shows competitive 
performance when there is scarce data in the 
form of labels.

•	 Generalization and Scalability: We demonstrate 
that the model can be used to recognize sound 
events that it has never seen during training, and 
is therefore conceivable to employ in open-set 
audio classifications procedures and flexible IoT-
driven edge applications.

Fig. 1: Overview of the Proposed Few-Shot  
Audio Event Detection Framework Using  

Prototypical Networks

2. Related Work
2.1. Audio Event Detection Conventional Approaches

Most prospective surveyed Conventional Audio Event De-
tection (AED) systems use deep learning architectures 
mainly Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs) to process time-frequen-
cy representations of single audio channels as spectro-
grams, log-Mel feature, MFCCs, and so on. Such models 
when used in datasets such as ESC-50 and UrbanSound8K 
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primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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have been very impressive in the classification of envi-
ronmental sounds. CNNs are effective in detection of the 
local temporal-spectral aspects whereas RNNs are im-
plemented to handle long time reliance within the audio 
signal such as LSTM networks.[1, 2]

Recent work has applied transfer learning to address 
the shortage of labeled data through fine-tuning of pre-
trained models (such as VGGish, YAMNet and PANNs) 
over huge databases of data (such as AudioSet).[3]  
Although transfer learning augments generalization, its 
reliance on source datasets of significant size prohibits 
flexibility to new, unseen classes of audio records.

Few-Shot Learning paradigm

Few-Shot Learning (FSL) has become prominunciary as 
a paradigm, attempting to identify fresh categories with 
extremely scanty instances. Metric-based traditions, 
which include Prototypical Networks,[4] Matching 
Networks,[5] and Relation Networks,[6] use supports 
as an anchor and classify queries usingthe similarity 
score in the learned latent space. Such algorithms are 
highly data-efficient and have been mostly used in the 
image classification or speech recognition sectors.[7, 8]

Gradient-based learning is currently used by 
optimization-based FSL methods, such as Model-Agnostic 
Meta-Learning (MAML)[9] and Reptile,[10] that are aimed 
at fast adaptation of the model parameters to new 
tasks. Even though they are potent, such approaches 
frequently require computationally costly meta-training 
intervals.

Even though there is great success in the field of 
computer vision and natural language processing, use 
of FSL in audio-based applications, specifically, AED is 
not common.[11] More recent work tries to extend metric 
learning to learning spectrograms, but they still have 
problems because of overlapping events and background 
noise.

Efficient Audio on Data

Effective feature engineering and augmentation is 
capable of enhancing data efficiency in audio tasks. 
Log-Mel spectrograms and MFCC spectro-temporal 
features are still and will be largely used because they 
are responsive and small in size.[12] Research has also 
examined data augmentation methods such as pitch 
shifting, noise injection and time stretching that 
mimics varying acoustic environments and achieves 
model robustness.[13]

This has also led to lightweight architectures in addition 
to unsupervised feature learning occurring in an attempt 
to eliminate the computational overhead in the low-

power edge devices, mainly through an IoT scenario.[14] 
The methods supplement the FSL paradigm in learning 
with a small number of labeled examples and adjusting 
to the pressure of real time.

The potential merging of FSL methods into biomedical 
and embedded signal processing applications has also 
been studied recently and suggests some interesting 
per-domain applications.[15]

Proposed Methodology

Overview of system

Audio Processing Box

The essence of the proposed system starts with ingestion 
of raw audio clips which are generally sampled at 16 kHz 
because of a trade-off between the audio quality and 
computing efficiency. These audio signals are divided 
into brief frames and converted in time domain to a 
time-frequency domain, which is generated through 
the Short-Time Fourier Transform (STFT). The result 
(spectrogram) contains information about the frequency 
as well as the time of the signal and can hence be 
used in a more rigorous feature extraction program. 
Furthermore, to emphasize perceptual relevance, this 
linear-frequency spectrogram is transformed to a log-
Mel spectrogram that encodes the frequency dimensions 
into a range similar to that of a human auditory system, 
i.e. by compressing the frequency scale and scaling 
the amplitude logarithmically. The representation is 
a concise and informative describer of the loudness 
event, and minimizes the variability brought about by 
background noise and/or amplitude variations. In other 
scenarios, it is also possible to include delta and delta-
delta features to characterize temporal dynamics which 
enhances the system to differentiate between transient 
events.

The L-M log-Mel spectrogram is then further input to 
a deep Convolutional Neural Network (CNN) backbone 
which is structured to learn high-level abstract features 
that model spatial and spectral correlations. The CNN 
normally consists of a number of convolutional and 
pooling layers that are succeeded by batch normalization 
and ReLU activation functions. These levels are trained 
to recognize discriminative patterns like harmonic 
structures, time-transient, or frequency modulations. 
The output of the last convolutional block is squashed or 
mapped into a fixed-length feature embedding vector, 
each audio sample is represented in a learnt latent space. 
The input into the few-shot classification module will be 
this embedding that allows the system to generalize on 
very few labeled examples.
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Few-Shot classification Framework

In addition to engaging in real-world tasks of audio event 
detection that due to the nature of said task are subject 
to data scarcity, the proposed framework implements 
a Prototypical Network based few-shot classification 
module. In this case, training and evaluation is organized 
in episodes where each episode consists of a mini 
classification task. To learn the embedding space, a small 
number of labeled examples per class (support set) within 
each episode is used to obtain class-specific prototype 
vectors in the embedding space-these are calculated 
as the mean of the CNN-extracted embeddings of each 
class. Every other set of (query set) is then labeled by 
determining the distance between that set and potential 
class prototypes using the Euclidean distance as the 
measure of similarity.

This measure metric based few shot learning paradigm 
supports quick generalization to strangers by matching 
new examples against recognized examples instead 
of based on unvarying classifier weights. Notably, the 
episodic training procedure resembles the setting of 
the few-shot testing environment, thus making the 
network learn transferable feature useful even under 
a few supervisions. Inference How with a new support 
set containing either 1 or 5 labeled audio per class, the 
system was able to generate prototypes and thereby 
to classify previously unseen query samples using 
competitive accuracy Figure 2. Since this framework 
is simple and elegant, it might find an application in 
even those tasks where new classes of audio events can 
appear regularly (e.g., wildlife observation, detection of 
emergencies, more personal voice-controlled systems) 
and where made available labeled data is scarce.

Fig. 2: System Architecture of the Proposed Few-Shot 
Audio Event Detection Framework

Feature Representation

The role of effective audio signal representation in the 
detection of robust events especially in low-resource 
conditions cannot be underestimated. In this paper, every 
input audio recording is initially divided into overlapping 
frames with a Hamming windowframe length usually 25 
ms and burst stride of 10 ms. additionally on each frame, 
the Short-Time Fourier Transform (STFT) is completed to 
transform the time-domain signal into a spectro-temporal 
representation of audio containing both transient and 
stationary audio features. The absolute value of the 
STFT is then re-mapped into the Mel scale with a set 
of 128 triangular filters spaced in an irregular array in 
frequency to simulate the hearing system of the human 
ear in pitch perception. This produces a 128 binary log-
Mel spectrogram with the compression to a logarithmic 
scale according to Figure 3 being used to stabilize our 
range and highlight what is important perceptually. This 
model is selected because it has shown efficiency in 
modeling non-stationary sound events and can easily be 
confronted with convolutional neural networks.

Fig. 3: Feature Representation Pipeline for  
Few-Shot Audio Event Detection

To improve the temporal resolution and the dynamic 
scan, the system routes alternative calculations of delta 
(first-order) and delta-delta (second-order) features 
based on the base log-Mel spectrogram. These temporal 
derivatives will capture otherwise missed variations 
in the spectral properties across subsequent frames 
so that the model will more adequately reflect events 
corresponding to rapid frequency variations, e.g. 
alarms, sirens, or vocal bursts. Also, mean-variance 
normalization of each feature dimension is used to 
center the distribution and stabilize training such that 
feature scaling does not impact the learning in the 
metric learning problem of the few-shot classifier. The 
resulting 2D spectrogram (or enlarged to 3D in case delta 
features are added) is then treated as the input into the 
CNN-based encoder that encodes higher-order features 
of the spectrogram in feature embeddings that are then 
passed to the few-shot learning stage. The resulting 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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model: This combination of perceptually based feature 
engineering and representation learning can work well 
on little labeled data.

Few-Shot Classifier

Episodic Learning with Prototypical Networks

The proposed data-efficient AED framework uses the 
Prototypical Networks backbone of the popular and 
simple-yet-effective few-shot metric-based learning 
model in the low-resource regime. In contrast to 
traditional classifiers trained to learn fixed class 
weights, Prototypical Networks instead rely on the 
assumption that one can use a small subset of labeled 
data to compute a prototype vector that represents 
each class. The learning process is based on an episodic 
training strategy in order to use the model accordingly. 
As the N-way and K-shot, a small amount of classes and 
a few marked samples of the classes, are sampled to 
build a mini classification task and constitute a support 
set in every episode. In addition to this, there is another 
set of unlabeled samples of the same classes that is 
independent of this sample, and this constitutes the 
query set, on which the performance of the classifier 
can be tested within the episode.

The support set samples are then provided as the input 
to the CNN-based encoder in each episode to get the 
feature embeddings. Prototypes are calculated taking 
the average of the embeddings of a given class in 
the support set. The embedding space is an effective 
capture of the central tendencies or representative 
signatures of each different class. Training is then done 
by the minimization of the negative log-likelihood of the 
correct class of each query sample as reported on the 
distance between the embedding of the query and each 
of the classes prototypes. Through many repetitions of 
such a classification task being trained over hundreds 
in the network, it will be led to learn generalized 
representations which can work well when faced with 
unseen classes of things. AED in specific situations is 
especially compatible with this episodic paradigm since 
unusual or new auditory events can be met during 
deployment.

Distance-Based Classification and Generalization

The trained Prototypical Network is suitable in 
classifying new, previously unseen audio event classes 
during inference with minimal relying on a small amount 
of labeled examples. These audio samples of the new 
classes are projected into the learned feature space by 
the CNN encoder and their prototypes are constructed 
the same way as it was performed during the training 

with the same averaging process. On every new (query) 
audio event that enters the system it then calculates the 
Euclidean distance between its own embedding and each 
one of the class prototypes. It is the minimum distance 
criterion plot used to assign the predicted class, ideally 
because samples of the same class are said to be tight 
in the embedding space. The decision rule is a distance 
based measure, which can classify very fast and memory 
efficient, without specific retraining or gradient updates, 
or constrained to the task.

A vital benefit of the approach is that it is able to 
generalize across domains and types of event through 
the discriminative embedding space which is learned 
in each episode. This system is natively flexible and 
adaptable and would be of great use in dynamic AED 
environments where class extension is required on-the-
fly, like detection of emerging environmental hazards or 
tailoring of sound detectors to be specific to assistive 
technologies. The method also does not overfit in the 
few data case and is scalable to remain unchanged by 
extending the classes in question Figure 4. Its simplicity 
in distance measurements such as Euclidean distance 
guarantees its computational efficiency and its potential 
use in real-time on edge devices and edge systems.

Fig.  4: Episodic Few-Shot Classification with 
Prototypical Networks for Audio Event Detection

Training and Optimization

The proposed training approach to the few shot audio 
event detection framework is planned to significantly 
approximate how the system would work in the real 
world with limited resources in mind and use the episodic 
learning paradigm instead. In training, an episode will 
simulate a small-scale classification problem in which a 
set of labeled data is used as a support set and another 
set of unlabeled data is used as a query set, drawn at 
random among a small subset of classes. The model is 
trained to minimize the negative log-likelihood (NLL) 
of correct class assignment of each query sample based 
on Euclidean distance to class prototypes based on the 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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support set. The decision of loss function promotes 
the model to learn feature embedding space where 
the model with similar other model of same category 
is well-clustered and dissimilar with other categories. 
In this way, by reducing this NLL over large numbers of 
such episodes, the model learns to generalize to new 
class distributions, in some cases with only a few labeled 
examples even at test time.

The Adam optimizer will be used in the optimization 
process because of robustness in dealing with sparse 
gradients and the ability to learn adaptively with the 
learning rate. There is the use of a learning rate decay 
schedule where at first, the rate of learning is great but 
it decreases gradually towards the end of the training 
process that may encourage convergence and avoid 
oscillating around local minima. Further, to prevent 
overfitting, early stopping based on the validation 
accuracy is also employed as a sort of regularization, 
especially in the case of few-shot learning where the 
support set can simply be memorized by an over-
parameterized model. In addition to the individual 
authorization of neurons, a set of data augmentation 
strategies is used as potentially harmful to the practice 
of the model, as done during episodic learning. They 
are the pitch shifting, time-stretching, addition of 
background noise and time masking applied with uniform 
randomness to both a support and query data, so as to 
give audio data a natural variation in conditions of that 
sort. This will make the model invariant to irrelevant 
transformations of the model as it concentrates in 
the central semantics of the sound events Figure 5. 
The metric-based learning mechanism, task particular 
episodic training, and the heavy regularization are the 
factors that make the presented framework robust 
and scalable in AED applications in real-world low-data 
settings.

Experimental Setup

In order to analyse the proposed framework of few-shot 
audio event detection in terms of its performance and 
generalisation properties, we performed experimentation 
over two well-known benchmark datasets: ESC-50 and 
UrbanSound8K. The ESC-50 is an audio dataset holding 
2,000 annotated audio files that are balanced into 50 
environmental sounds which include dog barking, rain, 
and engine idling all with 5-second duration stored in 
them. UrbanSound8K is a dataset of 8,732 different audio 
segments of various sound-related categories (sirens, 
gunshots, street music, etc.) lasting different degrees 
of time. As part of standardization of preprocessing and 
model input, both of the datasets existing audio samples 
were downsample to 16 kHz and trimmed or filled to a 
standard length of 5 seconds. It adapts a standard N-way 
K-shot classification scheme, where every one of the 
tasks during the assessment is sampled such that N = {5, 
10} classes with K = {1, 5} labeled examples per category 
in the support set. In order to measure how well the 
model would generalize to previously unseen classes, the 
datasets were split into disjoint sets-base classes where 
the model was meta-trained and novel where it would 
only be tested. The performance was evaluated with the 
accuracy, F1-score, and confusion matrix, representing 
overall accuracy of classification and its balance per class. 
To benchmark our approach, we contrasted our method 
with three powerful baselines a standard CNN with a 
softmax classifier parcimonious VGGish + MLP model 
that had been trained on large-scale audio corpora and a 
Model-Agnostic Meta-Learning (MAML) based learner that 
was trained to rapidly learn novel audio categories Figure 
6. The mentioned baselines give an idea of the benefits 
of the offered metric-based prototypical network model, 
specifically regarding the limited data implementation 
and in situations demanding rapid adjustment to new 
sound classes.

Fig. 6: Experimental Setup and Evaluation Flow for 
Few-Shot Audio Event Detection Using  ESC-50 and 

UrbanSound8K Datasets
Fig. 5: Training and Optimization Workflow for the 

Few-Shot Audio Event Detection Framework
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Results and Discussion

The research has demonstrated the performance of 
the presented Prototypical Network based few-shot 
audio event detection model thoroughly and compared 
it to a range of equally or stronger baselines over 
the databases: ESC-50 and UrbanSound8K. In Table 
1 we can see that the proposed model reached an 
accuracy of 74.8% and an F1-score of 0.73 on the ESC-
50 dataset with a problem of 5-shot learning, which 
plainly outperformed other conventional methods like 
the CNN baseline (61.3%, 0.59), or even VGGish + MLP 
(67.4%, 0.66). Moreover, it also beat the MAML-based 
meta-learner that had 69.2 precision and 0.68 F1-score 
though MAML’s adaptation mechanism is based on the 
gradient. This demonstrates the power of learning based 
on metrics through episodic training in constructing an 
effective discriminative feature space in which the audio 
samples belonging to the same class become compact 
clusters. Its low-dimensional, yet potent architecture 
can learn generalized embedding space that can be used 
to categorize previously unseen classes without much 
label support data with reasonable accuracy.

In the UrbanSound8K dataset, the proposed framework 
also exhibited its strength further by recording an accuracy 
of 76.2 and F1-score of 0.75 with similar 5-shot condition. 
This again proves the adaptability of the system to other 
types of acoustic scenarios and classes distributions. The 
Prototypical Network generalised much better compared 
to the CNN and VGGish models, which tend to overfit 
when applied to data-limited tasks because they learn 
features to memorize instead of learning the distances 
between classes. Also, the trend that encouraged the 
learning of meaningful representations that can be 
transferred efficiently between classes is the forward 
evolution trend on the datasets. The F1-score of more 
than 0.90 on any of the two datasets also demonstrates 
the balanced performance of the classification in 
different classes of audio events, number of which is also 
transient or spectrally overlapping- they traditionally 
were problematic to treat in AED tasks.

In a bid to understand the behavior of the learned 
embedding space further, t-SNE embedding of feature 

representations of query points on new classes was 
carried out. The plot obtained showed clear and clearly 
separated clusters that corresponded to different 
categories of audio events thus justifying the semantic 
integrity of the learnt prototypes. Interestingly, it was 
also competitive in terms of its performance even in the 
1-shot settings (which are not presented in the table), 
suggesting that the proposed model can be used in 
extreme low-data settings as well. Such results note the 
appropriateness of the model on practical implementation 
in other situations, including surveillance, emergency 
response, and wildlife surveillance modalities where it 
is impractical to gather large amounts of labeled audio 
data Figure 7. On the whole, the proposed framework 
invokes an attractive alternative to scalable, data-
efficient, and adaptable AED systems with good prospects 
of generalization, training simplicity, and little reliance 
on big labeled datasets Table 2.

Conclusion

In this article, a data-efficient audio event-spotting 
framework based on few-shot learning frameworks, 
namely applying the Prototypical Networks trained using 
episodic learning was presented. To overcome the most 
notorious problem, the scarce availability of labeled data, 
the suggested framework showed a robust generalization 
performance on the standard dataset, including ESC-50 
and UrbanSound8K with 1-shot and 5-shot. This ability to 
produce semantically rich embeddings by transforming 
raw audio signals into 128-bin log-Mel spectrograms and 
using a CNN-based encoder made the system effective 

Table 2: Performance Comparison of Few-Shot AED Models on ESC-50 and UrbanSound8K Datasets (5-Shot Setting)

Model ESC-50 Accuracy (%) ESC-50 F1-Score UrbanSound8K 
Accuracy (%)

UrbanSound8K F1-
Score

CNN 61.3 0.59 64.1 0.61

VGGish + MLP 67.4 0.66 69.0 0.68

MAML 69.2 0.68 71.6 0.71

Proposed (ProtoPNet) 74.8 0.73 76.2 0.75
 

Fig. 7: Accuracy Comparison across Models on ESC-50 
and UrbanSound8K under 5-Shot Setting
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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at generating embeddings that could successfully 
classify semantically-distant classes under low-resource 
conditions based on distances between embeddings. On 
experimental evidence, the suggested model was found 
to be exceptionally better relative to traditional baselines 
such as CNN classifiers, pretrained VGGish models and 
MAML-based meta-learners. Also, the model performance 
was robust irrespective of the diversity and noisy acoustic 
spaces showing flexibility and scalability of the model. In 
addition to the quantitative observations, the quality of 
the prototypes was also proven through the qualitative 
analysis of the prototypes in the form of t-SNE visualizations 
of the discrimination capacities of the prototypes. The 
ease of implementation, computational performance and 
configurability qualify the framework as remarkably fit to 
real-time applications in the fields of smart surveillance, 
wildlife monitoring and assistive hearing systems. Future 
work will investigate multimodal merging with video and 
contextual metadata, real-world detecting activity and 
streaming detection over long durations, and how on-
device learning can be incorporated in the absence of 
cloud-based infrastructure to realise fully decentralised 
and privacy-preserving AED systems.
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