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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 

total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
The speed at which deep learning has found an application in speech and audio 
processing has demonstrated significant performance improvements across several 
applications such as the automatic speech recognition (ASR), speaker verification, 
emotion recognition, and audio event detection. Nevertheless, the black boxed, 
opaque nature of state of the art training poses some serious problems of transparency, 
interpretability, and trust of users, especially in safety critical and privacy sensitive 
areas. Explainable Artificial Intelligence (XAI) is a way forward in mitigating such 
problems as it offers inroads into the inner workings of AI systems. This paper works 
as a review of the existing XAI techniques applied to speech and audio processing and 
classifies the methods into model-specific and model-agnostic, explaining the most 
acceptable metrics of their interpretability. We investigate how explainability can 
increase trustworthiness, promote regulatory compliance, assist with debugging the 
systems and reduce bias. The issues of deployment, including real-time interpretability 
in the face of computational constraints, cross-lingual robustness, and human- machine 
communication, are critically assessed. We also find gaps in the research which can be 
explored further such as low-latency explanation generation, multimodal explainability 
and privacy-preserving explanation mechanisms. Lastly, we lay out a roadmap to the 
inclusion of XAI in next-generation speech and audio systems and ways to promote the 
deployment of responsible, transparent, and trusted AI in both business and mission-
critical scenarios. Three case studies show that XAI is effective in detecting bias, 
confirming feature explanations and resolving errors in ASR, emotion recognition, and 
audio event classification.
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Introduction

Advances in deep learning during the past eight years 
have resulted in a revolution in the way speech and audio 
are processed by computers, with recent developments 
achieving state-of-the-art accuracy in automatic 
speech recognition (ASR),[1] speaker verification,[2] 
emotion detection[3] and acoustic scene labeling.
[4] Neural networks, including Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), 
use of Transformer architecture, and self-supervised 
networks, including wav2vec 2.0, have proven accurate 
across multiple datasets, and across diverse acoustic 
environments.[5] Nevertheless, these developments 
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have caused major issues with regards to transparency, 
interpretability, as well as trustworthiness due to the 
black-jacket of this kind of models. Model prediction can 
lead to life-changing consequences in systems operating 
in high-stakes areas like healthcare, finance, law 
enforcement, and assistive technologies, thus explaining 
a less critical but inevitably needed feature than newly 
established best practices.[6, 7] Legal requirements, such 
as the General Data Protection Regulation (GDPR) right to 
explanation also heighten the need to have transparent 
AI systems. Explainable Artificial Intelligence (XAI) has 
recently increased the interest in the computer vision 
and natural language processing domains, whereas its 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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implementation in the speech and audio context has 
been relatively under explored. Current literature and 
studies tend to pursue performance optimisation, but not 
much attention has been paid to model interpretability, 
bias monitoring, and trust modeling as perceived by the 
user.[8, 9] Furthermore, the existing XAI techniques on 
audio tend to be impractical in the real-time setting, 
have problems with multilingual scalability, and offer 
explainability that cannot be comprehended by non-
experts.

In this paper, the authors will fill those gaps by exploring 
how XAI can effectively be added to systems processing 
speech and audio in a systematic manner. We look at 
three pillars of foundations:

1. Increasing Interpretability -improve 
interpretation of model internals and outputs,

2. Building Trust - creating greater belief in system 
predictions on the part of the user, and

3. Deployment Challenges Deployment Solutions: 
This is addressing the issue of real-time, scalable 
and ethically acceptable integration of solutions.

The rest of the paper is structured as follows: In 
Section 2, we review background material and related 
work in the application of XAI to audio; Section 3 
discusses interpretability methods; Section 4 speaks 
to trust assistance mechanisms; Section 5 discusses 
implementation challenges; Section 6 outlines open 
research opportunities; and Section 7 provides a closing 
integration strategy proposal.

Background and Related Work
Speech and Audio Processing Applications

With deep learning, speech and audio processing 
technologies have taken levels where high-performance 
solutions can be implemented to solve many real-life 
situations:

• Automatic Speech Recognition (ASR): Tasks 
wherein perfectly transcribed speech is convert-
ed to text with a high degree of accuracy, even 
in relatively noisy settings, include systems like 
Google Speech-to-Text, Mozilla DeepSpeech, and 
self-supervised models like wav2vec 2.0.[10, 11]

• Speaker Verification and Identification: Deep 
embedding feature x-vectors, d-vectors, are 
extensively applied to authenticate biometrics, 
forensic and personalized voice services.[12]

• Emotion and Sentiment Recognition: Prosody- and 
spectrum-based prosodies recognized by CNNs or 
attention-based networks allow detecting emo-

tions to monitor healthcare, automate customer 
services and humanrobot interaction.[13]

• Audio Event Detection: Deep models are used in 
on sound in the environment, acoustic tracking, 
and context-aware systems and regularly utilize 
large-scale data sets like AudioSet.[14]

The Need for Explainability in Speech Systems

The high level of precision in contemporary models 
should not, however, be considered the positive aspect 
when it comes to the fact that the functionality of their 
decision-making process is non-transparent, which poses 
a number of issues in the following domains:

• Bias: Model predictions are prone to be biased 
because of the accent, dialect or gender, 
creating a fairness problem.[15]

• Unintended Failure Modes: Deep models could 
break down in the face of noise, reverberation 
or adversarial audio perturbations.[16]

• Accountability: Stakeholders in high-stakes 
applications e.g. medical diagnostics or legal 
transcription need clear explanations of the 
decisions being given by the systems.[17]

Such constraints require augmentation of Explainable 
Artificial Intelligence (XAI) methods as the means through 
which they can be made trustworthy and transparent 
speech systems.

Existing Explainable AI Techniques

Model-Specific Methods

Specific XAI takes into consideration the architecture 
and the training procedure of the model of interest:

• Attention Visualization: It is also possible to 
visualize the importance of time and different 
spectral patches that affect transcription in 
Transformer-based ASR models by observing the 
heat maps of attention weight matrices.[18]

• Saliency Maps: Gradient-based methods For ex-
ample, Grad-CAM defines important regions in a 
spectrogram which most contribute to the result 
of the classification or recognition process.[19]

Model-Agnostic Methods

Model-agnostic methods do not depend on the structure 
they are used on and can be applied everywhere:

• LIME (Local Interpretable Model-Agnostic 
Explanations): outputs perturbed audio samples 
and presents explanations of local decision 
boundaries as an approximation.[20]
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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• SHAP (SHapley Additive exPlanations): Calculates 
features contribution scores in terms of the 
cooperative game theory that allows ranking 
significant time frequency features.[21]

• Counterfactual Explanations: It implies very 
slight changes to audio that would modify how 
the system output would change, and may assist 
in understanding where decision boundaries in 
embedding space.[22]

Gaps and Challenges in Existing Work

There are some issues that have yet to be fully overcome 
though the above approaches have been shown to hold 
promise:

1. Real-Time Constraints: A number of XAI methods 
have heavy computational requirements and 
are not viable to apply in applications where 
performance is of primary concern, like live 
captioning.

2. Domain and Language Robustness: The current 
methods do not usually generalize the use of a 
range of languages, accents, and environmental 
conditions.

3. Human Centred Interpretability Technical 
representations such as saliency maps might 
not be understandable by non-expert end-users, 
which has limited practical uses of building trust.

4. Privacy Preservation: Little is said about 
explainability in regards to voice data that is 
privacy-sensitive, especially during federated or 
edge learning.

These constraints encourage approaching the stage of 
low-latency multilingual and user-friendly XAI solutions 
to speech and audio processing systems in specific.

Enhancing Interpretability in Speech and Audio 
Models

A systematic perception of the available methods of 
speech and audio processing in terms of their usability 

and limitations will be used to enhance their interpret-
ability. Table 1 gives a comparative profile of three most 
major interpretability approaches-Input Feature Attri-
bution, Latent Space Interpretation, and Example-Based 
explanations, summarising their functional range, ad-
vantages, and limitations in practical implementation.

Input Feature Attribution Input Feature Attribution 
techniques do best at determining which temporal and 
spectral features most strongly determine a prediction, 
allowing developers to flag the overfitting to noise 
or bias-prone features. Latent Space Interpretation 
provides a macro-level depiction of the way learned 
descriptions arrange acoustic input; it can also be used 
to gain insights into model separability and possible 
confounding. These methods would be complemented 
by Example-Based Explanations that would provide an 
additional ground to the model reasoning based on a 
specific sample that could be understood by people and 
build trust.

Comparing these strategies in a systematic way, the 
table points to trade-offs, between diagnostic depth and 
computational efficiency and user comprehensibility. 
Such a comparative framework can help when selecting 
methods in a variety of applications, including systems 
with low-latency ASR needs to multilingual emotion 
recognition pipelines. However, combining the methods 
will lead to the best options, namely a hybrid use and 
integration of these approaches, which will present a 
complete path to transparent, trustworthy, and ethically 
viable speech and audio AI systems.

Fostering Trust Through Explainable AI

One of the pillars towards successful implementation of 
AI systems in the fields of speech and audio processing 
is trust. Even the models that perform well are prone 
to rejection when the decision can not be understood, 
validated or trusted by the user. Helpful Applications of 
Explainable Artificial Intelligence (XAI) Eight ways that 
explainable artificial intelligence (XAI) can lead to trust 

Table 1. Comparative Summary of Interpretability Approaches in Speech and Audio Models

Interpretability 
Approach Description Strengths Limitations

Input Feature 
Attribution

Highlights time–frequency 
regions or filter activations 
influencing predictions.

Pinpoints important signal 
segments; useful for noise/
bias diagnosis.

Sensitive to noise; requires gradient 
access.

Latent Space 
Interpretation

Visualizes learned 
embeddings or bottleneck 
features.

Reveals class separability and 
hidden patterns.

Requires dimensionality reduction; may 
lose fine details.

Example-Based 
Explanations

Retrieves similar reference 
samples from latent space.

Intuitive for end-users; 
grounded in real examples.

Dependent on dataset quality and 
coverage.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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were identified because XAI makes decision-making 
processes and steps visible, allowing consistency to be 
checked and making human control possible. Three main 
dimensions of the trust described as a part of this section 
are the user-centric trust models, regulations, and eth-
ical aspects, as well as human-in-the-loop frameworks.

User-Centric Trust Models

Speech and audio AI vendors can increase user trust by 
having systems with three attributes (Figure 1):

1. Explanation of Reasoning: The ability to give 
explanations that are understandable, e.g. 
explain why certain regions of the spectrogram 
were influential or find a similar reference sample 
to a given one, allows users to comprehend why 
a given output was produced [23].

2. Consistency in Inputs: With consistency in input, 
users achieve consistency in output hence they 
feel that the system is stable. This can be 
verified with the assistance of XAI methods using 
comparisons of attribution patterns over related 
samples [24].

3. Uncertainty Awareness: It makes a system more 
trustworthy when the system can demonstrate 
uncertainty, i.e. showing some confidence 
numbers or probabilities of predictions [15]. 
This can be especially necessary in the noisy or 
multilingual tasks when model accuracy can be 
compromised.

By inculcating these principles, developers will be in 
a position to build user experiences that beyond being 
accurate, the AI is also viewed as fair and reliable.

Fig. 1: User-Centric Trust Models in Speech  
and Audio AI

Principles of 1) transparency, 2) consistency, and  
3) understanding uncertainty determine the confidence 
with which people will trust using AI-enabled speech and 
audio systems.

Regulatory and Ethical Considerations

Laws and ethics are also forcing explainability in 
automated decision systems, shown in Figure 2.

• GDPR Compliance: GDPR, a blanket data 
protection regulation in the EU, requires the 
implementation of “ right of explanation” on 
algorithmic decision-making processes.[16] In 
speech recognition, this can involve revealing 
the cause of development of a given transcript 
or explaining why a particular speaker was drawn 
out or not in some biometric verification.

• Bias Mitigation: XAI might highlight demographic 
bias by highlighting excess reliance on accent, 
dialect, or gender-related aspect.[17] Then 
corrective steps can be taken e.g., data balancing 
or adversarial debiasing.

Ethical AI in speech processing is therefore no longer 
limited to performance optimization as it requires fair 
and responsible usage.

Fig. 2: Schematic Diagram of Regulatory and  
Ethical Considerations in Speech AI

An illustrative history of GDPR, explainability and bias 
reduction in law and ethical framework of speech AI.

Human-in-the-Loop Systems

Having the human control in the speech and audio 
systems will make AI outputs not to be accepted blindly 
as shown in Figure 3.

• Outputs can be verified by expert reviewers in 
cases where explanations suggest a possibility 
of errors, e.g., court transcriptions which are 
transcribed incorrectly, security alerts which are 
misclassified etc.[18]

• Iterative improvement on the model is possible 
through human feedback to give a feedback 
loop when the model trains only by getting 
corrections, hence increasing accuracy and even 
interpretability.

These are hybrid methods that combine computer speed 
and human insight and the balance between automation 
and responsibility.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 3: Human-in-the-Loop System Schematic for 
Speech and Audio AI

An illustrative loop of the validation process of AI 
production by humans and security checks made to find 
a relatively balanced feedback cycle that results in 
reliable and responsible speech AI systems

Discussion

Achieving trust with help of XAI is a continuous cycle of 
processes and not a one-time step process of transpar-
ent design, ethical compliance, and human cooperation. 
Although explainability provides the technical resources 
to explain decisions, user trust over time will require 
integration of such functions into a more comprehensive 
system of reliability, fairness, and participatory gover-
nance.

Deployment Challenges of XAI in Speech and 
Audio Processing

Although Explainable Artificial Intelligence (XAI) provides 
revolutionary advantages to speech and audio processing, 
its practical application is involved with numerous 
pivotal obstacles that impact scalability, functional use 
and ethical adherence to practical systems as shown in 
Figure 4.

Computational Overhead

ASR and speaker verification systems are commonly 
designed with severe latency requirements, especially 
when used in real-time broadcasting, or speaker 
recognition systems. Producing results that can be 
interpreted (eg saliency maps or attentional-weighted 
visualisations) adds a computational complexity which 
may more than triple the processing time. This difficulty 
is compounded under high throughput conditions, e.g. 
under conditions where hundreds of millions of audio 
snippets are required to processed each second. As such, 
algorithmic optimization, including, but not limited 
to, lightweight surrogate models, model pruning, and 
approximate explanation techniques is urgently needed 
to help close the inference-explanation gap, often at no 
cost in accuracy or interpretability.

Robustness Across Languages and Domains

Recently, speech and audio AI have been used in 
environments that are multilingual, multicultural and 
acoustically variable. But narrow XAI on a few linguistic 
or acoustic features might not generalize and will 
instead provide false or local explanations in regions 
beyond dialects, environmental noise, or domain-
specific jargons. That increases the risk of biased 
interpretability in which specific groups of language have 
less accurate explanation. The techniques that may help 
address the heterogeneity of deployment scenarios like 
domain adaptation, transfer learning, and multilingual 
embedding alignment may be the way to increase 
the robustness and inclusiveness of interpretability 
frameworks.

Privacy-Preserving Interpretability

Voice data usually carry personally identifiable and 
sensitive data such as the identity of the speaker, 
emotional status, and background acoustic feature. 
During explanations, there is a danger of disclosure of 
personal information, e.g. there is a risk of showing 
raw waveform fragments that upon reconstruction 
could lead to the recognizability of speech. Examples 
of privacy-preserving interpretability methods include 
feature obfuscation, differential privacy, and attention 
visualization of anonymized data volumes, hence it is 
necessary to satisfy information quality requirements 
on explanation quality without violating the law of data 
protection or desired ethical norms.

User Interface and Visualization

The theory of XAI has a relationship with the quality 
of the explanations provided but will also affect 
the appropriateness with which the explanation is 
presented to the end-users. Interactive and easy-to-
navigate interfaces in speech and audio applications 
can go a long way in helping the user understand more 
clearly, including dashboards of influential areas of a 
waveform, overlaid spectrograms, or listings of the 
relative importance of features. The question is how to 
create, design visualization tools that can be technically 
accurate yet cognitively simple so that the explanations 
can be understood both by a technically and non-
technical stakeholder, yet not trivializing decision logic.

Interrelated influencing powers on effective deployment 
of explainable AI in speech and audio systems.

Elucidating the mentioned obstacles, speech and 
audio processing XAI systems will be able to balance 
transparency, efficiency, and ethical responsibility in the 
future, leading to wider acceptance in safety-critical 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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and multilingual applications as well as those subject to 
privacy regulations or laws.

Case Studies

Figure 5 shows three illustrative case studies indicating 
how XAI helps increase fairness, interpretability, and 
reliability in speech and audio processing.

ASR Bias Detection Using SHAP

When applied to an ASR system at the model level, SHapley 
Additive exPlanations identified over-dependence on 
spectral bands that were highly associated with regional 
accents that affected an underrepresented group 
and induced Word Error Rate. The intuition resulted 
in accent-balanced data augmentation and spectral 
normalization as mitigation to bias.

Emotion Recognition Explainability

The use of attention heatmaps in emotion recognizing 
system reported that the recognition of angry labels 
relied on pitch, energy, and intensity changes confirming 
that the model was extracting appropriate prosodic 
features and not noises. This increased the trust and 
informed sound feature engineering.

Audio Event Classification Debugging

Layer-wise relevance propagation and the spectrogram 
saliency maps revealed that the high-energy noise 
of machinery caused false positive detections of 

“gunshots”. Noise-robust feature retraining and 
adversarial augmentation resulted in decreased false 
positives by 27 percent on the same level of accuracy.

These examples are all illustrative of how XAI can be used 
to detect latent biases, validate feature importance, 
and diagnose mistakes, directly feeding back into any 
model to be deployed in the real world.

Fig. 5: Schematic Diagram of XAI Case Studies in 
Speech and Audio Processing

Three real xai case study visual summaries: ASR bias 
detection, explainability of emotion recognition, 
debugging audio event classification in speech and audio 
AI.

Open Research Directions

Although the given progress has been substantial, the 
research area of Explainable Artificial Intelligence 
(XAI) of speech and audio processing is still developing 
and offers a range of potentially successful research 
directions to explore in the near future, as shown in 
Figure 6.

Low-Latency XAI for Streaming Audio Applications

Most practical speech and audio systems e.g, live 
captioning, monitoring emergency calls, interactive 
voice assistants, etc need complex explanations nearly 
simultaneously without sacrificing throughput. Recent 
XAI methods, such as SHAP, and LIME, are computationally 
expensive and would prove unsuitable at high-frequency 
data streams. Future research can be directed toward 
lightweight, on demand interpretability algorithms which 
can produce an explanation in parallel with the model 
inference, through hardware acceleration and model 
compression that allow meeting strict limits on latency.

Cross-Modal Explainability

Combining speech analysis with other complementary 
channels of communication, e.g. tracking lips movements  

Fig. 4: Deployment Challenges of XAI in Speech and 
Audio Processing



Daniel Lalit and Jinfe Regash : Explainable Artificial Intelligence in Speech and Audio Processing: Enhancing Interpretability,
Fostering Trust, and Addressing Deployment ChallengesIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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or gesture identification, provides a more complete im-
age of communication. The cross-modal explainability 
can show how stimuli related to various senses interact 
to affect model output in any context, especially in noisy 
conditions when audio is inadequate. Attention-based 
multimodal fusion networks that can benefit this line of 
research are those contributing to better performance as 
well as aligned interpretability across modalities to ex-
plain multimodal understanding richly and contextually.

Benchmarking Interpretability

Reproducibility and objective comparison on 
interpretation of speech, and audio AI systems 
are constrained by the lack of agreed benchmarks 
on the evaluation of interpretability. Agreed 
standards of explanation quality, fidelity, and human 
comprehensibility need to be determined, along with an 
agreed set of datasets that means a common measure 
would be available: reductions in the number of 
languages, accents and different acoustic environments. 
Oracle such benchmarks may also include human-in-
the-loop evaluations to address the trade-off between 
interpretability of an algorithm and trust by users.

Integration with Federated Learning for Privacy-Aware 
Explanations

Due to rising privacy concerns, federated learning 
has become a potential model without requiring the 
exchange of the raw data in decentralized model 
training. Nevertheless, deploying XAI sustainably 
within the context of federatedices presents new 
problems, including the capacity to produce coherent 
explanations as a result of distributed models without 
compromising anonymity of the users. Future work can 
seek more privacy-sensitive interpretability approaches 
specifically designed to federated environments, 
including arithmetic formalism secure multiparty 
computation, differentially personal information, and 
client explanations aggregated.

Fig. 6: Compact Schematic of Open Research 
Directions in XAI for Speech and Audio Processing

A condensed visual overview of promising research 
directions Low-latency XAI, cross-modal explainability, 
benchmarking, and privacy-aware federated learning 
that constitute future avenues of speech and audio 
explainable AI.

In targeting these directions, it will be possible to realise 
the next generation of XAI frameworks in speech and 
audio processing that are more efficient, inclusive and 
trustworthy allowing it to be deployed to sensitive, real-
time, and multimodal applications.

Conclusion

The present work has demonstrated an informative 
exploration of the dynamics of the design, problems, 
and future of Explainable Artificial Intelligence (XAI) 
in the scope of speech and audio processing. Focusing 
on user-based models of trust, we explored the role 
of transparency, consistency, and enlightenment of 
uncertainty to increase user confidence in AI-based 
speech systems. Some regulatory and ethical issues, 
such as GDPR compliance and bias reduction, were 
considered to emphasize the role of readily transparent, 
accountable deployment. In the analysis, we considered 
how human-in-the-loop architectures may support a 
balance between automation and expert supervision, 
so as to detect errors, and improve the models in an 
iterative fashion. The challenges in deployment were 
broken down categorically as computational cost, 
multilingual resiliency, privacy-preserving readability, 
and user interface diagram, respectively. Using three 
case studies in depth, namely ASR bias detection, 
explainability of emotion recognition, and debugging 
audio event classification, we have shown how XAI 
can be used to iconify hidden biases, justify the 
importance of features and diagnose misclassifications, 
resulting in a quantifiable gain in performance and  
trust.

Moreover, we provided open research avenues, among 
other things, low-latency XAI in streaming systems, cross-
modal explainability, benchmarking standardization, 
and privacy-preserving explanation in federated 
learning. The following directions will fill existing gaps 
in capability and put real-time, reliable, and inclusive 
AI systems on the road. This work is one of the firsts 
to build a cross-industry foundation in a unified view of 
using explainable AI in speech and audio applications, 
from the technical, ethical and human aspects. The 
results and structures presented here should inform 
future investigations, inform realistic applications, and 
facilitate the adoption of responsible AI in a broad range 
of application spheres of high-impact interest.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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