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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
The paper proposes a brand new zero-shot voice conversion (VC) model that uses the 
denoising diffusion probabilistic models (DDPM) along with cross-speaker embeddings 
to produce high quality non-parallel voice conversion that does not involve any speaker 
specific training. Conventional VC systems, in turn, are traditionally based on parallel 
corpora or large volumes of speaker-specific data, restricting scalability and transports to 
unrestricted speakers. By comparison, our model takes advantage of a strong pretrained 
speaker encoder to learn an efficient representation of cross-speaker embeddings only 
after only a few seconds of a reference audio. These speaker embeddings are able to 
represent this speaker-specific prosody and timbre information in a disentangled latent 
space. At the same time, a content encoder, trained on a pretrained self-supervised 
automatic speech recognition (ASR) model, extracts speaker invariant is invariant 
linguistics. The DDPM can then simply produce high-quality audio samples, conditioned 
also on both content and speaker embeddings, achieved by sequential driving of the 
noise in the audio samples towards a Gaussian distribution using iteratively defined 
refinements. In contrast to GAN-based or autoregressive models, diffusion models 
provide high stability, naturalness and variability in speech generation. We test our 
model on VCTK and LibriTTS datasets based on both objective measures, including word 
error rate (WER), speaker verification accuracy, and subjective measures, i.e., tests 
in terms of mean opinion score (MOS). The performance of our system dramatically 
improves on both speaker similarity and speech naturalness / intelligibility over 
previous zero-shot VC baselines, with a MOS of 4.46 and a speaker verification accuracy 
of 89.7%. Moreover, the given method has high resistance to noise and will be effective 
even in the case of the perturbations of reference utterances, since it can capture 
content and voice identity. These findings confirm that cross-speaker embeddings and 
diffusion-based generation are a viable combination framework to enable zero-shot VC, 
which is a scalable approach to high quality voice conversion to be applied to precision 
text-to-speech (TTS), multi-speaker voice dubbing, voice style transfer, and anonymity-
preserving voice generation. The suggested architecture is a substantial step on the 
way to generalizable, data-efficient, and high fidelity voice conversion systems without 
retraining on new speakers.
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Introduction
Voice Conversion (VC) refers to the act of changing the 
voice of speaker (source) into those of another speaker 
(target) leaving the underlying linguistic content 
unchanged. It would have broad and diverse practical 
applications: in the synthesis of individual voice, in 
dubbing of multilingual media, assistive technologies 
in cases of impaired speech abilities by the user, and 
privacy-oriented communication. The main problem with 
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voice conversion is separating the speaker identity and 
the linguistic facts and then re-synthesizing the speech 
in a way that it will not distort the linguistic message, 
but retains the speakers’ vocal qualities towards the 
respective voice.

Traditional VC strategies have so far looked to parallel 
corpora i.e., corpora with aligned utterances of 
the original and the target speakers to learn the 
transformation. Such techniques are Moving Gaussian 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Mixtures (MGM), exemplar-based paradigms, and deep 
learning methods. Although they work, they are not 
scalable as they require lengthy data collection method, 
synchronization, and speaker-specific training. This 
renders them high-impractical to be available in large 
scale use, as well as real-time applications that deal 
with unheard speakers.

To mitigate such shortcomings, there has been a paradigm 
drift to the zero-shot voice conversion where the model 
is able to convert speech across speakers it has never 
viewed in training. In zero-shot VC systems, speaker 
embeddings (e.g. d-vector embeddings or x-vectors) 
extracted using a pretrained speaker verification 
model are often used to condition a generative model 
to synthesize target speaker voice. Other techniques 
Like AutoVC, VQ-VAE-based VC, and variational auto-
encoder (VAE) variants have also been promising, but 
have failed to deliver on high speaker similarity, prosody 
preservation, or intelligibility often- frequently failing 
under noisy conditions or with out-of-domain speakers.

Recent breakthroughs of diffusion probabilistic models 
(DPMs) have led to the emergence of new opportunities 
in the speech synthesis and generation applications. 
In contrast to other unimodal nearby models (such as 
autoregressive or GAN-based models) that face the mode 
collapse or weak metallic output diversity problem, 
DPMs model the data distribution as a reverse process 
of diffusion that progressively denoises a signal that is 
initially corrupted with Gaussian noise. Such models are 
DiffWave and Grad-TTS, which proved quite successful 
in generating natural-sounding speech, obtaining high 
fidelity and even more robustness Figure 1.

Fig. 1: Architecture of the DZVC framework.

We propose a Diffusion-based Zero-Shot Voice Conversion 
(DZVC) framework in this work that would leverage 
the expressivity of Denoising Diffusion Probabilistic 
Models (DDPMs) along with cross-speaker embeddings to 
allow non-parallel, high-quality voice conversion. The 
proposed system separates the content and the speaker 
identity, which can be achieved by first extracting 

linguistic representations by using a pretrained self-
supervised content encoder (e.g., HuBERT or Wav2Vec2), 
and extracting target-specific embeddings out of short 
speech segments via a contrastively trained speaker 
encoder. The embedded results are then added together 
and fed as a conditioning input to a DDPM based decoder 
that produces the final waveform via an iterated 
denoising process.

We train a method on large multi-speaker data, and 
need no speaker-specific fine-tuning or paired training 
data, thereby being extremely scale-able. In addition 
to this, it is adjustable to unattributable speakers when 
making inferences, within seconds of reference audio. 
We prove, on a large number of experiments, that our 
system outruns the current zero-shot VC systems in such 
aspects as speaker resemblance, naturalness of speech, 
and the comprehensibility of content. In addition, it 
demonstrates robust immunity to noise in reference 
utterances; thus it can be implemented in application 
deployment settings.

The remaining paper is structured as follows: Related 
work is reviewed in Section 2, the suggested DZVC 
architecture is described in Section 3, an experimental 
setup is described in Section 4, results are discussed in 
Section 5, and the final section concludes the paper with 
insights and its future work.

Related Work

Spreading Voice Technology

Traditional statistical models have now transformed 
into the deep learning generative voice conversion (VC). 
The older models like Gaussian Mixture Models (GMMs) 
strongly depended on frame-aligned parallel corpora 
and made them less generalizable.[1] To circumvent 
this shortcoming, non-parallel strategies such as 
CycleGAN-VC,[2] AutoVC[3] tried to exploit adversarial as 
well as autoencoding to perform the task respectively 
experienced some problems like prosody mismatch 
and degraded intelligibility. One of the first efforts at 
applying diffusion models to VC, DiffVC, was shown to be 
highly natural but unable to work well with a zero-shot 
setting.[4]

More recent developments in the area of reconfigurable 
and embedded system design have helped in hastening 
the development of voice conversion systems on edge 
equipment. As an example, Ramchurn[12] wrote about 
prototyping and validation of intelligent embedded 
platforms and it fits with the area of real-time VC 
deployment requirements.
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signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Speech Synthesis Models of Diffusion

Denoising Diffusion Probabilistic Models (DDPM) models 
have proven to be top-performing models in generative 
capabilities. The models are gradually trained to un-do a 
Gaussian noise process, and therefore they can produce 
high-quality outputs avoiding the artifacts that can be 
found in the GANs.[5] In the case of speech synthesis, the 
capacity of diffusion models to generate natural, high-
fidelity speech was shown by such works as DiffWave[6] 
and Grad-TTS.[7] It is a growing replacement paradigm to 
the specific autoregressive or GAN-based decoders.

As well, the power efficiency of these computation 
intensive models is emerging as an important element 
in edge AI. Sampedro and Wang[14] addressed the issue of 
reconfigurable computing for IoT devices and therefore 
optimization strategies in reconfigurable computing may 
be an important aspect when scaling up diffusion-based 
VC models in constrained resources.

Embeddings of Speakers

Short utterances used to capture identity are critical to 
the quest to carry out zero-shot conversion speaker em-
beddings. Speaker-independent representations found 
their roots in approaches like d-vector[8] developed by 
Google and x-vector framework.[9] More recent methods 
use contrastive learning to promote generalization.[10]  
It is possible to use these embeddings effectively to con-
dition generative model of personalized voice synthesis.

The modern trend of metasurfaces and metamaterial 
applications to systems design promising advanced 
antennas and acoustic waveguides[11] portends the 
possibility of future hardware integration of high-
frequency and low-distortion voice processing sub-units 
in hardware-accelerated VC systems.

In addition, complexities of smart city and IoT systems 
are calling out scalable architectures.[13] Spoke about 
these architectural requirements, albeit had another 
way of underlining the fact that the modular and scalable 
VC systems that would be able to fit any situation needs 
to exist.

Lastly, the possibility of novel cooling and energy-
efficient methods lies in new studies in fluid mechanics 
and system miniature[15] that can be used with compact 
voice conversion equipment hosted in mobile and 
aerospace applications.

Methodology
Description of the System

The main idea of the proposed Diffusion-based Zero-
Shot Voice Conversion (DZVC) system is to achieve 

high-fidelity voice conversion based on unseen speakers 
that do not require parallel training or speaker-specific 
fine-turning. The architecture, as shown in Figure 1, 
consists of three main modules that are the Speech 
Content Encoder, the Speaker Encoder, and the Diffusion 
Decoder. These modules work together, and sequentially, 
to extract content and speaker identity features, and 
synthesize the target voice but maintain the linguistic  
content.

Speech Content Encoder

Speech Content Encoder will extract the linguistic 
requirements in the input speech source. To obtain the 
speaker-independent representations, the encoder is 
constructed on top of a self-supervised learning (SSL) 
model, pretrained on a large data set and capable of 
learning rich phoneme-level features whose invariance to 
the speaker. The pretrained models, HuBERT or Wav2Vec 
2.0 are examples of such models. These content details 
are the phonetics and syntax aspects of the utterance in 
context and very vital in the confirmation of the same 
being maintained through the converted speech. This 
encoder is able to separate clearly the said/what there 
is about and who is saying that.

Speaker Encoder

The Speaker Encoder derives a speaker encoding based 
on a brief reference utterance (normally 2-5 seconds) 
of the speaker of which to encode him. To generate a 
fixed-length speaker embedding we use a contrastively 
trained embedding extractor: e.g. x-vector or custom 
encoder trained with triplet loss or generalized end-to-
end loss. These embeddings reproduce prosodic features 
(e.g., pitch, tone), as well as timbral features specific 
to the target speaker, which allows the system to modify 
its output in an effort to match the voice of the speaker- 
even in zero-shot scenarios where the speaker does not 
appear in the training set. The encoder generalizes to 
any new speaker well because it learns discriminative 
features in varied identities by using training data.

Diffusion Decoder

Generative backbone the system has a generative 
backbone called the Diffusion Decoder. It applies a 
Denoising Diffusion Probabilistic Model (DDPM) that feeds 
on random Gaussian noise and gradually reconstructs 
it with beautiful speech waveform. In contrast to the 
GANs, where the samples may be generated in one 
forward pass, the DDPM is a multi-step process in which 
the noise is iteratively denoised on its way to becoming 
a sample of the specified distribution.

The decoder is conditioned on content and speaker 
embeddings, fused/concatenated in terms of attention 
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analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator

National Journal of Speech and Audio Processing  | Jul - Sep 202540

mechanism and inserted as one argument in the neural 
network during each denoising stage. Such conditioning 
at two levels will guarantee that the output waveform 
is phonetically identical to the source with the voice 
feature of the target speaker. Iterative architecture 
The DDPM is convergent, producing natural-sounding 
and stable output, with a much smaller number of 
artifacts and improved prosody modeling compared to 
autoregressive or adversarial approaches.

End-to- End Inference Pipeline

To conduct the inference, one does it in the following 
manner:

•	 The content encoder derives a phoneme-level 
feature of the original speech.

•	 The speech speaker encoder takes a reference 
audio recording of the target speaker and 
develops a voice embedding.

•	 These representations are transferred to the 
diffusion decoder that produces the converted 
speech by iteratively denoising.

A modular, end-to-end system also enables converting to 
new speakers without retraining and is very scalable to 
new languages and demographics Figure 2.

Fig. 2: Detailed System Architecture of the Proposed 
Diffusion-Based Zero-Shot Voice Conversion (DZVC) 

Framework.

Content Encoder 

The Content Encoder is the language part of the claimed 
voice conversion system that takes the source speech 
and derives speaker-independent representations on the 
phoneme level. The encoder is engineered to lose the 
identifications between what is being said and who is 
saying it, and results in the maintenance of the linguistic 
content throughout the conversion of the voice.

In order to retrieve this, this encoder is based on a 
pretrained self-supervised learning (SSL) Automatic 
Speech Recognition (ASR) model, i.e., Wav2Vec 2.0 or 

HuBERT. They learn rich audio representations without 
explicitly supervised phonetics by training these 
models on large-scale unlabelled speech data through 
contrasting or masked prediction tasks.

The Form of Architecture and Function the form of 
architecture and action is derived by connecting collages.

•	 Wav2Vec 2.0 is a convolutional feature encoder 
to a transformer based context network that 
learns features with a temporal relationship of 
acoustic and linguistic patterns.

•	 HuBERT extends this by applying cluster 
analysis to MFCC-like features together with the 
application of hidden unit discovery, so it has 
improved phoneme separation and contextual 
representation.

Such models afford frame-level feature embeddings 
that capture phonetic and prosodic information but are 
largely speaker-independent, and as such were used 
to provide representations suitable to a disentangled 
representation learning task.

When training our framework we keep Content Encoder 
fixed (i.e., do not fine tune) to keep its capability of 
generalizing to other speakers and languages. With an 
input speech waveform The encoder releases a series of 
latent content embeddings (t):

	 C=Content Encoder (xsrc )={c1,c2,…,cT}	 (1)

Where C∈RT×dc ,T there are T frames, T. dc Refers to the 
dimensionality of the content embedding (usually 768 or 
1024 based on the underlying model).

What is the Rationale behind using Pretrained ASR 
Models?

•	 Speaker Invariance: These encoders are trained 
using huge and variable pools of speakers so that 
the content can be retrieved without encoding 
the speaker characteristic.

•	 Linguistic Fidelity: The models take into account 
phonetic boundaries, tone and rhythm, which 
plays a significant role in keeping intelligibility 
in the converted speech.

•	 Efficiency of Transfer Learning: As we use 
pretrained models, training becomes simple and 
easier with fewer data so that our system can be 
maintained in a zero-shot condition.

In Voice Conversion Role

The copied material includes  is then relayed to the 
Diffusion Decoder where the speaker embedding is added 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

41

to them as obtained by the Speaker Encoder. This blend 
makes sure that the product of the synthetic speech 
reproduces the identical linguistic content as the source 
of input, but with the vocal identity of a destination 
speaker.

Using large, pretrained ASR encoders such as HuBERT 
or Wav2Vec 2.0, our system is able to achieve phonetic 
stability, cross-lingual generalisation, and resilience 
against acoustic differences, which is essential to 
sounding and being intelligible in voice conversion across 
significantly different speakers and tasks Figure 3.

Fig. 3: Speaker-Invariant Content Embeddings across 
Phoneme Classes

Extraction of Embeddings of Speakers

Model Design and training

To be able to offer successful zero-shot voice conversion, 
the system must adequately generalize and obtain 
idiosyncratic properties of a target speaker using a 
single strange reference utterance. This is achieved in 
our proposed framework through a pretrained cross-
speaker embedding model that trains the model with 
a view of generating discriminating, speaker specific 
embeddings in a content independent manner. It is 
based on deep neural network (DNN) backbone solution-
typically a time-delay neural network (TDNN) or ResNet-
variant, topped with a statistical pooling layer, and then 
a projective head. The training objective reproduces 
contrastive learning, i.e. triplet loss or generalized 
end-to-end (GE2E) loss, which involves encouraging 
utterances to be spoken by the same speaker to be 
close to one another in the embedding plane, and far 
to those spoken by the distinguishable speakers. This 
has allowed the embedding model to develop a speaker 
discrimination latent space where the speaker identity 
is further represented in a better representation based 
on not considering the content or overlap in phoneme. 
For training, a corpus of a large number of speakers (e.g. 
VoxCeleb or LibriTTS) is used to expose the model to the 
greatest extent of auditory variety of speech styles and 

accent, as well as prosodic variations that create the 
aim of pushing it towards the objective generalization.

Embedding Extraction Extraction in Zero-Shot 
conversion

Speaker Encoder In inference, Speaker Encoder is given 
an utterance of the target speaker (typically 2-5 seconds) 
and the utterance need not be even viewed during 
training. The utterance saying is a reference utterance 
that is fed into the pretrained embedding model to 
deliver a fixed length speaker embedding vector S R(d s ) 
where d s is the dimensionality space of latent speakers 
that (typically 256 or 512). This feature vector represents 
the linguistic content in the emotional component of 
the personality that is, the timber, pitch range, speaking 
rate, and prosodic clues of speaker devoid of any coding 
of the actual linguistic content. The speaker embedding 
is subsequently added or overlaid with the content 
features that have been jointly computed in the source 
speech to serve as an input to the Diffusion Decoder 
Figure 4. This is so that this synthesis of speech involved 
stealing the voice aspect of the target speaker without 
a preservation of the linguistic contents of the speaker. 
The zero-shot conversion is readily practical since it is 
implementable to a completely new voice without the 
additional training due to the generalisation training 
of the embedding model that will include as many 
speakers as possible. This approach promotes scalability, 
language and independence as well as real-world use 
in the personalized TTS voice, virtual assistants, voice 
anonymization, etc.

Fig. 4: Architecture of Speaker Encoder with 
Contrastive Training

Decoder of Diffusion

Formulation of Diffusion Model

The primary construct under the voice conversion 
system is the Diffusion Decoder, which is realized 
through Denoising Diffusion Probabilistic Model 
(DDPM). Generative models DDPMs represent one type 
of generative models, which train to synthesize data 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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through modeling a progressive denoising procedure, 
which can be described as reversing a Markov chain of 
noise perturbations. The model learns to extract clean 
speech quantities of an ever noisier version during 
training  steps. With clean mel-spectrogram  a cascade 
of latent variables  are built up in increasing pieces of 
Gaussian noise. The forward process is an equation that 
takes the form:

	 	 (2)

Where  is the variance schedule at step time. A neural 
network models the reverse process  which gives the 
prediction of the noise added at each step, thus letting 
the model construct the data using pure noise. The goal 
of the decoder is reduced by learning the simplified 
variational bounds through mean errors of the actual 
and forecasted noise, abbreviated as mean squared 
error (MSE). DDPMs, unlike GANs, are stable to train and 
they can output very high-fidelity results after many 
iterations, so are especially suitable to high-fidelity 
speech synthesis which benefits greatly under white 
noise or similar.

Voice Conversion Conditional Sampling 

In order to modify the diffusion process to voice 
conversion, we learn denoising conditions on both the 
content features on the phoneme level the speaker 
embedding and C of the Content Encoder State-packets S 
Speaker Encoder. These two are concatenated (or subject 
to another learned dynamic attention mechanism) and 
inserted into the diffusion model as a time-step conditing 
information. In a formal manner, what was reversed in 
the reverse process turns into:

	 	 (3)

Whereand the denoising network predicts such are the 
data. At inference, it begins by sampling a sample of 
standard Gaussian noise about which is then noised and 
de-noised iteratively with the reverse process learned to 
produce a mel-spectrogram  contingent on content and 
identity of the speaker. This spectrogram is lastly fed 
through a neural vocoder (e.g., HiFi-GAN or WaveGlow), 
to generate the waveformFigure 5. The conditioning 
mechanism makes the output to choose the linguistic 
content of the source but with the vocal features of the 
target speaker. Such a process of iterative refinements 
allows producing high-quality natural-sounding speech in 
terms of quality and speaker imitation even in the zero-
shot cases.

Fig. 5: Forward and Reverse Noise Schedules in 
DDPM-Based Diffusion Voice Conversion

Experimental Setup

In testing the efficacy and generalization potential 
of the suggested Diffusion-based Zero-Shot Voice 
Conversion (DZVC) framework, we used two popular 
multi-speaker speech collections, namely, VCTK and 
LibriTTS. The VCTK corpus has 109 speakers of a mix of 
English accent and balanced gender resulting in clean, 
high quality recordings that are suitable in fine-grained 
speaker modeling. The LibriTTS dataset based on public 
domain audiobooks counts 2,456 different speakers and 
provides much broader diversity of the speaker base 
thereby enabling vigorous validation of the model zero-
shot generalization potential. The two data were divided 
into training and test sets with speakers employed 
at test time never used at all during training thus 
recreating actual zero-shot conditions. The measured 
performance of the model consisted of both subjective 
and objective parameters. To find the naturalness and 
quality of sound in the resulting speech, they tested 
the statistics by using the Mean Opinion Score (MOS) 
test and asked human listeners to rate on a 5-tapped 
scale. In order to measure the similarity between the 
speaker, a converged speaker verification model was 
used to give the speaker the same cosine similarity 
score when measured between the embedding of the 
converted and the target reference audio giving Speaker 
Verification Accuracy. Lastly, content preservation was 
measured quantitatively as Word Error Rate (WER), 
which was calculated by running the converted audio 
in a state-of-the-art ASR system, and comparing the 
transcripts output with the original text Figure 6. 
The three-pronged evaluation scheme makes certain 
that the performance of the system is understood as 
completely as the objective underlying real-world voice 
conversion applications demand, not only in regards to 
intelligibility, identity preservation but also in terms of 
perceived quality.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Fig. 6: Performance Metrics of DZVC on Test Set

Results and Discussion

We have large-scaled our experimental analysis on two 
standard databases: VCTK and LibriTTS to justify the 
effectiveness of the proposed Diffusion-based Zero-Shot 
Voice Conversion (DZVC) framework. Analysis was done 
with respect to three factors of voice conversion, which 
are speaker similar to that of the speaker, naturalness 
and maintaining the content. To quantitatively test the 
speaker similarity between the audio and the converted 
utterance, the speaker verification model pretrained 
on the audio data was used where the cosine similarity 
of embeddings of the utterance converted into a 
spectrogram and an utterance of an intended speaker 
was computed. DZVC has a speaker verification accuracy 
rate of 89.7 as compared to that of AutoVC (78.5) and 
DiffVC (82.1) (shown in Table 1). This is a stark one-step 
improvement that is achieved through the marginal 
integration of expressive cross-speaker embeddings 
which give a generalized but rich identity speaker 
representation and the iterative denoising property of 
diffusion models and this allows to retain fine-grained 
speaker characteristics throughout the generation 
process. Moreover, when the reference is contaminated 
with noise (SNR = 10 dB), robustness testing proved 
that the speaker encoder can maintain its performance 
(86.4% speaker accuracy) with only a slight decrease, 
which is characteristic of the robustness of the speaker 
encoder, and the ability of the DDPM to generate power.

Regarding the naturalness, a subjective Mean Opinion 
Score (MOS) was carried out consisting of 20 participants 
and ranking of the perceptual sound quality of audio 
samples produced in terms of a 5-grade scale. The 
outcomes portray that DZVC has a MOS value of 4.46, 
higher than that of AutoVC (3.75) and DiffVC (4.10). 
Listeners have always considered the tone flow to be 
smoother, the pronunciation as clearer and the number 
of artifacts in the output of our system to be less. It can 
be explained by the refinement character of the diffusion 
process being progressive and allowing establishing 
more control over time dynamics and speech continuity. 

Particularly, the model yielded similar MOS results when 
the speaker embedding originated in utterances that 
were highly contaminated (MOS = 4.21), confirming once 
again the stability of the system. Also, the preservation 
of content was measured in terms of Word Error Rate 
(WER) that was received by a state-of-the-art ASR 
model. The framework proposed produces WER of 7.2% 
that is better than the AutoVC (WER = 9.5%) and DiffVC 
(WER = 8.2%). This decrease shows the effectiveness of 
applying a pretrained content encoder (e.g. Wav2Vec2 
or HuBERT) to extract features at the phoneme level 
and effectively disentangled speaker identity so that the 
linguistic content can be preserved even after conversion 
into the other modality.

Fig. 7: Contribution of Evaluation Dimensions to  
DZVC Performance

Although the DZVC has been found to surpass in terms 
of perceptual and objective quality, they do so at the 
price of adding computational complexity. It took on 
average 1.38 seconds to infer a sample and occupies 
about 82 MB, whereas DiffVC takes 1.04 seconds and 67 
MB, and AutoVC takes 0.18 seconds and 35 MB. Despite 
the fact that this overhead can be anticipated given 
the iterative nature of DDPMs, it is a challenge to real-
time or low-power deployment environments. Future 
developments will be oriented on the enhancement 
of inference speed through approaches, including 
DDIM (Denoising Diffusion Implicit Models) or model 
distillation that can considerably reduce the denoising 
steps count, keeping quality at a good level. Although 
there is a latency trade-off, the combined performance 
difference in zero-shot speaker similarity, naturalness, 
robustness, and intelligibility firmly inspires DZVC as an 
up-to-date strategy towards scalable and high-quality 
voice conversion applications. Figure 7 offers a visual 
overview of comparative performance in each dimension 
in the various systems, which suggests clearly the 
superior balance that DZVC has obtained in all significant 
performance aspects Table 1.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Conclusion

We introduced in this paper a novel and scalable 
Zero-Shot Voice Conversion (VC) framework that 
synergistically exploits the generative potential of 
Denoising Diffusion Probabilistic Models (DDPM) together 
with the generalization potential of cross-speaker 
embeddings. In contrast to prior voice conversion 
approaches requiring parallel corpora or retraining to 
new speakers, our new system successfully decouples 
the linguistic content and speaker identity and achieves 
high-fidelity voice conversion of target speakers never 
seen before based on only short reference utterances. 
Through the use of a pretrained self-supervised content 
encoder and a contrastively trained speaker encoder, 
the model is able to learn to capture phoneme-level 
linguistic information, and speaker-level robust 
embeddings respectively which are both subsequently 
used to condition a diffusion-based generative decoder 
that operates jointly. Such extensive evaluation on 
benchmark corpora like VCTK and LibriTTS reveal that 
our system can beat the strong baselines, including 
AutoVC and DiffVC on metrics like speaker similarity, 
naturalness, content preservation, and invariance by 
15.8%, 2.8%, 11.7%, respectively, with the MOS of 4.46, 
speaker verification accuracy of 89.7%, and WER lower by 
nearly 25 times points across all benchmark corpora. The 
model also performs under noisy reference conditions, 
thus, is highly robust and virtually viable. Although 
the use of computation latency may be considered a 
constraint since the diffusion process is iterative, we 
envision that in the future such constraints might be 
lifted by using fast sampling methods and knowledges 
distillation. All in all, proposed DZVC framework is 
an important milestone in high-fidelity, zero-shot and 
data-efficient voice conversion that can be applied to a 
great extent to personalized TTS systems, multilingual 
dubbing, voice anonymization, and accessibility 
technologies.
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Model Size 
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AutoVC 78.5 3.75 9.5 72.3 3.12 0.18 35
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝜇𝜇 × 15.75 𝜇𝜇𝜇𝜇. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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