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ABSTRACT

The paper proposes a brand new zero-shot voice conversion (VC) model that uses the
denoising diffusion probabilistic models (DDPM) along with cross-speaker embeddings
to produce high quality non-parallel voice conversion that does not involve any speaker
specific training. Conventional VC systems, in turn, are traditionally based on parallel
corpora or large volumes of speaker-specific data, restricting scalability and transports to
unrestricted speakers. By comparison, our model takes advantage of a strong pretrained
speaker encoder to learn an efficient representation of cross-speaker embeddings only
after only a few seconds of a reference audio. These speaker embeddings are able to
represent this speaker-specific prosody and timbre information in a disentangled latent
space. At the same time, a content encoder, trained on a pretrained self-supervised
automatic speech recognition (ASR) model, extracts speaker invariant is invariant
linguistics. The DDPM can then simply produce high-quality audio samples, conditioned
also on both content and speaker embeddings, achieved by sequential driving of the
noise in the audio samples towards a Gaussian distribution using iteratively defined
refinements. In contrast to GAN-based or autoregressive models, diffusion models
provide high stability, naturalness and variability in speech generation. We test our
model on VCTK and LibriTTS datasets based on both objective measures, including word
error rate (WER), speaker verification accuracy, and subjective measures, i.e., tests
in terms of mean opinion score (MOS). The performance of our system dramatically
improves on both speaker similarity and speech naturalness / intelligibility over
previous zero-shot VC baselines, with a MOS of 4.46 and a speaker verification accuracy
of 89.7%. Moreover, the given method has high resistance to noise and will be effective
even in the case of the perturbations of reference utterances, since it can capture
content and voice identity. These findings confirm that cross-speaker embeddings and
diffusion-based generation are a viable combination framework to enable zero-shot VC,
which is a scalable approach to high quality voice conversion to be applied to precision
text-to-speech (TTS), multi-speaker voice dubbing, voice style transfer, and anonymity-
preserving voice generation. The suggested architecture is a substantial step on the
way to generalizable, data-efficient, and high fidelity voice conversion systems without
retraining on new speakers.
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INTRODUCTION

Voice Conversion (VC) refers to the act of changing the
voice of speaker (source) into those of another speaker
(target) leaving the underlying linguistic content
unchanged. It would have broad and diverse practical
applications: in the synthesis of individual voice, in
dubbing of multilingual media, assistive technologies
in cases of impaired speech abilities by the user, and
privacy-oriented communication. The main problem with
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voice conversion is separating the speaker identity and
the linguistic facts and then re-synthesizing the speech
in a way that it will not distort the linguistic message,
but retains the speakers’ vocal qualities towards the
respective voice.

Traditional VC strategies have so far looked to parallel
corpora i.e., corpora with aligned utterances of
the original and the target speakers to learn the
transformation. Such techniques are Moving Gaussian
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Mixtures (MGM), exemplar-based paradigms, and deep
learning methods. Although they work, they are not
scalable as they require lengthy data collection method,
synchronization, and speaker-specific training. This
renders them high-impractical to be available in large
scale use, as well as real-time applications that deal
with unheard speakers.

To mitigate such shortcomings, there has been a paradigm
drift to the zero-shot voice conversion where the model
is able to convert speech across speakers it has never
viewed in training. In zero-shot VC systems, speaker
embeddings (e.g. d-vector embeddings or x-vectors)
extracted using a pretrained speaker verification
model are often used to condition a generative model
to synthesize target speaker voice. Other techniques
Like AutoVC, VQ-VAE-based VC, and variational auto-
encoder (VAE) variants have also been promising, but
have failed to deliver on high speaker similarity, prosody
preservation, or intelligibility often- frequently failing
under noisy conditions or with out-of-domain speakers.

Recent breakthroughs of diffusion probabilistic models
(DPMs) have led to the emergence of new opportunities
in the speech synthesis and generation applications.
In contrast to other unimodal nearby models (such as
autoregressive or GAN-based models) that face the mode
collapse or weak metallic output diversity problem,
DPMs model the data distribution as a reverse process
of diffusion that progressively denoises a signal that is
initially corrupted with Gaussian noise. Such models are
DiffWave and Grad-TTS, which proved quite successful
in generating natural-sounding speech, obtaining high
fidelity and even more robustness Figure 1.
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Fig. 1: Architecture of the DZVC framework.

We propose a Diffusion-based Zero-Shot Voice Conversion
(DZVC) framework in this work that would leverage
the expressivity of Denoising Diffusion Probabilistic
Models (DDPMs) along with cross-speaker embeddings to
allow non-parallel, high-quality voice conversion. The
proposed system separates the content and the speaker
identity, which can be achieved by first extracting
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linguistic representations by using a pretrained self-
supervised content encoder (e.g., HUBERT or Wav2Vec2),
and extracting target-specific embeddings out of short
speech segments via a contrastively trained speaker
encoder. The embedded results are then added together
and fed as a conditioning input to a DDPM based decoder
that produces the final waveform via an iterated
denoising process.

We train a method on large multi-speaker data, and
need no speaker-specific fine-tuning or paired training
data, thereby being extremely scale-able. In addition
to this, it is adjustable to unattributable speakers when
making inferences, within seconds of reference audio.
We prove, on a large number of experiments, that our
system outruns the current zero-shot VC systems in such
aspects as speaker resemblance, naturalness of speech,
and the comprehensibility of content. In addition, it
demonstrates robust immunity to noise in reference
utterances; thus it can be implemented in application
deployment settings.

The remaining paper is structured as follows: Related
work is reviewed in Section 2, the suggested DZVC
architecture is described in Section 3, an experimental
setup is described in Section 4, results are discussed in
Section 5, and the final section concludes the paper with
insights and its future work.

RELATED WORK

Spreading Voice Technology

Traditional statistical models have now transformed
into the deep learning generative voice conversion (VC).
The older models like Gaussian Mixture Models (GMMs)
strongly depended on frame-aligned parallel corpora
and made them less generalizable." To circumvent
this shortcoming, non-parallel strategies such as
CycleGAN-VC, AutoVCP! tried to exploit adversarial as
well as autoencoding to perform the task respectively
experienced some problems like prosody mismatch
and degraded intelligibility. One of the first efforts at
applying diffusion models to VC, DiffVC, was shown to be
highly natural but unable to work well with a zero-shot
setting.™

More recent developments in the area of reconfigurable
and embedded system design have helped in hastening
the development of voice conversion systems on edge
equipment. As an example, Ramchurnl'Z wrote about
prototyping and validation of intelligent embedded
platforms and it fits with the area of real-time VC
deployment requirements.
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Speech Synthesis Models of Diffusion

Denoising Diffusion Probabilistic Models (DDPM) models
have proven to be top-performing models in generative
capabilities. The models are gradually trained to un-do a
Gaussian noise process, and therefore they can produce
high-quality outputs avoiding the artifacts that can be
found in the GANs.B! In the case of speech synthesis, the
capacity of diffusion models to generate natural, high-
fidelity speech was shown by such works as DiffWavel®
and Grad-TTS.! It is a growing replacement paradigm to
the specific autoregressive or GAN-based decoders.

As well, the power efficiency of these computation
intensive models is emerging as an important element
in edge Al. Sampedro and Wang!'"! addressed the issue of
reconfigurable computing for loT devices and therefore
optimization strategies in reconfigurable computing may
be an important aspect when scaling up diffusion-based
VC models in constrained resources.

Embeddings of Speakers

Short utterances used to capture identity are critical to
the quest to carry out zero-shot conversion speaker em-
beddings. Speaker-independent representations found
their roots in approaches like d-vector® developed by
Google and x-vector framework."”! More recent methods
use contrastive learning to promote generalization.['
It is possible to use these embeddings effectively to con-
dition generative model of personalized voice synthesis.

The modern trend of metasurfaces and metamaterial
applications to systems design promising advanced
antennas and acoustic waveguides!'! portends the
possibility of future hardware integration of high-
frequency and low-distortion voice processing sub-units
in hardware-accelerated VC systems.

In addition, complexities of smart city and loT systems
are calling out scalable architectures.!'¥ Spoke about
these architectural requirements, albeit had another
way of underlining the fact that the modular and scalable
VC systems that would be able to fit any situation needs
to exist.

Lastly, the possibility of novel cooling and energy-
efficient methods lies in new studies in fluid mechanics
and system miniaturel" that can be used with compact
voice conversion equipment hosted in mobile and
aerospace applications.

METHODOLOGY
Description of the System

The main idea of the proposed Diffusion-based Zero-
Shot Voice Conversion (DZVC) system is to achieve
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high-fidelity voice conversion based on unseen speakers
that do not require parallel training or speaker-specific
fine-turning. The architecture, as shown in Figure 1,
consists of three main modules that are the Speech
Content Encoder, the Speaker Encoder, and the Diffusion
Decoder. These modules work together, and sequentially,
to extract content and speaker identity features, and
synthesize the target voice but maintain the linguistic
content.

Speech Content Encoder

Speech Content Encoder will extract the linguistic
requirements in the input speech source. To obtain the
speaker-independent representations, the encoder is
constructed on top of a self-supervised learning (SSL)
model, pretrained on a large data set and capable of
learning rich phoneme-level features whose invariance to
the speaker. The pretrained models, HUBERT or Wav2Vec
2.0 are examples of such models. These content details
are the phonetics and syntax aspects of the utterance in
context and very vital in the confirmation of the same
being maintained through the converted speech. This
encoder is able to separate clearly the said/what there
is about and who is saying that.

Speaker Encoder

The Speaker Encoder derives a speaker encoding based
on a brief reference utterance (normally 2-5 seconds)
of the speaker of which to encode him. To generate a
fixed-length speaker embedding we use a contrastively
trained embedding extractor: e.g. x-vector or custom
encoder trained with triplet loss or generalized end-to-
end loss. These embeddings reproduce prosodic features
(e.g., pitch, tone), as well as timbral features specific
to the target speaker, which allows the system to modify
its output in an effort to match the voice of the speaker-
even in zero-shot scenarios where the speaker does not
appear in the training set. The encoder generalizes to
any new speaker well because it learns discriminative
features in varied identities by using training data.

Diffusion Decoder

Generative backbone the system has a generative
backbone called the Diffusion Decoder. It applies a
Denoising Diffusion Probabilistic Model (DDPM) that feeds
on random Gaussian noise and gradually reconstructs
it with beautiful speech waveform. In contrast to the
GANs, where the samples may be generated in one
forward pass, the DDPM is a multi-step process in which
the noise is iteratively denoised on its way to becoming
a sample of the specified distribution.

The decoder is conditioned on content and speaker
embeddings, fused/concatenated in terms of attention
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mechanism and inserted as one argument in the neural
network during each denoising stage. Such conditioning
at two levels will guarantee that the output waveform
is phonetically identical to the source with the voice
feature of the target speaker. Iterative architecture
The DDPM is convergent, producing natural-sounding
and stable output, with a much smaller number of
artifacts and improved prosody modeling compared to
autoregressive or adversarial approaches.

End-to- End Inference Pipeline

To conduct the inference, one does it in the following
manner:

e The content encoder derives a phoneme-level
feature of the original speech.

e The speech speaker encoder takes a reference
audio recording of the target speaker and
develops a voice embedding.

e These representations are transferred to the
diffusion decoder that produces the converted
speech by iteratively denoising.

A modular, end-to-end system also enables converting to
new speakers without retraining and is very scalable to
new languages and demographics Figure 2.
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Fig. 2: Detailed System Architecture of the Proposed
Diffusion-Based Zero-Shot Voice Conversion (DZVC)
Framework.

Content Encoder

The Content Encoder is the language part of the claimed
voice conversion system that takes the source speech
and derives speaker-independent representations on the
phoneme level. The encoder is engineered to lose the
identifications between what is being said and who is
saying it, and results in the maintenance of the linguistic
content throughout the conversion of the voice.

In order to retrieve this, this encoder is based on a
pretrained self-supervised learning (SSL) Automatic
Speech Recognition (ASR) model, i.e., Wav2Vec 2.0 or

40 |

HuBERT. They learn rich audio representations without
explicitly supervised phonetics by training these
models on large-scale unlabelled speech data through
contrasting or masked prediction tasks.

The Form of Architecture and Function the form of
architecture and action is derived by connecting collages.

« Wav2Vec 2.0 is a convolutional feature encoder
to a transformer based context network that
learns features with a temporal relationship of
acoustic and linguistic patterns.

« HUBERT extends this by applying cluster
analysis to MFCC-like features together with the
application of hidden unit discovery, so it has
improved phoneme separation and contextual
representation.

Such models afford frame-level feature embeddings
that capture phonetic and prosodic information but are
largely speaker-independent, and as such were used
to provide representations suitable to a disentangled
representation learning task.

When training our framework we keep Content Encoder
fixed (i.e., do not fine tune) to keep its capability of
generalizing to other speakers and languages. With an
input speech waveform The encoder releases a series of
latent content embeddings (t):

C=Content Encoder (x__)={c,,C,,...,C;} (1)

Where CER™ ,T there are T frames, T. d_Refers to the
dimensionality of the content embedding (usually 768 or
1024 based on the underlying model).

What is the Rationale behind using Pretrained ASR
Models?

« Speaker Invariance: These encoders are trained
using huge and variable pools of speakers so that
the content can be retrieved without encoding
the speaker characteristic.

o Linguistic Fidelity: The models take into account
phonetic boundaries, tone and rhythm, which
plays a significant role in keeping intelligibility
in the converted speech.

« Efficiency of Transfer Learning: As we use
pretrained models, training becomes simple and
easier with fewer data so that our system can be
maintained in a zero-shot condition.

In Voice Conversion Role

The copied material includes is then relayed to the
Diffusion Decoder where the speaker embedding is added
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to them as obtained by the Speaker Encoder. This blend
makes sure that the product of the synthetic speech
reproduces the identical linguistic content as the source
of input, but with the vocal identity of a destination
speaker.

Using large, pretrained ASR encoders such as HuUBERT
or Wav2Vec 2.0, our system is able to achieve phonetic
stability, cross-lingual generalisation, and resilience
against acoustic differences, which is essential to
sounding and being intelligible in voice conversion across
significantly different speakers and tasks Figure 3.

Number of Content Embedding Clusters

o i
Phoneme Class

Fig. 3: Speaker-Invariant Content Embeddings across
Phoneme Classes

Extraction of Embeddings of Speakers
Model Design and training

To be able to offer successful zero-shot voice conversion,
the system must adequately generalize and obtain
idiosyncratic properties of a target speaker using a
single strange reference utterance. This is achieved in
our proposed framework through a pretrained cross-
speaker embedding model that trains the model with
a view of generating discriminating, speaker specific
embeddings in a content independent manner. It is
based on deep neural network (DNN) backbone solution-
typically a time-delay neural network (TDNN) or ResNet-
variant, topped with a statistical pooling layer, and then
a projective head. The training objective reproduces
contrastive learning, i.e. triplet loss or generalized
end-to-end (GE2E) loss, which involves encouraging
utterances to be spoken by the same speaker to be
close to one another in the embedding plane, and far
to those spoken by the distinguishable speakers. This
has allowed the embedding model to develop a speaker
discrimination latent space where the speaker identity
is further represented in a better representation based
on not considering the content or overlap in phoneme.
For training, a corpus of a large number of speakers (e.g.
VoxCeleb or LibriTTS) is used to expose the model to the
greatest extent of auditory variety of speech styles and
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accent, as well as prosodic variations that create the
aim of pushing it towards the objective generalization.
Zero-Shot

Embedding Extraction Extraction in

conversion

Speaker Encoder In inference, Speaker Encoder is given
an utterance of the target speaker (typically 2-5 seconds)
and the utterance need not be even viewed during
training. The utterance saying is a reference utterance
that is fed into the pretrained embedding model to
deliver a fixed length speaker embedding vector SR(d s )
where d s is the dimensionality space of latent speakers
that (typically 256 or 512). This feature vector represents
the linguistic content in the emotional component of
the personality that is, the timber, pitch range, speaking
rate, and prosodic clues of speaker devoid of any coding
of the actual linguistic content. The speaker embedding
is subsequently added or overlaid with the content
features that have been jointly computed in the source
speech to serve as an input to the Diffusion Decoder
Figure 4. This is so that this synthesis of speech involved
stealing the voice aspect of the target speaker without
a preservation of the linguistic contents of the speaker.
The zero-shot conversion is readily practical since it is
implementable to a completely new voice without the
additional training due to the generalisation training
of the embedding model that will include as many
speakers as possible. This approach promotes scalability,
language and independence as well as real-world use
in the personalized TTS voice, virtual assistants, voice
anonymization, etc.

[ TDNN / ResNet Layer ]
!
[ TDNN / ResNet Layer ]
Speaker

1
Ref e .
S d;?;i':;c) Statistical Poaling Layer Embedding
i 5eRds

[ Projection Head ]

Triplet Loss /
GEZ2E Loss

Fig. 4: Architecture of Speaker Encoder with
Contrastive Training

Decoder of Diffusion

Formulation of Diffusion Model

The primary construct under the voice conversion
system is the Diffusion Decoder, which is realized
through Denoising Diffusion Probabilistic  Model
(DDPM). Generative models DDPMs represent one type
of generative models, which train to synthesize data
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through modeling a progressive denoising procedure,
which can be described as reversing a Markov chain of
noise perturbations. The model learns to extract clean
speech quantities of an ever noisier version during
training steps. With clean mel-spectrogram a cascade
of latent variables are built up in increasing pieces of
Gaussian noise. The forward process is an equation that
takes the form:

QX X-1) = N(X: \-'Illl — BeX—1, Bel (2)

Where is the variance schedule at step time. A neural
network models the reverse process which gives the
prediction of the noise added at each step, thus letting
the model construct the data using pure noise. The goal
of the decoder is reduced by learning the simplified
variational bounds through mean errors of the actual
and forecasted noise, abbreviated as mean squared
error (MSE). DDPMs, unlike GANs, are stable to train and
they can output very high-fidelity results after many
iterations, so are especially suitable to high-fidelity
speech synthesis which benefits greatly under white
noise or similar.

Voice Conversion Conditional Sampling

In order to modify the diffusion process to voice
conversion, we learn denoising conditions on both the
content features on the phoneme level the speaker
embedding and C of the Content Encoder State-packets S
Speaker Encoder. These two are concatenated (or subject
to another learned dynamic attention mechanism) and
inserted into the diffusion model as a time-step conditing
information. In a formal manner, what was reversed in
the reverse process turns into:

o (Xe-1 X0 €.8) = N(Kemsi b (X 5,8, ) (KD (3)

Whereand the denoising network predicts such are the
data. At inference, it begins by sampling a sample of
standard Gaussian noise about which is then noised and
de-noised iteratively with the reverse process learned to
produce a mel-spectrogram contingent on content and
identity of the speaker. This spectrogram is lastly fed
through a neural vocoder (e.g., HiFi-GAN or WaveGlow),
to generate the waveformFigure 5. The conditioning
mechanism makes the output to choose the linguistic
content of the source but with the vocal features of the
target speaker. Such a process of iterative refinements
allows producing high-quality natural-sounding speech in
terms of quality and speaker imitation even in the zero-
shot cases.
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Fig. 5: Forward and Reverse Noise Schedules in
DDPM-Based Diffusion Voice Conversion

EXPERIMENTAL SETUP

In testing the efficacy and generalization potential
of the suggested Diffusion-based Zero-Shot Voice
Conversion (DZVC) framework, we used two popular
multi-speaker speech collections, namely, VCTK and
LibriTTS. The VCTK corpus has 109 speakers of a mix of
English accent and balanced gender resulting in clean,
high quality recordings that are suitable in fine-grained
speaker modeling. The LibriTTS dataset based on public
domain audiobooks counts 2,456 different speakers and
provides much broader diversity of the speaker base
thereby enabling vigorous validation of the model zero-
shot generalization potential. The two data were divided
into training and test sets with speakers employed
at test time never used at all during training thus
recreating actual zero-shot conditions. The measured
performance of the model consisted of both subjective
and objective parameters. To find the naturalness and
quality of sound in the resulting speech, they tested
the statistics by using the Mean Opinion Score (MOS)
test and asked human listeners to rate on a 5-tapped
scale. In order to measure the similarity between the
speaker, a converged speaker verification model was
used to give the speaker the same cosine similarity
score when measured between the embedding of the
converted and the target reference audio giving Speaker
Verification Accuracy. Lastly, content preservation was
measured quantitatively as Word Error Rate (WER),
which was calculated by running the converted audio
in a state-of-the-art ASR system, and comparing the
transcripts output with the original text Figure 6.
The three-pronged evaluation scheme makes certain
that the performance of the system is understood as
completely as the objective underlying real-world voice
conversion applications demand, not only in regards to
intelligibility, identity preservation but also in terms of
perceived quality.
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Fig. 6: Performance Metrics of DZVC on Test Set

RESULTS AND DISCUSSION

We have large-scaled our experimental analysis on two
standard databases: VCTK and LibriTTS to justify the
effectiveness of the proposed Diffusion-based Zero-Shot
Voice Conversion (DZVC) framework. Analysis was done
with respect to three factors of voice conversion, which
are speaker similar to that of the speaker, naturalness
and maintaining the content. To quantitatively test the
speaker similarity between the audio and the converted
utterance, the speaker verification model pretrained
on the audio data was used where the cosine similarity
of embeddings of the utterance converted into a
spectrogram and an utterance of an intended speaker
was computed. DZVC has a speaker verification accuracy
rate of 89.7 as compared to that of AutoVC (78.5) and
DiffVC (82.1) (shown in Table 1). This is a stark one-step
improvement that is achieved through the marginal
integration of expressive cross-speaker embeddings
which give a generalized but rich identity speaker
representation and the iterative denoising property of
diffusion models and this allows to retain fine-grained
speaker characteristics throughout the generation
process. Moreover, when the reference is contaminated
with noise (SNR = 10 dB), robustness testing proved
that the speaker encoder can maintain its performance
(86.4% speaker accuracy) with only a slight decrease,
which is characteristic of the robustness of the speaker
encoder, and the ability of the DDPM to generate power.

Regarding the naturalness, a subjective Mean Opinion
Score (MOS) was carried out consisting of 20 participants
and ranking of the perceptual sound quality of audio
samples produced in terms of a 5-grade scale. The
outcomes portray that DZVC has a MOS value of 4.46,
higher than that of AutoVC (3.75) and DiffVC (4.10).
Listeners have always considered the tone flow to be
smoother, the pronunciation as clearer and the number
of artifacts in the output of our system to be less. It can
be explained by the refinement character of the diffusion
process being progressive and allowing establishing
more control over time dynamics and speech continuity.

National Journal of Speech and Audio Processing | Jul - Sep 2025

Particularly, the model yielded similar MOS results when
the speaker embedding originated in utterances that
were highly contaminated (MOS = 4.21), confirming once
again the stability of the system. Also, the preservation
of content was measured in terms of Word Error Rate
(WER) that was received by a state-of-the-art ASR
model. The framework proposed produces WER of 7.2%
that is better than the AutoVC (WER = 9.5%) and DiffVC
(WER = 8.2%). This decrease shows the effectiveness of
applying a pretrained content encoder (e.g. Wav2Vec2
or HUBERT) to extract features at the phoneme level
and effectively disentangled speaker identity so that the
linguistic content can be preserved even after conversion
into the other modality.

Robustness under Noise

Content Preservation (WER)

Speaker Similarity

Naturalness (MO5)

Fig. 7: Contribution of Evaluation Dimensions to
DZVC Performance

Although the DZVC has been found to surpass in terms
of perceptual and objective quality, they do so at the
price of adding computational complexity. It took on
average 1.38 seconds to infer a sample and occupies
about 82 MB, whereas DiffVC takes 1.04 seconds and 67
MB, and AutoVC takes 0.18 seconds and 35 MB. Despite
the fact that this overhead can be anticipated given
the iterative nature of DDPMs, it is a challenge to real-
time or low-power deployment environments. Future
developments will be oriented on the enhancement
of inference speed through approaches, including
DDIM (Denoising Diffusion Implicit Models) or model
distillation that can considerably reduce the denoising
steps count, keeping quality at a good level. Although
there is a latency trade-off, the combined performance
difference in zero-shot speaker similarity, naturalness,
robustness, and intelligibility firmly inspires DZVC as an
up-to-date strategy towards scalable and high-quality
voice conversion applications. Figure 7 offers a visual
overview of comparative performance in each dimension
in the various systems, which suggests clearly the
superior balance that DZVC has obtained in all significant
performance aspects Table 1.
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Table 1. Comparative Evaluation of Voice Conversion Models on VCTK and LibriTTS Datasets

Robust
Speaker
Speaker MOS Accuracy (10 | Robust MOS Inference Model Size
Model Accuracy (%) | (Naturalness) WER (%) dB) (10 dB) Time (s) (MB)
AutoVC 78.5 3.75 9.5 72.3 3.12 0.18 35
DiffvC 82.1 4.10 8.2 78.0 3.89 1.04 67
DzvC 89.7 4.46 7.2 86.4 4.21 1.38 82
CONCLUSION International Conference on Acoustics, Speech and Signal

We introduced in this paper a novel and scalable
Zero-Shot Voice Conversion (VC) framework that
synergistically exploits the generative potential of
Denoising Diffusion Probabilistic Models (DDPM) together
with the generalization potential of cross-speaker
embeddings. In contrast to prior voice conversion
approaches requiring parallel corpora or retraining to
new speakers, our new system successfully decouples
the linguistic content and speaker identity and achieves
high-fidelity voice conversion of target speakers never
seen before based on only short reference utterances.
Through the use of a pretrained self-supervised content
encoder and a contrastively trained speaker encoder,
the model is able to learn to capture phoneme-level
linguistic information, and speaker-level robust
embeddings respectively which are both subsequently
used to condition a diffusion-based generative decoder
that operates jointly. Such extensive evaluation on
benchmark corpora like VCTK and LibriTTS reveal that
our system can beat the strong baselines, including
AutoVC and DiffVC on metrics like speaker similarity,
naturalness, content preservation, and invariance by
15.8%, 2.8%, 11.7%, respectively, with the MOS of 4.46,
speaker verification accuracy of 89.7%, and WER lower by
nearly 25 times points across all benchmark corpora. The
model also performs under noisy reference conditions,
thus, is highly robust and virtually viable. Although
the use of computation latency may be considered a
constraint since the diffusion process is iterative, we
envision that in the future such constraints might be
lifted by using fast sampling methods and knowledges
distillation. All in all, proposed DZVC framework is
an important milestone in high-fidelity, zero-shot and
data-efficient voice conversion that can be applied to a
great extent to personalized TTS systems, multilingual
dubbing, voice anonymization, and accessibility
technologies.
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