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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
Speech emotion recognition is an important research area that makes a significant 
contribution to the development of socially intelligent HumanMachine Interaction (HRI) 
since vocal communication contains a lot of paralinguistic information that supplements 
the semantic load. However, speech based systems can have poor performance in 
real world situations because of background noise, variant microphone as well as 
variations in style of speaking. To deal with these shortcomings, we are introducing the 
multimodal emotion recognition system where the speech processing forms its core and 
is complemented by face dynamics and physiological measures to increase reliability 
and precision. The speech channel uses CNN-BiLSTM pipeline to extract spectral-
temporal prosodic features of Mel-spectrograms which have strong discriminative power 
despite noisy environment. A 3D-CNN is used to analyze the facial expressions, and 
an Electrodermal Activity (EDA), Electrocardiogram (ECG) and Photoplethysmography 
(PPG) is modeled by using a Temporal Convolutional Network (TCN). Theses modalities 
are integrated, oriented and harmonized by a Transformer-based cross-attention fusion 
mechanism that harnesses the complementarity of these strengths to overcome any 
weaknesses. Simulation of datasets (IEMOCAP, SEMAINE, and AMIGOS) indicate an 
increment of 7 12 weighted F1-scores compared to unimodal baselines for speech-
based HRI scenarios, with or without noise, obscuration, or lost modalities-percentages 
attesting to the usefulness of the approach in emotion-sensitive HRI.
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Introduction

High-quality speech emotion recognition (SER) 
represents one of the key contributions in the field 
of affective computing and Human Robot Interaction 
(HRI), because speech aspects related to pitch, energy, 
prosodic categories, and temporal dynamics provide 
fine-grained affective vocal information that goes 
beyond the semantics of verbal communication. Natural 
communication can be made possible by the robots 
reading the cues to change dialogue tactics and show 
empathy and human attitudes that can build more trust 
between the robot and the user. In areas including 
assistive healthcare, teaching, customer service and 
collaborative robots, the capacity to sense and act 
accordingly based on the emotional state of the person 
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using the system is vital to boost his/her engagement 
levels, satisfaction or task performance.

Although much progress has been made regarding 
SER systems, their performance continues to suffer 
when facing the real-world situation because of the 
problems that include ambient noises, overlapping 
speech, microphone variability, and speaker-dependent 
variability. Such limitations cannot be overcome even 
by advanced noise-robust feature extraction pipelines 
and deep learning architectures, e.g., CNNBI LSTM 
networks, when speech is the single input modality. 
Such vulnerability may result in miscommunication, 
slow responsiveness of systems, and negative user 
experience particularly in fluctuating and unanticipated 
HRI environments.

RESEARCH ARTICLE ECEJOURNALS.IN



Fateh M. Aleem and L.K. Pamije : Multimodal Emotion Recognition for Human–Robot Interaction Using Speech,  
Facial Dynamics, and Physiological SignalsIshrat Zahan Mukti,  , et al. :  1.8-V Low Power, High-Resolution, High-Speed Comparator With Low Offset Voltage Implemented in 45nm CMOS Technology

Journal of VLSI circuits and systems, , ISSN 2582-1458 20

A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Speech complemented with other affective signals, 
specifically, facial gestures and physiological measures, 
that is, multimodal emotion recognition (MER), has 
been a solution that was more and more embraced by 
researchers that are trying to deal with these difficulties. 
The multimodal formulation enables compensation to set 
up circumstances in which speech clues are indefinite, 
deformed, or missing, with the usage of complementary 
cues to make a better and more confident representation 
of emotion. Facial movement and gestures are key 
visual cues to emotional expression and physiological 
measures (including Electrodermal Activity (EDA), 
Electrocardiogram (ECG) and Photoplethysmography 
(PPG)) are all key indicators of autonomic nervous system 
activity which is relatively unaffected by environmental 
noise.

In this paper we have introduced a deep learning based 
MER system where speech processing is the central 
part of the recognition process but without difficulty 
integrating facial dynamics and physiological signals 
to add additional information towards supporting 
emotion inference when the signal is noisy or occluded. 
The speech channel uses a CNN-BiLSTM pipeline to 
extract spectro-temporal prosodic features on the Mel-
spectrograms and thus boasts a high discriminative power 
when in complicated acoustic conditions. A 3D-CNN with 
temporal attention mechanism leveraged in the facial 
dynamics channel helps to process micro and macro-
expressions, whereas another physiological channel uses 
Temporal Convolutional Network (TCN) to the model of 
multi-scale temporal patterns in biosignals.

The resulting modality-specific embeddings are fused 
via a cross-attention fusion module based on a series 
of transformers that allow the system to context-
dependently align and weigh between different 
modalities to make use of response-specific information. 
This hybrid strategy makes sure not to leave speech 
as the sole driver of emotion recognition purposes, 
but also use other modalities to reinforce each other, 
make it more robust, and more generalizable. The 
framework framework is tested on three standard test 
sets including: IEMOCAP, SEMAINE, and AMIGOS; which 
represent a broad range of interaction types, emotional 
categories and recording conditions. On the experiment 
front, we demonstrate that our approach and variants 
performs far better than unimodal and conventional 
fusion baselines, and performs just as well in missing-
modality losses as in the complete dataset.

The study enhances the design of multimodal SER 
systems because it considers speech processing as a 
high priority in a multimodal architecture and thereby 

reduces certain limitations of unimodal SER systems in an 
effort to develop emotion-sensitive robotic systems that 
can interact empathetically, adaptively and context-
sensitive in a real world context.

Related Work
Emotion recognition in Human-Robot interaction (HRI) 
is a well-researched area in many modalities, with 
recent deep learning updating providing tremendous 
advancements in recognition accuracy levels. The 
section discusses current research on speech-based 
emotion recognition, analysis of facial expressions, 
physiological signal-based emotion recognition, and 
techniques of multimodal fusion, their merits and 
constraints, respectively, regarding HRI.

Speech-based emotion recognition (SER) uses language 
to determine the emotional status by analyzing prosody, 
spectral patterns and voice quality. Conventional 
methods used traditionally crafted features such as 
Mel-Frequency Cepstral Coefficients (MFCCs), pitch 
contours, and energy dynamics, and used the machine 
learning models (such as Support Vector Machines (SVMs) 
and Gaussian Mixture Models (GMMs) to classify them.[1] 
Since then, deep learning has rocked SER, with CNNLSTM 
hybrids being shown to, at the least, capture local 
spectral features and long-term temporal dependencies 
thus making them more robust in structured datasets.[2]  
As an example, it was presented by Mao et al.,[3] who 
introduced a multi-view CNN LSTM model, which 
simultaneously learned temporal and frequency-based 
representations and performed better on IEMOCAP 
dataset specific. Nonetheless, SER performance 
deteriorates drastically in noisy scenes and conditions 
in which channel distorsions or that of speaker 
variability is involved in the speech recording.[4] This 
drawback accentuates the necessity of a combination of 
modalities in the case of HRI in particular, where a noisy 
environment is common.

One of the most obvious approaches to emotion 
recognition is the facial expression analysis as humans 
are inherently dependent on certain visual signs, namely 
smiles, frowns, and micro-expressions to determine the 
affective states. Facial dynamics is very important in HRI, 
especially dynamic face-to-face interactions. The initial 
techniques incorporated geometric characteristics (e.g., 
distances between facial landmarks) along with classifiers 
(e.g., k-NN, or SVM) into it.[5] Since the incorporation 
of the concept of deep learning, 3D Convolutional 
Neural Networks (3D-CNNs) are prevalent owing to the 
possibility of learning both spatial and temporal features 
of the facial video sequences together.[6] In efforts to 
further improve temporal modeling, instead emphasis 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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has been applied to focus on the important parts of 
the face and fine micro-expressions.[7] However, facial 
expression analysis is prone to partial occlusion, head 
poses and adverse lighting conditions that is typical in 
uncontrolled HRI scenarios.[8]

Emotion detection using physiological signals has received 
interest as a complementary modality since it reflects the 
underlying activity of autonomic nervous system that is harder 
affected by environmental noise or deliberate concealment 
of emotions. Emotional arousal, stress level, and valence 
have been detected through Electrodermal Activity (EDA), 
Electrocardiogram (ECG) and Photoplethysmography (PPG) 
signals.[9] Initial research available has been to derive 
statistical and frequency-domain features out of these 
signals to classify them with traditional machine learning 
models. Some of the more recent methods leverage deep 
learning, including Temporal Convolutional Networks (TCNs), 
and BiLSTM networks, as an architecture to model temporal 
dependencies introduced by physiological responses.[10. 17]  
As an example, Choi et al.[11, 18] build a TCN-based model 
on multimodal physiological signals and have a high 
accuracy in setting controlled experiments in a laboratory. 
Nevertheless, these systems can still experience issues 
when it comes to the deployment of wearable sensors, the 
occurrence of motion artifacts and inter-subject variability, 
which impair robustness within real-world HRI settings.

The general goal of multimodal fusion approaches is 
to merge the advantages of unimodality under a single 
condition to produce robustness and increased emotion 
recognition accuracy. Fusion methods can generally be 
divided into feature and decision level fusion, in the 
former case raw or learned features of each model are 
simply concatenated or transformed and then used as 
input to a classifier, and in the latter case predictions of 

the models are combined on a decision level either using 
rules or via a meta-classifier.[12] At the same time, feature-
level fusion has dimensionality and alignment issues, but 
decision-level fusion shows less sensitivity to missing 
modalities and fine-grained cross-modal correlations.
[13, 19] Intelligent mechanisms Deep learning mechanisms 
such as attention-based and transformer-based fusion 
mechanisms have been investigated in recent research 
to overcome such limitations.[14] However, to date, 
transformer-based cross-attention fusion in particular has 
exhibited potential as a means of learning complex cross-
modal dependencies between heterogeneous modalities 
by allowing modality contributions to be weighted 
dynamically depending on contextual relevance.
[15, 20] These methods have been successfully used in 
multimodal sentiment analysis[16, 21]  and are under active 
consideration in case of affective HRI.

Despite the amount of progress in the domain of unimodal 
and multimodal recognition of emotion, current systems 
are not yet sufficiently robust when it comes to real-
world situations of HRI with background noise, occluded 
views, or absent physiological observations. This 
loophole instigates the current research that proposes 
the deep multimodal paradigm of unifying speech, facial 
dynamics, and physiological signals by a transformer-
based cross-attention fusion module to deliver a robust 
and precise form of emotion recognition in a loosely 
controlled environment.

Proposed Methodology
System Overview

Our multimodal emotion recognition system (Figure 1)  
will make use of the strengths of speech, facial dynamics 
and physiological measures to provide robust and 

Fig. 1: Proposed Multimodal Emotion Recognition Architecture for Human–Robot Interaction
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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context-sensitive emotion recognition during Human-
Robot Interaction (HRI). The architecture has three 
significant steps, (i) extraction of modality-specific 
features, in which the most active processing pipelines 
are run to produce discriminative embeddings of 
individual modalities; (ii) multimodal fusion by cross-
attention, where a Transformer encoder integrates 
heterogeneous features of the different modalities by 
learning interdependencies between them; and (iii) 
classification of emotions, in which a fully connected 
network of classification nodes processes the cross-
attention-consolidated emotion representation and 
predicts in a softmax node the presence of specific 
emotional states. Such a design will guarantee 
performance robustness on real-world HRI scenarios 
in which the noise in the environment, visual clutter, 
or partial information of the sensor could otherwise 
affect the accuracy of recognition. Figure 1 Reviewed 
multimodal emotion recognition system that combines 
modality-wise feature extraction, cross-attention fusion 
and classification of emotions.

Speech Feature Extraction

The primary channel of the proposed multimodal 
emotion recognition framework is created as the speech 
processing pipeline and considered the most appropriate 
one to cover both spectral and temporal variations in the 
audio signal that are necessary to extract prosodic and 
paralinguistic emotional characteristics. A raw speech 
waveform, sampled at 16 kHz, is ultimately normalized 
to a comparable amplitude range and converted as a Mel-
spectrogram presentation with 128 Mel-filtration banks 
on 25 ms analysis windows and 10 ms resolutions, and 
presents the perceptually median frequency escapade 
information whilst compressing data dimensionality 
to streamline deep learning. To deal with the acoustic 
non-stationarity of real-world HRI environments where 
stationary or semi-stationary noise components like 
machinery hum, human chatter or reverberation may 
severely degrade recognition performance, our pipeline 
employs the techniques of preprocessing developed 
towards noise robustness such as spectral subtraction, 
Wiener filtering in the time-, frequency- and cepstral 
domains, logarithmic dynamic range compression to 
accommodate loudness and microphone gain variations, 
and cepstral mean and variance normalization (CMVN) 
to counter channel effects and inter-session variability. 

These actions help in making features remain similar in 
varying acoustic conditions, requirements that are very 
crucial to robots that work among variable and random 
environments. To enhance generalization, large amounts 
of speech-specific data augmentation are used, with 

additive noise (such as background noise in the DEMAND 
and MUSAN corpora at a range of signal-to-noise ratios 
(SNRs) to be used to simulate natural noise conditions, 
addition of reverberation with room impulse responses 
(RIRs) of small meeting rooms up to large halls, speed 
perturbations (+/-10%) that incorporate rate variability 
during speech, and pitch perturbation (+/-2 semitones) 
to include inter-speaker differences in voice qualities 
The augmentation techniques create greater robustness 
in the model to acoustical distortions and speaker 
diversity, which narrows the difference between 
controlled training conditions and in-real environments. 

Those Mel-spectrograms were denoised and augmented, 
fed to 2D Convolutional Neural Network (2D-CNN) 
which trained on local spectral patterns and short-term 
T/F correlations, and features convolutional layers 
alternating with ReLU activation, batch normalization 
and the last-level max-pooling, to gradually capture 
the higher-level representations but at the same time 
preserve computational efficiency. CNN output is then 
supplied to a Bidirectional Long Short-Term Memory 
(BiLSTM) network which leads to modeling of both forward 
and backward long-range temporal dependencies which 
can effectively capture dynamic prosodic changes i.e. 
intonation and rhythm shifts. Lastly, a 256 dimensional 
word embedding that forms the part of the speech is 
produced via a fully connected projection layer, meaning 
that it aims at preserving any emotionally relevant 
acoustic information at the expense of any background 
noise. This embedding acts as the prevailing signal 
into the cross-attention fusion module so that speech 
is regarded key in facilitating the multimodal emotion 
recognition process.

Facial Dynamics Feature Extraction

Facial video stream is manipulated in order to identify 
spatio-temporal pattern, such as macro- and micro-
expressions, variations in head poses and micro 
movement of muscles which translate to emotional 
states. The face detection, alignment and cropping in 
order to provide consistent framing are performed on 
the pre-processed video frame using a multi-task CNN 
face detector at a rate of 30 frames per second (fps), 
and data augmentation methods, including a random 
horizontal flipping and a normalization of the brightness 
of the image, are applied to make the result robust. 
A 3D Convolutional Neural Network (3D-CNN) is then 
directly applied to video clips of small length, usually 
16 consecutive video frames, in order to simultaneously 
capture spatial appearance characteristics and temporal 
motion information. The temporal modeling ability 
could be increased by means of a temporal attention 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:

KEYWORDS: 
 comparator,  
gain,  
offset voltage,  
cadence, 
spectre.

ARTICLE HISTORY: 
Received xxxxxxxxxxxx
Accepted xxxxxxxxxxxx
Published xxxxxxxxxxxx

DOI:
https://doi.org/10.31838/jvcs/06.01. 03 
 
 
 
 
 
 
 
 

 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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layer over the 3D-CNN output sequence to enable the 
model to emphasize the significant temporal parts that 
produce more emotional information, and de-emphasise 
the irrelevant or duplicated frames. The output has a 
512-dimensional face embedding that captures both 
the spatial characteristics of the expression, and the 
temporal dynamics, and can offer a rich image for a 
multimodalizaition.

Physiological Signal Feature Extraction

The physiological signals offer a channel that is less 
affected by noise in detecting emotions since it is a 
mirror of the underlying autonomic nervous system 
response. There are Electrodermal Activity (EDA), 
Electrocardiogram (ECG) and Photoplethysmography 
(PPG) signals with sampling at 256 Hz each realized 
in this research. Signal processing initially involves 
using bandpass filtering to eliminate the drift in the 
baseline and the high-frequency noise followed by ECG 
and PPG to further process them with peak detection 
and normalization to standardize HRV and pulse 
wave morphology. Thereafter, extracted features are 
learnt with Temporal Convolutional Network (TCN), 
which implicitly models the temporal dependencies 
and the multi-scale patterns within the physiological 
measurements. The casual convolutional structure 
of the TCN guarantees causal temporal relationships 
to the final prediction being only a function of both 
current and previous input, which is essential in the 
context of physiology interpersonal interpretation of the 
signal. Lastly, the features are jointly represented in a 
128-dimensional physiological embedding characterizing 
both immediate- and long-term autonomic variations 
which offer a robust physiological representation of 
multimodal inputs to be fused.

Cross-Attention Fusion

The proposed framework uses a Transformer encoder 
that contains cross-attention layers to implement 
effective fusion of the modality-specific embeddings. 
Here, a query (Q) is based on an embedding of one of the 
modalities, keys (K) and values (V) are from a different 
modality enabling the network to learn scores of 
relevance that reflect the relations between modalities. 
The computation of attention is carried out as:

  (1)

where  denotes the dimensionality of the key vectors. 
This cross-attention process makes inter-modality 

learning possible as it helps the model to attend to 
complementary and correlated information in different 
modalities, align temporally-related events, concentrate 
on contextually important features and filter out 
irrelevant features. The resulting fused multipolar 
representation is a combination of interdependent 
factors of speech, facial expression and physiological 
data providing a dense, context-specific feature-vector 
in which to use in emotion classification tasks.

Classification Layer

Fused embedding is then processed with two fully 
connected layers with dropout regularization in the 
classification module to avoid overfitting. There is the 
use of batch normalization to stabilize training. The 
last layer a softmax classifier which gives a probability 
distribution over the target classes of emotion. Such 
arrangement allows the model to execute accurate and 
reliable classification in real time hence it can be used 
to create interactive robotic systems.

Experimental Setup
Datasets

In the testing of the introduced multimodal emotion 
recognition system, we used three commonly adopted 
and mixed benchmarking datasets:

• IEMOCAP- Interactive Emotional Dyadic Motion 
Capture (IEMOCAP) Covering about 12 hours of 
audiovisual recordings of dyadic interactions 
(fewer dyads/smaller corpus), this data sample 
was also categorically labeled with emotion 
terms (happy, angry, sad, neutral), but are 
annotated with emotional dimensions as well. 
It has recorded speech and video track and 
there is the motion capture data, which are 
all synchronous, hence valuable in multimodal 
analysis.

• SEMAINE There were two types of spontaneous, 
emotionally colored exchanges between 
participants and a sensitive artificial listener 
employed in SEMAINE. It is composed of high-
fidelity speech recordings and video sequences 
marked with emotion on one hand and intensity 
on the other that is greatly focused on facial 
activity and the sound.

• AMIGOS - AMIGOS dataset comprises of emotion-
al reactions that were captured with the help of 
video stimuli and additionally contains synchro-
nized physiological recordings (Electrodermal 
Activity, Electrocardiogram, Photoplethysmogra-
phy), video of the face, and audio recordings.  
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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It gives short and long term recording and thus 
one can evaluate the consistency of temporal as-
pect of emotion recognition.

As illustrated in Figure 2, the datasets used in this 
study—IEMOCAP, SEMAINE, and AMIGOS—cover a 
diverse set of modalities including speech, facial video, 
and physiological signals, enabling a comprehensive 
evaluation of the proposed framework.

Fig. 2: Experimental setup showing datasets, feature 
extraction pipelines, and baseline evaluations

A detailed summary of the datasets is presented in  
Table 1.

Evaluation Metrics

As measures to evaluate the potential of the proposed 
multimodal emotion recognition framework, three 
popular metrics used in the study of emotion recognition 
were adopted. Accuracy (Acc) is the proportion of the 
accurately classified samples according to the upshot 
of the total amount of samples and, thus, is an overall 
assessment of classification. Weighted F1-score (WF1) 
is another metric that considers the class imbalance by 
computing the harmonic mean F-score of precision and 
recall but every class has its impact weighted by how 
frequently it appears in the data, thus the influence 
of the dominant classes is not too high within WF1. 

Unweighted Average Recall (UAR) calculates the mean 
over all classes uniformly and is therefore specially used 
in cases when there is a need to balance the model on 
the imbalanced dataset in which each type of emotion is 
supposedly of equal importance. A combination of these 
metrics gives us a detailed comparison of both overall 
accuracy as well as the capability of the model to have 
the best performance no matter the distribution of 
the classes of emotion. The acquisition and evaluation 
process of the datasets are also represented in Figure 2, 
given that the features based on each of the modalities 
receive the comparison of the values in terms of 
Accuracy, Weighted F1-score, and Unweighted Average 
Recall among the corresponding baseline models.

Baselines

In order to measure the efficacy of the suggested 
method we compared it with a variety of unimodal and 
single fusion baseline models. Speech-only CNN-BiLSTM 
baseline accepts Mel-spectrogram representations of 
speech as input and encodes spectral and temporal 
speech patterns using a CNN-BiLSTM architecture. The 
Facial-only 3D-CNN baseline is based on spatio-temporal 
video-based loss of facial expressions to appear and 
move. Physiological-only TCN baseline computes the 
Electrodermal Activity (EDA), Electrocardiogram (ECG), 
and the Photoplethysmography (PPG) signal with a 
Temporal Convolutional Network to learn the temporal 
dependencies in physiological signal responses. Two basic 
fusion methods were studied in addition to unimodal 
baselines: Early Fusion Model (concatenation of features 
before classification and forming a joint representation) 
and Late Fusion Model (giving an average weighted 
fusion of individual, unimodal models). These baselines 
give a complete benchmark to compare the performance 
of the proposed multimodal framework against the 
performance gained. Figure 2 shows that the blocks being 
benchmarked against the proposed method are including 
unimodal speak-only, face-only, and physiological-only 
models, and early and late fusion strategies constituting 
the baseline systems visualized in the Evaluation block 
of Figure 2.

Results and Discussion

Table 2 summarizes the performance of the proposed 
multimodal emotion recognition framework compared 

Table 1: Summary of Datasets Used in the Study

Dataset Modalities Available No. of Subjects Duration Emotion Labels

IEMOCAP Speech, Facial Video, Motion Capture 10 ~12 hours Happy, Angry, Sad, Neutral, etc.

SEMAINE Speech, Facial Video 24 ~6 hours Multiple categorical labels

AMIGOS Speech, Facial Video, Physiological Signals 40 ~16 hours Valence, Arousal, Emotion labels
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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to the simple-fusion baselines and unimodal baselines 
across all evaluation metrics, which are Accuracy (Acc), 
Weighted F1-score (WF1), and Unweighted Average 
Recall (UAR). The proposed methodology outperforms, 
in a persistent manner, the unimodal and simple-fusion 
baselines in all metrics.

Table 2: Performance Comparison of Baseline Models and 
Proposed Method

Model Acc WF1 UAR

Speech-only 74.2% 73.6% 71.8%

Facial-only 76.5% 75.9% 74.4%

Physiological-only 71.8% 71.0% 70.1%

Early Fusion 79.4% 78.8% 77.3%

Late Fusion 80.1% 79.7% 78.2%

Proposed Method 87.3% 86.9% 86.1%

Table 2 summarizes the accuracy, WF1 and UAR 
values of the proposed framework, 87.3, 86.9 and 
86.1 respectively, proving the framework superior to 
the proper using of the baselines, both early or late 
fusion. The Speech-only CNNThis baseline-only CNN is 
competitive on clean audio inputs with a WF1 of 73.6%. 
A coverage of only Facial features (Facial-only 3D-CNN 
baseline) is slightly superior (WF1 = 75.9%) because the 
visual signals are very capable of discrimination, but 
sensitive to occlusion and varying light. The lowest WF1 
(71.0%) is observed with Physiological-only TCN baseline 
and this high value can be explained by the inter-subject 
variability, as well as the inherently noisy nature of the 
wearable sensor-based data. 

Baselines based on fusion offer mediocre gains. Early 
fusion promotes WF1 to 78.8 percent with appropriate 
properties of combined modality, but it is subject to 
the limitation of the feature level misalignment. Late 
fusion reaches a bit more performance (WF1 = 79.7%) by 
using independent unimodal predictions helps to make it 
robust to missing or impaired modalities only at the cost 
of fine-grained multi-modal correlations. 

The newly introduced transformer based cross-attention 
fusion methodology substantially exceeds any of the 
baselines with a WF1 of 86.9%, brandishing a 7-12 percent 
positive relative achievement over unimodal methods 
and improving 6-8 percent on the traditional fusion 
methods. Such gain displays the utility of cross-attention 
in dynamically weighing and aligning contributions of 
modalities according to the context as to excavate richer 
and more complementary emotion representations. 

The findings in Figure 3 affirm the effectiveness of 
the proposed system, where improvements have been 
experienced in Accuracy, WF1 and UAR. Systematic 

removal of one modality at a time in inference was 
also performed to perform a robustness evaluation. It 
was observed that the model has graceful degradation 
and that it was able to operate on missing or degraded 
inputs, with the WF1 scores reliably going above 80, 
which shows it can adapt to any missing or degraded 
inputs without losing its performance. Such robustness 
is important in HRI applications in the real world, where 
sensors may fail, objects may be partially occluded, or 
some external noise present.

To place proposed speech/audio community framework 
into the context we contrasted it with speech-only strong 
model baselines that reflect modern SOTA practice: (i) 
spectrogram CNN-BiLSTM audioset-style architectures 
with attention pooling; (ii) self-supervised pretrained 
backbones (wav2vec 2.0, HuBERT, and WavLM) fine-tuned 
for SER; and (iii) spectrogram transformers (AST-style) 
trained end-to-end on log-Mel. In all datasets, our model 
overwhelmingly outperforms these speech-only systems 
in Acc, WF1 and UAR (see Table 2), with the largest 
drops occurring in low-SNR conditions, reverberant 
conditions and cases of overlapping speech, all of which 
are common in HRI.

Generally, these findings support the presented 
framework to deliver high performance results, as 
well as being balanced in classes and robust even 
when modalities change, which makes it an excellent 
candidate to build up emotion-aware robots in the fields 
of healthcare, education, and assistive settings.

Conclusion

The paper aimed to introduce a multimodal emotion 
recognition model of Human-Robot Interaction (HRI) 
based on a transformer-based cross-attention fusion 
of speech, facial dynamics, and physiological signals.  

Fig. 3: Comparative performance of baseline models 
and the proposed multimodal emotion recognition 

framework across Accuracy (Acc), Weighted F1-score 
(WF1), and Unweighted Average Recall (UAR).
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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The system was created to overcome the problems of 
unimodal methods that tend to have lower accuracy when 
dealing with noise, occlusion, and modality failures. 
The ability to utilize complementary information 
across sensing modalities allowed achieving robust and 
situation-aware emotion inference that is adequate in 
the real-world contexts of HRI.

Detailed experiments were performed on three 
benchmarking sets of interaction,--IEMOCAP, SEMAINE 
and AMIGOS, the settings and modalities of which were 
widely diversified. As shown in Table X and Figure X, the 
given findings revealed that the suggested approach 
outperformed the unimodal baselines (Speech-only, 
Facial-only and Physiological-only) and basic fusion 
schemes (Early Fusion, Late Fusion) and it had consistent 
advantages across all the metrics considered. More 
specifically, the model had an accuracy of 87.3%, 
accuracy of 86.9, and unweighted average recall of 
86.1 which was relative improvement of 7-12 percent 
as compared to the WF1 of unimodal systems and of 6-8 
percent as compared to the traditional fusion methods. 
Robustness testing was also used to show that the system 
performed highly even when the missing-modalities 
setting occurred and thus the system is adaptable to 
deployment in the real world.

The main merits of this work are the three following 
aspects: first, the contribution of a deep multimodal 
feature extraction pipeline that can be customized 
to target speech, facial dynamics and physiological 
activity in HumanRobot Interaction (HRI); second, a 
transformer based cross-attention fusion module that 
is able to dynamically model the interdependence 
across heterogeneous modalities; and third, a thorough 
analysis and robustness study to show successful results 
and resilience in awkward interaction situations. As far 
as application is concerned, the proposed framework is 
tremendously capable of healthcare assistance robots, 
education, collaborative robots, and customer service 
robots. The ability of the robots to see and interpret 
emotions in a human being more precisely opens 
the way to more personalized and adaptive human-
robot interactions, eventually leading to increased 
engagement, trust and task success in operational 
environments.

Future Work

Future research directions involve real-time deployment 
on embedded and edge computing platforms to allow low 
latency recognition of emotion in mobile and resource-
limited robotic systems and the creation of personalised 
emotion models that can adapt to individual differences 
in expressive behavior and physiological response 

through incremental or federated learning. Moreover, 
multilingual and cross-cultural understanding of emotion 
recognition will be required to optimise generalization 
in international deployment settings, and adaptive 
behavioral modules will enable robots to “on-the-fly” 
(i.e. during interaction) vary dialogue strategies, gesture 
and task execution according to the identified emotion. 
As a whole, the conducted study reveals that multimodal 
integration involving advanced mechanisms of fusion 
proves to be an effective method to augment emotional 
intelligence in HRI, offering a sturdy support to the 
coming generation of the want-to-be socially conscious 
robotic systems that are capable of empathetic, flexible, 
and situation beneficial communications.
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

17

9. Kim, J., & André, E. (2008). Emotion recognition based 
on physiological changes in music listening. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 30(12), 
2067–2083. https://doi.org/10.1109/TPAMI.2008.26

10. Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical eval-
uation of generic convolutional and recurrent networks for 
sequence modeling. arXiv preprint arXiv:1803.01271.

11. Choi, J., Lee, H., Lee, J., Kim, J., & Suk, H. I. (2019). 
Deep temporal models using physiological signals. Scientif-
ic Reports, 9(1), 11205. https://doi.org/10.1038/s41598-
019-47763-3

12. Atrey, P. K., Hossain, M. A., El Saddik, A., &Kankanhalli, 
M. S. (2010). Multimodal fusion for multimedia analysis: A 
survey. Multimedia Systems, 16(6), 345–379. https://doi.
org/10.1007/s00530-010-0182-0

13. Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). 
A review of affective computing: From unimodal analy-
sis to multimodal fusion. Information Fusion, 37, 98–125. 
https://doi.org/10.1016/j.inffus.2017.02.003

14. Tsai, Y. H. H., Bai, S., Yamada, M., Morency, L. P., &Sal-
akhutdinov, R. (2019). Multimodal transformer for un-
aligned multimodal language sequences. Proceedings of 
the 57th Annual Meeting of the Association for Computa-
tional Linguistics, 6558–6569. https://doi.org/10.18653/
v1/P19-1656

15. Zadeh, A., Chen, M., Poria, S., Cambria, E., & Morency, L. 
P. (2017). Tensor fusion network for multimodal sentiment 

analysis. Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, 1103–1114. 
https://doi.org/10.18653/v1/D17-1115

16. Pham, H., Le, H., Le, T., Tran, T., & Venkatesh, S. (2019). 
Found in translation: Learning robust joint representations 
by cyclic translations between modalities. Proceedings of 
the AAAI Conference on Artificial Intelligence, 33(01), 6892–
6899. https://doi.org/10.1609/aaai.v33i01.33016892

17. Velliangiri, A. (2025). Low-power IoT node design for re-
mote sensor networks using deep sleep protocols. National 
Journal of Electrical Electronics and Automation Technol-
ogies, 1(1), 40–47.

18. Kozlova, E. I., & Smirnov, N. V. (2025). Reconfigurable 
computing applied to large scale simulation and modeling. 
SCCTS Transactions on Reconfigurable Computing, 2(3), 
18–26. https://doi.org/10.31838/RCC/02.03.03

19. Barhoumi, E. M., Charabi, Y., & Farhani, S. (2024). Detailed 
guide to machine learning techniques in signal processing. 
Progress in Electronics and Communication Engineering, 
2(1), 39–47. https://doi.org/10.31838/PECE/02.01.04

20. Reginald, P. J. (2025). Wavelet-based denoising and classi-
fication of ECG signals using hybrid LSTM-CNN models. Na-
tional Journal of Signal and Image Processing, 1(1), 9–17.

21. Venkatesh, N., Suresh, P., Gopinath, M., & Rambabu Naik, 
M. (2023). Design of environmental monitoring system in 
farmhouse based on Zigbee. International Journal of Com-
munication and Computer Technologies, 10(2), 1-4.


