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Speech emotion recognition is an important research area that makes a significant
contribution to the development of socially intelligent HumanMachine Interaction (HRI)
since vocal communication contains a lot of paralinguistic information that supplements
the semantic load. However, speech based systems can have poor performance in
real world situations because of background noise, variant microphone as well as
variations in style of speaking. To deal with these shortcomings, we are introducing the
multimodal emotion recognition system where the speech processing forms its core and
is complemented by face dynamics and physiological measures to increase reliability
and precision. The speech channel uses CNN-BiLSTM pipeline to extract spectral-
temporal prosodic features of Mel-spectrograms which have strong discriminative power
despite noisy environment. A 3D-CNN is used to analyze the facial expressions, and
an Electrodermal Activity (EDA), Electrocardiogram (ECG) and Photoplethysmography
(PPG) is modeled by using a Temporal Convolutional Network (TCN). Theses modalities
are integrated, oriented and harmonized by a Transformer-based cross-attention fusion
mechanism that harnesses the complementarity of these strengths to overcome any
weaknesses. Simulation of datasets (IEMOCAP, SEMAINE, and AMIGOS) indicate an
increment of 7 12 weighted F1-scores compared to unimodal baselines for speech-
based HRI scenarios, with or without noise, obscuration, or lost modalities-percentages
attesting to the usefulness of the approach in emotion-sensitive HRI.
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INTRODUCTION

High-quality speech emotion recognition (SER)
represents one of the key contributions in the field
of affective computing and Human Robot Interaction
(HRI), because speech aspects related to pitch, energy,
prosodic categories, and temporal dynamics provide
fine-grained affective vocal information that goes
beyond the semantics of verbal communication. Natural
communication can be made possible by the robots
reading the cues to change dialogue tactics and show
empathy and human attitudes that can build more trust
between the robot and the user. In areas including
assistive healthcare, teaching, customer service and
collaborative robots, the capacity to sense and act
accordingly based on the emotional state of the person

National Journal of Speech and Audio Processing | Jul - Sep 2025

Journal of Speech and Audio Processing, Vol. 1, No. 3, 2025 (pp. 9-17).

using the system is vital to boost his/her engagement
levels, satisfaction or task performance.

Although much progress has been made regarding
SER systems, their performance continues to suffer
when facing the real-world situation because of the
problems that include ambient noises, overlapping
speech, microphone variability, and speaker-dependent
variability. Such limitations cannot be overcome even
by advanced noise-robust feature extraction pipelines
and deep learning architectures, e.g., CNNBI LSTM
networks, when speech is the single input modality.
Such vulnerability may result in miscommunication,
slow responsiveness of systems, and negative user
experience particularly in fluctuating and unanticipated
HRI environments.
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Speech complemented with other affective signals,
specifically, facial gestures and physiological measures,
that is, multimodal emotion recognition (MER), has
been a solution that was more and more embraced by
researchers that are trying to deal with these difficulties.
The multimodal formulation enables compensation to set
up circumstances in which speech clues are indefinite,
deformed, or missing, with the usage of complementary
cues to make a better and more confident representation
of emotion. Facial movement and gestures are key
visual cues to emotional expression and physiological
measures (including Electrodermal Activity (EDA),
Electrocardiogram (ECG) and Photoplethysmography
(PPG)) are all key indicators of autonomic nervous system
activity which is relatively unaffected by environmental
noise.

In this paper we have introduced a deep learning based
MER system where speech processing is the central
part of the recognition process but without difficulty
integrating facial dynamics and physiological signals
to add additional information towards supporting
emotion inference when the signal is noisy or occluded.
The speech channel uses a CNN-BiLSTM pipeline to
extract spectro-temporal prosodic features on the Mel-
spectrograms and thus boasts a high discriminative power
when in complicated acoustic conditions. A 3D-CNN with
temporal attention mechanism leveraged in the facial
dynamics channel helps to process micro and macro-
expressions, whereas another physiological channel uses
Temporal Convolutional Network (TCN) to the model of
multi-scale temporal patterns in biosignals.

The resulting modality-specific embeddings are fused
via a cross-attention fusion module based on a series
of transformers that allow the system to context-
dependently align and weigh between different
modalities to make use of response-specific information.
This hybrid strategy makes sure not to leave speech
as the sole driver of emotion recognition purposes,
but also use other modalities to reinforce each other,
make it more robust, and more generalizable. The
framework framework is tested on three standard test
sets including: IEMOCAP, SEMAINE, and AMIGOS; which
represent a broad range of interaction types, emotional
categories and recording conditions. On the experiment
front, we demonstrate that our approach and variants
performs far better than unimodal and conventional
fusion baselines, and performs just as well in missing-
modality losses as in the complete dataset.

The study enhances the design of multimodal SER
systems because it considers speech processing as a
high priority in a multimodal architecture and thereby
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reduces certain limitations of unimodal SER systems in an
effort to develop emotion-sensitive robotic systems that
can interact empathetically, adaptively and context-
sensitive in a real world context.

RELATED WORK

Emotion recognition in Human-Robot interaction (HRI)
is a well-researched area in many modalities, with
recent deep learning updating providing tremendous
advancements in recognition accuracy levels. The
section discusses current research on speech-based
emotion recognition, analysis of facial expressions,
physiological signal-based emotion recognition, and
techniques of multimodal fusion, their merits and
constraints, respectively, regarding HRI.

Speech-based emotion recognition (SER) uses language
to determine the emotional status by analyzing prosody,
spectral patterns and voice quality. Conventional
methods used traditionally crafted features such as
Mel-Frequency Cepstral Coefficients (MFCCs), pitch
contours, and energy dynamics, and used the machine
learning models (such as Support Vector Machines (SVMs)
and Gaussian Mixture Models (GMMs) to classify them."
Since then, deep learning has rocked SER, with CNNLSTM
hybrids being shown to, at the least, capture local
spectral features and long-term temporal dependencies
thus making them more robust in structured datasets.?
As an example, it was presented by Mao et al.,?! who
introduced a multi-view CNN LSTM model, which
simultaneously learned temporal and frequency-based
representations and performed better on IEMOCAP
dataset specific. Nonetheless, SER performance
deteriorates drastically in noisy scenes and conditions
in which channel distorsions or that of speaker
variability is involved in the speech recording.” This
drawback accentuates the necessity of a combination of
modalities in the case of HRI in particular, where a noisy
environment is common.

One of the most obvious approaches to emotion
recognition is the facial expression analysis as humans
are inherently dependent on certain visual signs, namely
smiles, frowns, and micro-expressions to determine the
affective states. Facial dynamics is very important in HRI,
especially dynamic face-to-face interactions. The initial
techniques incorporated geometric characteristics (e.g.,
distances between facial landmarks) along with classifiers
(e.g., k-NN, or SVM) into it.[¥} Since the incorporation
of the concept of deep learning, 3D Convolutional
Neural Networks (3D-CNNs) are prevalent owing to the
possibility of learning both spatial and temporal features
of the facial video sequences together.[ In efforts to
further improve temporal modeling, instead emphasis
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has been applied to focus on the important parts of
the face and fine micro-expressions.”? However, facial
expression analysis is prone to partial occlusion, head
poses and adverse lighting conditions that is typical in
uncontrolled HRI scenarios.®

Emotion detection using physiological signals has received
interest as a complementary modality since it reflects the
underlying activity of autonomicnervoussystemthatisharder
affected by environmental noise or deliberate concealment
of emotions. Emotional arousal, stress level, and valence
have been detected through Electrodermal Activity (EDA),
Electrocardiogram (ECG) and Photoplethysmography (PPG)
signals.’? Initial research available has been to derive
statistical and frequency-domain features out of these
signals to classify them with traditional machine learning
models. Some of the more recent methods leverage deep
learning, including Temporal Convolutional Networks (TCNs),
and BiLSTM networks, as an architecture to model temporal
dependencies introduced by physiological responses.['o 171
As an example, Choi et al.['" "® build a TCN-based model
on multimodal physiological signals and have a high
accuracy in setting controlled experiments in a laboratory.
Nevertheless, these systems can still experience issues
when it comes to the deployment of wearable sensors, the
occurrence of motion artifacts and inter-subject variability,
which impair robustness within real-world HRI settings.

The general goal of multimodal fusion approaches is
to merge the advantages of unimodality under a single
condition to produce robustness and increased emotion
recognition accuracy. Fusion methods can generally be
divided into feature and decision level fusion, in the
former case raw or learned features of each model are
simply concatenated or transformed and then used as
input to a classifier, and in the latter case predictions of
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the models are combined on a decision level either using
rules or via a meta-classifier.['2 At the same time, feature-
level fusion has dimensionality and alignment issues, but
decision-level fusion shows less sensitivity to missing
modalities and fine-grained cross-modal correlations.
13, 11 |ntelligent mechanisms Deep learning mechanisms
such as attention-based and transformer-based fusion
mechanisms have been investigated in recent research
to overcome such limitations.['1 However, to date,
transformer-based cross-attention fusion in particular has
exhibited potential as a means of learning complex cross-
modal dependencies between heterogeneous modalities
by allowing modality contributions to be weighted
dynamically depending on contextual relevance.
5. 201 These methods have been successfully used in
multimodal sentiment analysis!'® 2" and are under active
consideration in case of affective HRI.

Despite the amount of progress in the domain of unimodal
and multimodal recognition of emotion, current systems
are not yet sufficiently robust when it comes to real-
world situations of HRI with background noise, occluded
views, or absent physiological observations. This
loophole instigates the current research that proposes
the deep multimodal paradigm of unifying speech, facial
dynamics, and physiological signals by a transformer-
based cross-attention fusion module to deliver a robust
and precise form of emotion recognition in a loosely
controlled environment.

PROPOSED METHODOLOGY
System Overview
Our multimodal emotion recognition system (Figure 1)

will make use of the strengths of speech, facial dynamics
and physiological measures to provide robust and
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Fig. 1: Proposed Multimodal Emotion Recognition Architecture for Human-Robot Interaction
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context-sensitive emotion recognition during Human-
Robot Interaction (HRI). The architecture has three
significant steps, (i) extraction of modality-specific
features, in which the most active processing pipelines
are run to produce discriminative embeddings of
individual modalities; (ii) multimodal fusion by cross-
attention, where a Transformer encoder integrates
heterogeneous features of the different modalities by
learning interdependencies between them; and (iii)
classification of emotions, in which a fully connected
network of classification nodes processes the cross-
attention-consolidated emotion representation and
predicts in a softmax node the presence of specific
emotional states. Such a design will guarantee
performance robustness on real-world HRI scenarios
in which the noise in the environment, visual clutter,
or partial information of the sensor could otherwise
affect the accuracy of recognition. Figure 1 Reviewed
multimodal emotion recognition system that combines
modality-wise feature extraction, cross-attention fusion
and classification of emotions.

Speech Feature Extraction

The primary channel of the proposed multimodal
emotion recognition framework is created as the speech
processing pipeline and considered the most appropriate
one to cover both spectral and temporal variations in the
audio signal that are necessary to extract prosodic and
paralinguistic emotional characteristics. A raw speech
waveform, sampled at 16 kHz, is ultimately normalized
to a comparable amplitude range and converted as a Mel-
spectrogram presentation with 128 Mel-filtration banks
on 25 ms analysis windows and 10 ms resolutions, and
presents the perceptually median frequency escapade
information whilst compressing data dimensionality
to streamline deep learning. To deal with the acoustic
non-stationarity of real-world HRI environments where
stationary or semi-stationary noise components like
machinery hum, human chatter or reverberation may
severely degrade recognition performance, our pipeline
employs the techniques of preprocessing developed
towards noise robustness such as spectral subtraction,
Wiener filtering in the time-, frequency- and cepstral
domains, logarithmic dynamic range compression to
accommodate loudness and microphone gain variations,
and cepstral mean and variance normalization (CMVN)
to counter channel effects and inter-session variability.

These actions help in making features remain similar in
varying acoustic conditions, requirements that are very
crucial to robots that work among variable and random
environments. To enhance generalization, large amounts
of speech-specific data augmentation are used, with

12 —

additive noise (such as background noise in the DEMAND
and MUSAN corpora at a range of signal-to-noise ratios
(SNRs) to be used to simulate natural noise conditions,
addition of reverberation with room impulse responses
(RIRs) of small meeting rooms up to large halls, speed
perturbations (+/-10%) that incorporate rate variability
during speech, and pitch perturbation (+/-2 semitones)
to include inter-speaker differences in voice qualities
The augmentation techniques create greater robustness
in the model to acoustical distortions and speaker
diversity, which narrows the difference between
controlled training conditions and in-real environments.

Those Mel-spectrograms were denoised and augmented,
fed to 2D Convolutional Neural Network (2D-CNN)
which trained on local spectral patterns and short-term
T/F correlations, and features convolutional layers
alternating with RelLU activation, batch normalization
and the last-level max-pooling, to gradually capture
the higher-level representations but at the same time
preserve computational efficiency. CNN output is then
supplied to a Bidirectional Long Short-Term Memory
(BiLSTM) network which leads to modeling of both forward
and backward long-range temporal dependencies which
can effectively capture dynamic prosodic changes i.e.
intonation and rhythm shifts. Lastly, a 256 dimensional
word embedding that forms the part of the speech is
produced via a fully connected projection layer, meaning
that it aims at preserving any emotionally relevant
acoustic information at the expense of any background
noise. This embedding acts as the prevailing signal
into the cross-attention fusion module so that speech
is regarded key in facilitating the multimodal emotion
recognition process.

Facial Dynamics Feature Extraction

Facial video stream is manipulated in order to identify
spatio-temporal pattern, such as macro- and micro-
expressions, variations in head poses and micro
movement of muscles which translate to emotional
states. The face detection, alignment and cropping in
order to provide consistent framing are performed on
the pre-processed video frame using a multi-task CNN
face detector at a rate of 30 frames per second (fps),
and data augmentation methods, including a random
horizontal flipping and a normalization of the brightness
of the image, are applied to make the result robust.
A 3D Convolutional Neural Network (3D-CNN) is then
directly applied to video clips of small length, usually
16 consecutive video frames, in order to simultaneously
capture spatial appearance characteristics and temporal
motion information. The temporal modeling ability
could be increased by means of a temporal attention
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layer over the 3D-CNN output sequence to enable the
model to emphasize the significant temporal parts that
produce more emotional information, and de-emphasise
the irrelevant or duplicated frames. The output has a
512-dimensional face embedding that captures both
the spatial characteristics of the expression, and the
temporal dynamics, and can offer a rich image for a
multimodalizaition.

Physiological Signal Feature Extraction

The physiological signals offer a channel that is less
affected by noise in detecting emotions since it is a
mirror of the underlying autonomic nervous system
response. There are Electrodermal Activity (EDA),
Electrocardiogram (ECG) and Photoplethysmography
(PPG) signals with sampling at 256 Hz each realized
in this research. Signal processing initially involves
using bandpass filtering to eliminate the drift in the
baseline and the high-frequency noise followed by ECG
and PPG to further process them with peak detection
and normalization to standardize HRV and pulse
wave morphology. Thereafter, extracted features are
learnt with Temporal Convolutional Network (TCN),
which implicitly models the temporal dependencies
and the multi-scale patterns within the physiological
measurements. The casual convolutional structure
of the TCN guarantees causal temporal relationships
to the final prediction being only a function of both
current and previous input, which is essential in the
context of physiology interpersonal interpretation of the
signal. Lastly, the features are jointly represented in a
128-dimensional physiological embedding characterizing
both immediate- and long-term autonomic variations
which offer a robust physiological representation of
multimodal inputs to be fused.

Cross-Attention Fusion

The proposed framework uses a Transformer encoder
that contains cross-attention layers to implement
effective fusion of the modality-specific embeddings.
Here, a query (Q) is based on an embedding of one of the
modalities, keys (K) and values (V) are from a different
modality enabling the network to learn scores of
relevance that reflect the relations between modalities.
The computation of attention is carried out as:

_ QK"
Z—Sﬂfﬁnﬂx( JI,_)IJ’ 1)

vy

where denotes the dimensionality of the key vectors.
This cross-attention process makes inter-modality
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learning possible as it helps the model to attend to
complementary and correlated information in different
modalities, align temporally-related events, concentrate
on contextually important features and filter out
irrelevant features. The resulting fused multipolar
representation is a combination of interdependent
factors of speech, facial expression and physiological
data providing a dense, context-specific feature-vector
in which to use in emotion classification tasks.

Classification Layer

Fused embedding is then processed with two fully
connected layers with dropout regularization in the
classification module to avoid overfitting. There is the
use of batch normalization to stabilize training. The
last layer a softmax classifier which gives a probability
distribution over the target classes of emotion. Such
arrangement allows the model to execute accurate and
reliable classification in real time hence it can be used
to create interactive robotic systems.

EXPERIMENTAL SETUP
Datasets

In the testing of the introduced multimodal emotion
recognition system, we used three commonly adopted
and mixed benchmarking datasets:

o |IEMOCAP- Interactive Emotional Dyadic Motion
Capture (IEMOCAP) Covering about 12 hours of
audiovisual recordings of dyadic interactions
(fewer dyads/smaller corpus), this data sample
was also categorically labeled with emotion
terms (happy, angry, sad, neutral), but are
annotated with emotional dimensions as well.
It has recorded speech and video track and
there is the motion capture data, which are
all synchronous, hence valuable in multimodal
analysis.

« SEMAINE There were two types of spontaneous,
emotionally colored exchanges between
participants and a sensitive artificial listener
employed in SEMAINE. It is composed of high-
fidelity speech recordings and video sequences
marked with emotion on one hand and intensity
on the other that is greatly focused on facial
activity and the sound.

* AMIGOS - AMIGOS dataset comprises of emotion-
al reactions that were captured with the help of
video stimuli and additionally contains synchro-
nized physiological recordings (Electrodermal
Activity, Electrocardiogram, Photoplethysmogra-
phy), video of the face, and audio recordings.
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It gives short and long term recording and thus
one can evaluate the consistency of temporal as-
pect of emotion recognition.

As illustrated in Figure 2, the datasets used in this
study—IEMOCAP, SEMAINE, and AMIGOS—cover a
diverse set of modalities including speech, facial video,
and physiological signals, enabling a comprehensive
evaluation of the proposed framework.

Datasat Feature Evaluation
Aquuisition Extraction

lE.MOC.AP . @ Baselines

Y e S h-onl
Speech Video m
S N Y—— . Y

SEMAINE : Facial-only
Speech Video -only
Era= i Yor i Y

AMIGOS Early fusion

! _A/\Arm Temporal .
Physiologichal Netwik Late fusion

Fig. 2: Experimental setup showing datasets, feature
extraction pipelines, and baseline evaluations

A detailed summary of the datasets is presented in
Table 1.

Evaluation Metrics

As measures to evaluate the potential of the proposed
multimodal emotion recognition framework, three
popular metrics used in the study of emotion recognition
were adopted. Accuracy (Acc) is the proportion of the
accurately classified samples according to the upshot
of the total amount of samples and, thus, is an overall
assessment of classification. Weighted F1-score (WF1)
is another metric that considers the class imbalance by
computing the harmonic mean F-score of precision and
recall but every class has its impact weighted by how
frequently it appears in the data, thus the influence
of the dominant classes is not too high within WF1.

Unweighted Average Recall (UAR) calculates the mean
over all classes uniformly and is therefore specially used
in cases when there is a need to balance the model on
the imbalanced dataset in which each type of emotion is
supposedly of equal importance. A combination of these
metrics gives us a detailed comparison of both overall
accuracy as well as the capability of the model to have
the best performance no matter the distribution of
the classes of emotion. The acquisition and evaluation
process of the datasets are also represented in Figure 2,
given that the features based on each of the modalities
receive the comparison of the values in terms of
Accuracy, Weighted F1-score, and Unweighted Average
Recall among the corresponding baseline models.

Baselines

In order to measure the efficacy of the suggested
method we compared it with a variety of unimodal and
single fusion baseline models. Speech-only CNN-BiLSTM
baseline accepts Mel-spectrogram representations of
speech as input and encodes spectral and temporal
speech patterns using a CNN-BiLSTM architecture. The
Facial-only 3D-CNN baseline is based on spatio-temporal
video-based loss of facial expressions to appear and
move. Physiological-only TCN baseline computes the
Electrodermal Activity (EDA), Electrocardiogram (ECG),
and the Photoplethysmography (PPG) signal with a
Temporal Convolutional Network to learn the temporal
dependencies in physiological signal responses. Two basic
fusion methods were studied in addition to unimodal
baselines: Early Fusion Model (concatenation of features
before classification and forming a joint representation)
and Late Fusion Model (giving an average weighted
fusion of individual, unimodal models). These baselines
give a complete benchmark to compare the performance
of the proposed multimodal framework against the
performance gained. Figure 2 shows that the blocks being
benchmarked against the proposed method are including
unimodal speak-only, face-only, and physiological-only
models, and early and late fusion strategies constituting
the baseline systems visualized in the Evaluation block
of Figure 2.

RESULTS AND DISCUSSION

Table 2 summarizes the performance of the proposed
multimodal emotion recognition framework compared

Table 1: Summary of Datasets Used in the Study

Dataset Modalities Available No. of Subjects | Duration Emotion Labels
IEMOCAP Speech, Facial Video, Motion Capture 10 ~12 hours | Happy, Angry, Sad, Neutral, etc.
SEMAINE Speech, Facial Video 24 ~6 hours Multiple categorical labels
AMIGOS Speech, Facial Video, Physiological Signals | 40 ~16 hours | Valence, Arousal, Emotion labels

4 .
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to the simple-fusion baselines and unimodal baselines
across all evaluation metrics, which are Accuracy (Acc),
Weighted F1-score (WF1), and Unweighted Average
Recall (UAR). The proposed methodology outperforms,
in a persistent manner, the unimodal and simple-fusion
baselines in all metrics.

Table 2: Performance Comparison of Baseline Models and
Proposed Method

Model Acc WF1 UAR
Speech-only 74.2% 73.6% 71.8%
Facial-only 76.5% 75.9% 74.4%
Physiological-only | 71.8% 71.0% 70.1%
Early Fusion 79.4% 78.8% 77.3%
Late Fusion 80.1% 79.7% 78.2%
Proposed Method 87.3% 86.9% 86.1%

Table 2 summarizes the accuracy, WF1 and UAR
values of the proposed framework, 87.3, 86.9 and
86.1 respectively, proving the framework superior to
the proper using of the baselines, both early or late
fusion. The Speech-only CNNThis baseline-only CNN is
competitive on clean audio inputs with a WF1 of 73.6%.
A coverage of only Facial features (Facial-only 3D-CNN
baseline) is slightly superior (WF1 = 75.9%) because the
visual signals are very capable of discrimination, but
sensitive to occlusion and varying light. The lowest WF1
(71.0%) is observed with Physiological-only TCN baseline
and this high value can be explained by the inter-subject
variability, as well as the inherently noisy nature of the
wearable sensor-based data.

Baselines based on fusion offer mediocre gains. Early
fusion promotes WF1 to 78.8 percent with appropriate
properties of combined modality, but it is subject to
the limitation of the feature level misalignment. Late
fusion reaches a bit more performance (WF1 = 79.7%) by
using independent unimodal predictions helps to make it
robust to missing or impaired modalities only at the cost
of fine-grained multi-modal correlations.

The newly introduced transformer based cross-attention
fusion methodology substantially exceeds any of the
baselines with a WF1 of 86.9%, brandishing a 7-12 percent
positive relative achievement over unimodal methods
and improving 6-8 percent on the traditional fusion
methods. Such gain displays the utility of cross-attention
in dynamically weighing and aligning contributions of
modalities according to the context as to excavate richer
and more complementary emotion representations.

The findings in Figure 3 affirm the effectiveness of
the proposed system, where improvements have been
experienced in Accuracy, WF1 and UAR. Systematic
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Fig. 3: Comparative performance of baseline models
and the proposed multimodal emotion recognition
framework across Accuracy (Acc), Weighted F1-score
(WF1), and Unweighted Average Recall (UAR).

removal of one modality at a time in inference was
also performed to perform a robustness evaluation. It
was observed that the model has graceful degradation
and that it was able to operate on missing or degraded
inputs, with the WF1 scores reliably going above 80,
which shows it can adapt to any missing or degraded
inputs without losing its performance. Such robustness
is important in HRI applications in the real world, where
sensors may fail, objects may be partially occluded, or
some external noise present.

To place proposed speech/audio community framework
into the context we contrasted it with speech-only strong
model baselines that reflect modern SOTA practice: (i)
spectrogram CNN-BiLSTM audioset-style architectures
with attention pooling; (ii) self-supervised pretrained
backbones (wav2vec 2.0, HUBERT, and WavLM) fine-tuned
for SER; and (iii) spectrogram transformers (AST-style)
trained end-to-end on log-Mel. In all datasets, our model
overwhelmingly outperforms these speech-only systems
in Acc, WF1 and UAR (see Table 2), with the largest
drops occurring in low-SNR conditions, reverberant
conditions and cases of overlapping speech, all of which
are common in HRI.

Generally, these findings support the presented
framework to deliver high performance results, as
well as being balanced in classes and robust even
when modalities change, which makes it an excellent
candidate to build up emotion-aware robots in the fields
of healthcare, education, and assistive settings.

CONCLUSION

The paper aimed to introduce a multimodal emotion
recognition model of Human-Robot Interaction (HRI)
based on a transformer-based cross-attention fusion
of speech, facial dynamics, and physiological signals.
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The system was created to overcome the problems of
unimodal methods that tend to have lower accuracy when
dealing with noise, occlusion, and modality failures.
The ability to utilize complementary information
across sensing modalities allowed achieving robust and
situation-aware emotion inference that is adequate in
the real-world contexts of HRI.

Detailed experiments were performed on three
benchmarking sets of interaction,--IEMOCAP, SEMAINE
and AMIGOS, the settings and modalities of which were
widely diversified. As shown in Table X and Figure X, the
given findings revealed that the suggested approach
outperformed the unimodal baselines (Speech-only,
Facial-only and Physiological-only) and basic fusion
schemes (Early Fusion, Late Fusion) and it had consistent
advantages across all the metrics considered. More
specifically, the model had an accuracy of 87.3%,
accuracy of 86.9, and unweighted average recall of
86.1 which was relative improvement of 7-12 percent
as compared to the WF1 of unimodal systems and of 6-8
percent as compared to the traditional fusion methods.
Robustness testing was also used to show that the system
performed highly even when the missing-modalities
setting occurred and thus the system is adaptable to
deployment in the real world.

The main merits of this work are the three following
aspects: first, the contribution of a deep multimodal
feature extraction pipeline that can be customized
to target speech, facial dynamics and physiological
activity in HumanRobot Interaction (HRI); second, a
transformer based cross-attention fusion module that
is able to dynamically model the interdependence
across heterogeneous modalities; and third, a thorough
analysis and robustness study to show successful results
and resilience in awkward interaction situations. As far
as application is concerned, the proposed framework is
tremendously capable of healthcare assistance robots,
education, collaborative robots, and customer service
robots. The ability of the robots to see and interpret
emotions in a human being more precisely opens
the way to more personalized and adaptive human-
robot interactions, eventually leading to increased
engagement, trust and task success in operational
environments.

FUTURE WORK

Future research directions involve real-time deployment
on embedded and edge computing platforms to allow low
latency recognition of emotion in mobile and resource-
limited robotic systems and the creation of personalised
emotion models that can adapt to individual differences
in expressive behavior and physiological response
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through incremental or federated learning. Moreover,
multilingual and cross-cultural understanding of emotion
recognition will be required to optimise generalization
in international deployment settings, and adaptive
behavioral modules will enable robots to “on-the-fly”
(i.e. during interaction) vary dialogue strategies, gesture
and task execution according to the identified emotion.
As a whole, the conducted study reveals that multimodal
integration involving advanced mechanisms of fusion
proves to be an effective method to augment emotional
intelligence in HRI, offering a sturdy support to the
coming generation of the want-to-be socially conscious
robotic systems that are capable of empathetic, flexible,
and situation beneficial communications.
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