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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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Abstract
In this paper we are presenting a new architecture of lightweight deep neural networks 
(DNN) which is targeted to real-time speech enhancement with resource-constrained 
devices at the edge of the network. With speech-based systems like smart assistants, 
attachable hearing aids, and voice-integrated interfaces becoming more and more 
popular, there has been stronger need of high quality noise reduction that would have 
minimal compute requirements. Analysis using traditional signal processing techniques 
fails to do well in non-stationary noise conditions, and although deep learning-
based techniques are better in this condition, their computational requirements are 
frequently incompatible with running on low-power edge devices. To solve this, we will 
present a hybrid architecture that presents an efficient feature extraction framework 
using depthwise separable convolutions, a short attention-augmented bidirectional 
GRU model module to gain temporal modelling and post-trained quantization process to 
allow memory and inference-level compression. The training data afforded by popular 
benchmark datasets such as VoiceBank-DEMAND and the DNS Challenge corpus contain 
a wide variety of noise present in test signals as well as noise types. We benchmark 
the proposed model to several key objective measures of a model including Perceptual 
Evaluation of Speech Quality (PESQ), Short-Time Objective Intelligibility (STOI), and 
the Signal-To-Distortion Ratio improvement (SDRi), in addition to practical deployment 
metrics that include model size, inference latency, and power consumption. Our low 
power DNN has a PESQ of 3.01 and SDRi of 9.4 dB and a run time factor (RTF < 1.0) 
on both ARM Cortex-M7 microcontrollers using CMSIS-NN and NVIDIA Jetson Nano for 
both applications using INT8 quantization via TensorRT. The overall size of the model 
itself is less than 2 MB and the amount of power required falls within the range of 
battery-powered devices. In objective tests, intelligibility and clarity improvements 
were also realized under real world hazardous noise situations. The results presented 
herein indicate that the suggested method is viable in terms of addressing the mismatch 
between high-performing speech enhancement and embedded hardwares with a scalable 
and deployable solution to the vast majority of edge AI audio implementations in noisy 
acoustic situations.

Author’s e-mail: rasanjani.chandr.@elect.mrt.ac.lk

How to cite this article: Chandrakumar R, Soria F. Lightweight Deep Neural Networks for 
Real-Time Speech Enhancement on Edge Devices. National Journal of Speech and Audio 
Processing, Vol. 1, No. 3, 2025 (pp. 1-8). 

Introduction

Over the past years, real-time speech enhancement has 
emerged as a technology pillar of many audio-oriented 
technologies, speech enhancement in hearing aids, 
teleconferencing systems, voice-controlled IoT, smart 
assistants, and mobile communication applications. 
Speech enhancement has the aim of reducing the effect of 
background noise and enhancing intelligibility and quality 
of speech signals in poor acoustic conditions. Although it 
has obtained substantial advances in the development of 
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enhanced techniques of great complexity, most of the 
high-performance solutions are computationally costly 
and are oriented towards implementation at power-
intensive servers and desktop-type processors. This is 
a key challenge to the implementation of such models 
on end-devices which usually have severe limitations 
with regards to memory, processing power and energy 
demands.

Typically, conventional signal processing methods (i.e. 
spectral subtraction, Wiener filtering and statistical 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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model-based estimators) have difficulties due to 
stationary noise assumptions and cannot be applied 
well to non-stationary, practical situations (i.e. dynamic 
noise). Also, the methods do not have the capacity to 
represent the nonlinguistics associations and time-lapse 
effects in speech signals. Comparatively, the use of deep 
learning has driven an increased interest in the modeling 
and suppression of varying noise patterns; especially 
those based on convolutional neural (and recurrent) 
networks. Net Architectures like SEGAN, DCCRN, and CRN 
have shown promising enhancement prospects, but their 
deep and wide-layered straightened structures become 
hard to meet in terms of latency, memory footprint, 
and power usage, which are paramount concerns in 
consideration of edge deployment Figure 1.

Fig. 1: Real-Time Speech Enhancement Pipeline

This has caused the growing popularity of lightweight 
neural network architecture as the demand is on having 
an effective trade-off between the model complexity 
and performance in enhancement. Nevertheless, current 
compact solutions affect the quality of speech, and even 
in severely non-stationary or low SNR conditions. This 
study seeks to fill this gap by outlining a new proactive 
Lightweight DNN-Based Speech Enhancement Framework 
that is specifically designed thanks to edge computing 
systems. The suggested answer unites depthwise 
separable convolutions to extract but not many features 
with an efficient model, attention-augmented sequential 
modeling with a gated recurrent unit and compression 
strategies such as pruning and after training quantization. 
All these strategies minimize computational burden and 
the size of the models without compromising in the 
fidelity of improvements.

To confirm the suggested architecture, we run a 
comprehensive set of experiments on conventional 
datasets VoiceBank-DEMAND and DNS Challenge, and 
test the model on the edge environments, including 
ARM Cortex-M7 and NVIDIA Jetson Nano. Both quality 
and efficiency are measured in terms of Perceptual 
Evaluation of Speech Quality (PESQ), Signal-to-
Distortion Ratio improvement (SDRi), Short-Time 
Objective Intelligibility (STOI) and real-time factors 
(RTF). Experimental findings conclude that our model 
can generate high-quality speech enhancement results 
over baseline techniques with much less computational 
load and power consumption, which renders our model 
highly promote to real-time edge prediction.

Fundamentally, the proposed study has provided a 
beneficial and scalable deep learning system that 
can be executed to establish consistent low-latency 
improvement in speech with edge devices. It overcomes 
some of the most critical issues of embedded-AI by fine-
tuning both the model network and inference approach 
and, thereby, makes the mainstream use of deep 
speech enhancement in limited-power, limited-resource 
applications a reality.

Related Work

Speech enhancement has come a long way in the last 
several decades, and today it is no longer viewed as a 
problem of classical signal processing but rather deep 
learning scenario, and even more so, dense architecture 
inference on an embedded device. The literature in this 
section has been reviewed in three broad categories that 
include traditional methods, deep neural approaches, 
and light architectures of DNN developed for resource-
conservative platforms.

Old Methods of Speech Enhancement

Traditional speech enhancement strategies mostly use 
signal-processing algorithms like spectral subtraction,[1] 
Wiener filtering[2] and MMSE-based estimators.[3] The 
techniques are computationally efficient and applicable 
to low-complexity settings but normally involve making 
stringent assumptions concerning noise stationarity and 
signal frequency pattern. Consequently, many of them 
easily degrade in performance when non-stationary 
or real-world noise conditions are presented and they 
introduce artifacts like musical noise.

Methods based on Deep Learning

Deep learning has been demonstrated as a potentially 
very good candidate to model non-linear and complex 
noise environments. A speech enhancement generative 
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A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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adversarial network SEGAN,[4] showed that adversarial 
training could lead to more natural sounding speech. 
Thereafter, complex-valued convolutions and 
recurrent layers have been introduced to phase-aware 
enhancements, such as DCCRN.[5] The Zhao et al.  
proposed deep feature loss networks[6] that use 
perceptual loss functions to achieve better understand 
ability. These solutions are, however, very demanding 
in computing requirements, including GPU-accelerated 
computation, which is unfeasible in real time embedded 
implementations.

Recent research has covered applications in deep learning 
in a wide range of embedded applications, including 
secure FPGA-IoT implantation,[7] deep learning-based 
MIMO networks[8] and AI-enhanced structural health 
monitoring.[9] Though they do not center on the use of 
speech enhancement, the studies indicate the viability 
of AI models in limited hardware conditions. The same 
has been seen in signal processing systems across the 
edges, and power electronics.[10, 11]

Lightweight DNN System Designs on the Edge

Some lightweight neural architectures have appeared in 
order to deliver the performance requirements of edge 
computing. MobileNet,[12] developed in the context of 
computer vision tasks, and SqueezeNet,[13] developed 
specifically in the context of the computer vision 
tasks, introduced the parameters, efficient depthwise 
convolution, and fire module, respectively. Based on 
them, TinyWaveNet[14] and Conv-TasNet-Lite[15] are 
proposed in the audio domain to achieve the trade-off 
between accuracy and real-time processing.

Even in spite of these efforts, the quality of speech can still 
be of poor quality due to the aggressive compressing. In 

addition, most edge deployments are yet to be optimized 
in terms of quantization and pruning, and inference 
scheduling. Current trends in memory technologies 
Memory-efficient, low-latency approaches to AI have 
been identified by recent research on emerging-memory 
technologies[11] and neural accelerators to enable fast 
embedding in real-time,[10] as a high priority of edge-AI 
researchers Table 1.

Proposed Methodology
Network Architecture

Input and Preprocessing

This suggested model of speech enhancement is 
applicable on noisy time-domain waveforms that 
provide a fully end-to-end learning algorithm without 
the need to tap into a hand-designed feature 
engineering. Raw audio is then sliced into overlapping 
frames of a Hamming window, and frame size is at 20 
ms frame stride at 10 ms, often a trade-off between 
latency and a temporal resolution. Through the short-
time Fourier transform (STFT), each frame is converted 
to a time-frequency representation and results in a 
complex spectrogram. In order to feed the input data 
to the neural processing, the magnitude spectrogram, 
as opposed to the phase, is introduced into the model; 
the remaining part of the spectrogram is stored and 
used to reconstruct the data at the final enhancement 
step. According to this practice, the model is made less 
complex but preserving the perceptual fidelity. The 
preprocessing pipeline is targeted to be lightweight 
and can be run on on-device digital signal processors 
(DSPs) or efficiently and quickly real-time executed 
in optimized libraries like CMSIS-DSP in order to be 
compatible with an edge deployment.

Table 1: Comparative Summary of Speech Enhancement Techniques

Category
Representative 

Models Key Techniques
Enhancement 

Quality Complexity
Edge Deployment 

Feasibility

Traditional 
Methods

Spectral 
Subtraction,[1] 
Wiener Filtering,[2] 

MMSE[3]

Statistical signal 
modeling, noise 
estimation

Low to Moderate Low High (but limited 
performance)

Deep Learning-
Based

SEGAN,[4] DCCRN,[5] 
Deep Feature 
Loss[6]

GANs, complex 
RNNs, perceptual 
loss functions

High High Low (requires GPU/
CPU)

Embedded DL 
Applications

FPGA-IoT,[7] Massive 
MIMO Estimation,[8] 
Smart SHM[9]

Hardware-
accelerated deep 
learning

Domain-specific Medium to High Medium (task 
dependent)

Lightweight 
Architectures

MobileNet,[12] 
SqueezeNet,[13] 
TinyWaveNet,[14] 
Conv-TasNet-Lite[15]

Depthwise convs, 
fire modules, 
model compression

Moderate to High Low to Medium High (optimized for 
edge)
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Features Extraction and Modeling of Time

The backbone of the suggested design starts with a 
feature extraction unit that was constructed by 1D 
depthwise dividable convolutional layers. Such layers 
can make the parameter space and the computational 
operations an order of magnitude smaller due to the 
decoupling of both spatial (time-domain) and channel-
wise learning of features. Depthwise separable 
convolutions enable the network to learn frequency-
dependent features, which enables it to use a much 
smaller fraction of the computational resources occupied 
by ordinary convolutions, and therefore a good choice 
of edge AI. The representations are then submitted to 
a bidirectional gated recurrent unit (Bi-GRU) layer that 
accounts the temporal dependencies in forward and 
backward directions in the speech signal. It is essential in 
modeling a long-term contextual information particularly 
under non-stationary noise environment. Also, on top of 
the Bi-GRU output an attention mechanism is used to 
selectively focus to the most informative frames. Not 
only does that make improvement performance better, 
but also make generalization in cases of other types of 
noise easier because the model can learn the temporal 
time intervals which are more important to clarity of 
speech.

Output and Reconstruction Layer

The last layer of the architecture consists of producing a 
mask, which is used in suppressing individual components 
of noise but retains clean speech in the input magnitude 
spectrogram. The output of this mask is predicted by 
a fully connected output layer traced by attention-
weighted temporal information to a time-frequency 
mask capped at the range of [0, 1] via a sigmoidal 
activation. The enhanced magnitude spectrogram 
corresponds to multiply by element-wise the predicted 
mask with the original noisy magnitude spectrogram. 
Afterward, the improved magnitude of this clean signal 
is used to recreate the clean signal in the time domain 
using the inverse STFT (iSTFT) whilst using the noisy 
phase. The above reconstruction process will maintain a 
light and efficient model without compromising audible 
speech that is natural-sounding. The overall network 
is trained in an end-to-end manner with a mixture of 
spectral-domain loss (e.g. mean squared error) and 
perceptual loss (e.g. scale-invariant SNR or PESQ-based 
loss) allowing the model to maximize objective quality 
metrics as well as human-perceived audio quality Figure 
2. To support deployment in real-time scenarios, the 
architecture is also carefully engineered to ensure size 
of the entire model is smaller than 2 MB and inference 
latency is less than 40 ms, making them all resource- and 

power-efficient to use on embedded systems, including 
ARM Cortex-M and NVIDIA Jetson machines.

Fig. 2: End-to-End Speech Enhancement Architecture 
for Edge Deployment

Model Compression

Pruning to be Structurally Efficient

Elimination of redundant parameters and filters within 
the neural network is achieved through pruning that is 
implemented in the proposed framework in a post training 
context. More precisely, we use structured filter pruning, 
in which all convolutional filters with insignificant 
influence on the output are deleted depending on the 
L1-norm of their magnitude. This is so as to make sure 
that the computational graph remains optimized in the 
computation in terms of multiphase in the edge which 
is of immense importance to the deployment of an 
edge platform with limited resources. In retraining, the 
model is tuned further to regain the loss of performance 
due to the pruned-out layers. All of these effects can 
prune not only floating-point operations (FLOPs) and 
inference time, but also decreasing the total memory 
footprint that makes it possible to store and execute the 
model completely in on-chip SRAM of microcontrollers. 
The pruned model shows a dramatically reduced size 
of model, as much as by 35 per cent in our instance, 
without subordinating some important performance 
indices, like PESQ and SDRi, effectively generating an 
acceptable compromise between understandable pe 
rformance and efficiency.

Quantization on Low-Power Inference

Further to minimize computational burden and make 
this model operate on integer-only, we use post-
training quantization (PTQ) to run on TensorFlow 
Lite. It is all 32-bit floating-point to 8-bit fixed-point 
encodable, so it can be efficiently executed well on 
edge processors that have INT8 arithmetic, e.g. ARM 
Cortex-M7 or the Tensor Cores of an NVIDIA Jetson. The 
quantization procedure involves the calibration of the 
static range with a set of representative dataset, in 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 

5

order to guarantee proper dynamic range placement of 
activations and weights. This compaction considerably 
reduces model size (sometimes by fourfold), and it also 
speeds up the inference process, as it makes it possible 
to use a hardware accelerator for matrix operations. 
Besides, the DRAM access is lower in quantization 
thereby entailing less energy consumption and vital in 
energy-sensitive equipment or when using batteries. 
According to empirical analysis, quantized criteria 
possess a marginal reduction in the perceived quality, 
having less than a 0.05 difference in PESQ, but provide 
a multiple-fold and up to a 40-percent reduction in 
power consumption in addition to increased real-time 
factor (RTF), with more than twice the improved RTF at 
a stable complexity on several models.

Performance Retaining with Knowledge Distillation

We use knowledge distillation (KD) as a training 
technique because it produces high accuracy even 
after the compression. In such an arrangement, a 
heavy full-capacity DCCRN model used as a teacher 
and the lightweight model used as a student. The 
student model is supervised to replicate soft outputs, 
as well as intermediate representations, of the teacher 
network. In particular, we combine loss terms of the 
following forms: a standard mean squared error (MSE) 
loss of predictions of the clean spectrogram and the 
clean spectrogram, and distillation loss using the 
Kullback-Leibler (KL) divergence between the student 
and teacher results. This method helps the smaller 
model to not only know the final predictions, but also 
the detection result of the more expressive teacher 
network. Consequently, the student model attains their 
almost equal performance as full size along with its 
lighter tube structure Figure 3. This training paradigm 
is very effective in maintaining perceptual attributes 
of the speech sound as well as the noise suppression 
ability of the speech and therefore it is an important 
part of our compression pipeline.

Fig. 3: Compression Technique Comparison across 
Key Metrics

Real-Time Constraints

Frame setup and Temporal Resolution

The frame structure is a key component to achieve both 
latency and fidelity of the enhancement in real time 
speech enhancement systems. Our model works on a 20 
milliseconds frame size, and the next frame over laps 
50 per cent (i.e. 10 milliseconds). Such arrangement 
provides adequate frequency resolution and a high-
temporal refresh rate, which is required to support 
dynamic variations in speech and variations in background 
noise. In reconstruction, the overlap-add method is 
employed so the continuity of the speech waveform is 
not sorely damaged. This frame-based processing plan 
is a trade-off between processing speed and quality of 
improvement, and this means that the system can stream 
received audio. The short frame window allows minimal 
delay and sufficient responsiveness to use cases where 
real-time interactions are involved like hearing aids, live 
communication and interactive voice assistants.

Latency what it is an Optimization Strategy

In the case of edge deployment, total system latency 
must be below the user-perceptible levels, to provide 
a seamless experience to the user. Our system end-
to-end latency is limited to less than 40 milliseconds 
(frame buffering, neural network inference, and signal 
reconstruction). Such a latency budget is essential to 
time-sensitive applications, especially conversational AI 
and assistive listening devices. We achieve this by using 
a number of optimization techniques: (i) we use batch 
inference in frames, not full-resolution sequences (ii) we 
optimize activation functions and matmul using fixed-
point arithmetic and (iii) parallel I/O and computation 
threads can decrease buffering latencies. Our 
implementation, on platforms like ARM Cortex-M7 and 
Jetson Nano, has stable inference times below 15 ms per 
frame, and thus fits the needs of full-duplex streaming. 
All these optimizations are aimed at the system working 
well within the real-time threshold without degrading 
performance of the enhancements.

Size and Memory Footprint of the Model

The other major limitation in embedded platforms is the 
memory requirement of the deployed model. To be able 
to fit into the memory limitation of microcontrollers, 
DSPs, and low-power edge AI SoCs, the memory limitation 
of microcontrollers, DSPs, and low-power edge AI SoCs, 
our lightweight deep neural network is engineered to 
keep a total model size of less than 2 MB. That is done 
by building efficient architectural units like depthwise 
separable convolutions and attention-augmented GRUs 
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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as well as aggressive post-hoc compression methods like 
quantization and pruning. Being compact in the physical 
size, the model allows storage not only in a flash or 
SRAM, but also a fast loading and lesser DRAM access 
at run time, which adds to low power-consumption. 
Also, this small size permits seamless incorporation of 
a speech enhancement module into other embedded 
programs without majorly adding to the complexity of 
the system Figure 4. Such size-optimized models are 
necessary in cases where the memory and compute 
resources are limited (e.g., wearable devices, smart 
sensors, where memory and compute resources are 
severely constrained), since the goal will be high-quality 
improvement without blowing past memory and compute 
limits.

Fig. 4: Real-Time Frame-Based Processing Pipeline 
for Streaming Speech Enhancement

Dataset and Experimental Setup

The experimental analysis of the proposed lightweight 
speech enhancement model is performed with respect 
to two of the most popular benchmarks and a wide 
range of objective and deployment-related metrics. 
VoiceBank-DEMAND corpus contains speech recordings 
of voice outputs of several speakers with a mixture 
of 10 different real-word noise types (e.g., street, 
cafe, and white one) in it, which makes the task both 
controlled and difficult to train and evaluate models 
in a challenging environment. Furthermore, the 
DNS Challenge dataset, which has been collected by 
Microsoft is large-scale real-world data with a highly 
diverse range of noise conditions, reverberations, and 
SNR and this makes the dataset robust and generalizable 
to different acoustic settings. The standard performance 
assessments used to quantify the enhancement include 
Perceptual Evaluation of Speech Quality (PESQ), Short-
Time Objective Intelligibility (STOI), Signal-to-Distortion 
Ratio improvement (SDRi) and Mean Opinion Score (MOS) 
of subjective listening tests. We also report real-time 
factor (RTF)-the ratio between processing time and 
input duration to measure the real-time feasibility of 
the model on edge hardware, in addition to model size 
(in MB) and power consumption (in mW). In order to test 
deployment, we attempt two representative endpoint 
platforms: the ARM Cortex-M7 microcontroller, where the 
model is simplified in CMSIS-NN to fixed-point operations 

and real-time inference; and the NVIDIA Jetson Nano, 
which has the ability to use hardware acceleration with 
TensorRT and ONNX quantized machine learning models. 
The choice of such platforms was to include technologies 
with ultra-low-power microcontroller levels as well as 
embedded AI edge processors Table 2. This two-platform 
assessment plan allows confirming that the suggested 
model can fit within the limits of practical use in edges 
and provide quality enhancement of speech under the 
low-latency and limited-energy conditions.

Table 2: Evaluation Metrics for Performance and 
Deployment Feasibility

Metric Description Type

PESQ Perceptual speech 
quality (ITU-T 
P.862)

Objective (MOS-
like)

STOI Short-Time 
Objective 
Intelligibility

Objective

SDRi Signal-to-
Distortion Ratio 
improvement

Objective

MOS Mean Opinion 
Score (subjective 
listening)

Subjective

RTF Real-Time Factor 
(processing time/
input time)

Deployment

Model Size Memory footprint 
(MB)

Deployment

Power 
Consumption

Energy usage on 
target platform 
(mW)

Deployment

Results and Discussion
Speech Quality improvement

The offered lightweight deep neural network architecture 
is fast working effectively in speech enhancement tasks 
compared with set standards. Indicators of the quality 
of output shown in the quantitative comparison such as 
a PESQ score of 3.01, SDRi of 9.4 dB and STOI of 0.93 
position our model competitively between SEGAN and 
the more complicated DCCRN model. Whereas DCCRN 
has a PESQ that is marginally superior (3.20) and SDRi 
(10.5 dB), it has greater complexity and amounts to 
a higher computational cost and unsuitable in edge 
devices. Conversely, SEGAN, its lighter alternative 
with lower PESQ 2.62 and SDRi 7.1 dB measures does 
not perform as well as it indicates lowered perceptual 
quality. The model proposed is a best compromise--
providing state-of-the-art-like enhancement capability 
on hardware that is optimized to run real-time inference 
on small, resource-limited devices. It validates the 
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can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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potential of using depthwise separable convolutions, 
an attention-based temporal modeling technique, and 
quantization approaches to enable attaining high-quality 
enhancement without having a high computation burden.

Performance: Edge Deployment

In addition to the accuracy in enhancement, the 
compatibility and availability of the model to run on 
edge platforms is a top concern of practical application. 
The RTF of the model is only 0.85 with a low power 
operation of only 72 mW, which makes it suitable to low 
power, battery powered applications, such as hearing 
aid and internet-of-things modules. The quantized INT8 
model on Jetson Nano takes 1.5 MB, executes at an 
RTF of 0.29 and consumes 245 mW, making it suitable 
for low-latency needs in embedded robotics; a live 
communication or speech interface, especially. The 
results are in agreement with the fact that the model 
satisfies stringent real-time requirements (RTF< 1.0) in 
both platforms, with satisfactory power envelopes to 
perform continuously. The architectural efficiency is 
achieved in conjunction with post-training quantization 
and optimized inference pipelines (CMSIS-NN on Cortex 
and TensorRT on Jetson). These results confirm the idea 
that the suggested architecture is not only correct but 
very deployable in the embedded situation involving 
strict computational and power requirements.

Design Justification of Ablation Study

Ablation study was carried out to analyse the role per 
child component of design. Removal of the attention 
mechanism on temporal modeling module resulted in 
a PESQ degradation of 0.19, which is evidence toward 
the assertion that this mechanism helps to increase 
the capacity of the model to dynamically attend to the 
relevant temporal characteristics in the speech signal. 
Also, quantization disabled resulted in a ~35 percent 
increase in end to end inference latency, another 
demonstration that integer-only computation is needed 
to achieve edge hardware real-time performance. These 
experiments stress how much every architectural and 
optimization decision of the whole system matters. 
Not only does the attention usage lead to improved 
enhancement quality, it does so with minimal overhead in 

terms of additional parameters and a significant decrease 
in memory access latency and power consumption 
without compromising perceptual quality Figure 5. In 
combination, these findings support the architectural 
choices adopted in this paper and show that both model 
efficiency and inference strategy need to be carefully 
co-designed so that the DNN-based speech enhancement 
systems could be deployed practically to the edge 
devices Table 3.

Fig. 5: Contribution of Design Elements in Proposed 
Edge Speech Enhancement System

Conclusion

We proposed an efficient and efficient deep neural network 
model in this paper that can be used to run real-time 
speech enhancement on the resource-constrained edge 
equipment. Combining depthwise separable convolutions 
to extract lightweight features, attention-enhanced 
bidirectional GRUS to model the temporal characteristics 
well, and a set of model compression methods, such as 
structured pruning, 8-bit quantization, and knowledge 
distillation, we succeed in proving that a high quality 
of speech enhancement could be reached without 
compromising on the inference speed and hardware 
compatibility. The model continues to have a modest 
memory requirement of less than 2 MB and shows a real-
time performance (RTF <1.0 ) on both microcontroller-
class (ARM Cortex-M7) and embedded AI (Jetson Nano) 
architectures without compromising on any of the 
perceptual quality metrics (PESQ, STOI, SDRi ). Ablation 
testing substantiates the efforts of all architecture 
components and compression policy as well. We establish 

Table 3: Performance and Deployment Comparison of Speech Enhancement Models across Quality and Edge Metrics

Model PESQ SDRi (dB) STOI
Model Size 

(MB)
RTF 

(Cortex-M7)
RTF (Jetson 

Nano)

Power 
(Cortex-M7, 

mW)

Power 
(Jetson 

Nano, mW)

SEGAN 2.62 7.1 0.89 1.4 N/A N/A N/A N/A

Proposed 
Model

3.01 9.4 0.93 1.2 0.85 0.29 72 245

DCCRN 3.2 10.5 0.94 7.6 N/A N/A N/A N/A
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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that considerate co-design of the network structure and 
optimization strategies makes it possible to successfully 
implement DNN-based speech enhancement in transport 
devices where power consumption is an issue and latency 
is critical (wearable devices, smart assistants and mobile 
aged networks). Left to the future are extensions of 
this work including transformer-lite architectures to 
have fewer parameters to capture underlying global 
dependencies as well as federated learning frameworks 
to enable adaptation to individual user-specific noise 
operating conditions without jeopardizing data privacy 
or communication efficiency.
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