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ABSTRACT

In this paper we are presenting a new architecture of lightweight deep neural networks
(DNN) which is targeted to real-time speech enhancement with resource-constrained
devices at the edge of the network. With speech-based systems like smart assistants,
attachable hearing aids, and voice-integrated interfaces becoming more and more
popular, there has been stronger need of high quality noise reduction that would have
minimal compute requirements. Analysis using traditional signal processing techniques
fails to do well in non-stationary noise conditions, and although deep learning-
based techniques are better in this condition, their computational requirements are
frequently incompatible with running on low-power edge devices. To solve this, we will
present a hybrid architecture that presents an efficient feature extraction framework
using depthwise separable convolutions, a short attention-augmented bidirectional
GRU model module to gain temporal modelling and post-trained quantization process to
allow memory and inference-level compression. The training data afforded by popular
benchmark datasets such as VoiceBank-DEMAND and the DNS Challenge corpus contain
a wide variety of noise present in test signals as well as noise types. We benchmark
the proposed model to several key objective measures of a model including Perceptual
Evaluation of Speech Quality (PESQ), Short-Time Objective Intelligibility (STOI), and
the Signal-To-Distortion Ratio improvement (SDRi), in addition to practical deployment
metrics that include model size, inference latency, and power consumption. Our low
power DNN has a PESQ of 3.01 and SDRi of 9.4 dB and a run time factor (RTF < 1.0)
on both ARM Cortex-M7 microcontrollers using CMSIS-NN and NVIDIA Jetson Nano for
both applications using INT8 quantization via TensorRT. The overall size of the model
itself is less than 2 MB and the amount of power required falls within the range of
battery-powered devices. In objective tests, intelligibility and clarity improvements
were also realized under real world hazardous noise situations. The results presented
herein indicate that the suggested method is viable in terms of addressing the mismatch
between high-performing speech enhancement and embedded hardwares with a scalable
and deployable solution to the vast majority of edge Al audio implementations in noisy
acoustic situations.
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INTRODUCTION

Over the past years, real-time speech enhancement has
emerged as a technology pillar of many audio-oriented
technologies, speech enhancement in hearing aids,
teleconferencing systems, voice-controlled IoT, smart
assistants, and mobile communication applications.
Speech enhancement has the aim of reducing the effect of
background noise and enhancing intelligibility and quality
of speech signals in poor acoustic conditions. Although it
has obtained substantial advances in the development of
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enhanced techniques of great complexity, most of the
high-performance solutions are computationally costly
and are oriented towards implementation at power-
intensive servers and desktop-type processors. This is
a key challenge to the implementation of such models
on end-devices which usually have severe limitations
with regards to memory, processing power and energy
demands.

Typically, conventional signal processing methods (i.e.
spectral subtraction, Wiener filtering and statistical
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model-based estimators) have difficulties due to
stationary noise assumptions and cannot be applied
well to non-stationary, practical situations (i.e. dynamic
noise). Also, the methods do not have the capacity to
represent the nonlinguistics associations and time-lapse
effects in speech signals. Comparatively, the use of deep
learning has driven an increased interest in the modeling
and suppression of varying noise patterns; especially
those based on convolutional neural (and recurrent)
networks. Net Architectures like SEGAN, DCCRN, and CRN
have shown promising enhancement prospects, but their
deep and wide-layered straightened structures become
hard to meet in terms of latency, memory footprint,
and power usage, which are paramount concerns in
consideration of edge deployment Figure 1.
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Fig. 1: Real-Time Speech Enhancement Pipeline

This has caused the growing popularity of lightweight
neural network architecture as the demand is on having
an effective trade-off between the model complexity
and performance in enhancement. Nevertheless, current
compact solutions affect the quality of speech, and even
in severely non-stationary or low SNR conditions. This
study seeks to fill this gap by outlining a new proactive
Lightweight DNN-Based Speech Enhancement Framework
that is specifically designed thanks to edge computing
systems. The suggested answer unites depthwise
separable convolutions to extract but not many features
with an efficient model, attention-augmented sequential
modeling with a gated recurrent unit and compression
strategies such as pruning and after training quantization.
All these strategies minimize computational burden and
the size of the models without compromising in the
fidelity of improvements.
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To confirm the suggested architecture, we run a
comprehensive set of experiments on conventional
datasets VoiceBank-DEMAND and DNS Challenge, and
test the model on the edge environments, including
ARM Cortex-M7 and NVIDIA Jetson Nano. Both quality
and efficiency are measured in terms of Perceptual
Evaluation of Speech Quality (PESQ), Signal-to-
Distortion Ratio improvement (SDRi), Short-Time
Objective Intelligibility (STOI) and real-time factors
(RTF). Experimental findings conclude that our model
can generate high-quality speech enhancement results
over baseline techniques with much less computational
load and power consumption, which renders our model
highly promote to real-time edge prediction.

Fundamentally, the proposed study has provided a
beneficial and scalable deep learning system that
can be executed to establish consistent low-latency
improvement in speech with edge devices. It overcomes
some of the most critical issues of embedded-Al by fine-
tuning both the model network and inference approach
and, thereby, makes the mainstream use of deep
speech enhancement in limited-power, limited-resource
applications a reality.

RELATED WORK

Speech enhancement has come a long way in the last
several decades, and today it is no longer viewed as a
problem of classical signal processing but rather deep
learning scenario, and even more so, dense architecture
inference on an embedded device. The literature in this
section has been reviewed in three broad categories that
include traditional methods, deep neural approaches,
and light architectures of DNN developed for resource-
conservative platforms.

Old Methods of Speech Enhancement

Traditional speech enhancement strategies mostly use
signal-processing algorithms like spectral subtraction,
Wiener filtering!? and MMSE-based estimators.! The
techniques are computationally efficient and applicable
to low-complexity settings but normally involve making
stringent assumptions concerning noise stationarity and
signal frequency pattern. Consequently, many of them
easily degrade in performance when non-stationary
or real-world noise conditions are presented and they
introduce artifacts like musical noise.

Methods based on Deep Learning

Deep learning has been demonstrated as a potentially
very good candidate to model non-linear and complex
noise environments. A speech enhancement generative
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adversarial network SEGAN,™ showed that adversarial
training could lead to more natural sounding speech.
Thereafter, complex-valued convolutions and
recurrent layers have been introduced to phase-aware
enhancements, such as DCCRN.B! The Zhao et al.
proposed deep feature loss networksl® that use
perceptual loss functions to achieve better understand
ability. These solutions are, however, very demanding
in computing requirements, including GPU-accelerated
computation, which is unfeasible in real time embedded
implementations.

Recent research has covered applications in deep learning
in a wide range of embedded applications, including
secure FPGA-loT implantation,”? deep learning-based
MIMO networks® and Al-enhanced structural health
monitoring.””! Though they do not center on the use of
speech enhancement, the studies indicate the viability
of Al models in limited hardware conditions. The same
has been seen in signal processing systems across the
edges, and power electronics.l'% 1

Lightweight DNN System Designs on the Edge

Some lightweight neural architectures have appeared in
order to deliver the performance requirements of edge
computing. MobileNet,['?l developed in the context of
computer vision tasks, and SqueezeNet,["¥ developed
specifically in the context of the computer vision
tasks, introduced the parameters, efficient depthwise
convolution, and fire module, respectively. Based on
them, TinyWaveNet!"! and Conv-TasNet-Litel'™™ are
proposed in the audio domain to achieve the trade-off
between accuracy and real-time processing.

Eveninspite of these efforts, the quality of speech canstill
be of poor quality due to the aggressive compressing. In

addition, most edge deployments are yet to be optimized
in terms of quantization and pruning, and inference
scheduling. Current trends in memory technologies
Memory-efficient, low-latency approaches to Al have
been identified by recent research on emerging-memory
technologies!'"! and neural accelerators to enable fast
embedding in real-time,'"? as a high priority of edge-Al
researchers Table 1.

PROPOSED METHODOLOGY
Network Architecture
Input and Preprocessing

This suggested model of speech enhancement is
applicable on noisy time-domain waveforms that
provide a fully end-to-end learning algorithm without
the need to tap into a hand-designed feature
engineering. Raw audio is then sliced into overlapping
frames of a Hamming window, and frame size is at 20
ms frame stride at 10 ms, often a trade-off between
latency and a temporal resolution. Through the short-
time Fourier transform (STFT), each frame is converted
to a time-frequency representation and results in a
complex spectrogram. In order to feed the input data
to the neural processing, the magnitude spectrogram,
as opposed to the phase, is introduced into the model;
the remaining part of the spectrogram is stored and
used to reconstruct the data at the final enhancement
step. According to this practice, the model is made less
complex but preserving the perceptual fidelity. The
preprocessing pipeline is targeted to be lightweight
and can be run on on-device digital signal processors
(DSPs) or efficiently and quickly real-time executed
in optimized libraries like CMSIS-DSP in order to be
compatible with an edge deployment.

Table 1: Comparative Summary of Speech Enhancement Techniques

Based

Deep Feature
Losst!

RNNs, perceptual
loss functions

Representative Enhancement Edge Deployment
Category Models Key Techniques Quality Complexity Feasibility
Traditional Spectral Statistical signal Low to Moderate Low High (but limited
Methods Subtraction, modeling, noise performance)
Wiener Filtering,” | estimation
MMSEE!
Deep Learning- SEGAN,™ DCCRN,E! | GANs, complex High High Low (requires GPU/

CPU)

Embedded DL
Applications

FPGA-10T,"! Massive
MIMO Estimation,®!
Smart SHMP!

Hardware-
accelerated deep
learning

Domain-specific

Medium to High

Medium (task
dependent)

Lightweight
Architectures

MobileNet,['2
SqueezeNet, "]
TinyWaveNet, [
Conv-TasNet-Litel"™

Depthwise convs,
fire modules,
model compression

Moderate to High

Low to Medium

High (optimized for
edge)
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Features Extraction and Modeling of Time

The backbone of the suggested design starts with a
feature extraction unit that was constructed by 1D
depthwise dividable convolutional layers. Such layers
can make the parameter space and the computational
operations an order of magnitude smaller due to the
decoupling of both spatial (time-domain) and channel-
wise learning of features. Depthwise separable
convolutions enable the network to learn frequency-
dependent features, which enables it to use a much
smaller fraction of the computational resources occupied
by ordinary convolutions, and therefore a good choice
of edge Al. The representations are then submitted to
a bidirectional gated recurrent unit (Bi-GRU) layer that
accounts the temporal dependencies in forward and
backward directions in the speech signal. It is essential in
modeling a long-term contextual information particularly
under non-stationary noise environment. Also, on top of
the Bi-GRU output an attention mechanism is used to
selectively focus to the most informative frames. Not
only does that make improvement performance better,
but also make generalization in cases of other types of
noise easier because the model can learn the temporal
time intervals which are more important to clarity of
speech.

Output and Reconstruction Layer

The last layer of the architecture consists of producing a
mask, which is used in suppressing individual components
of noise but retains clean speech in the input magnitude
spectrogram. The output of this mask is predicted by
a fully connected output layer traced by attention-
weighted temporal information to a time-frequency
mask capped at the range of [0, 1] via a sigmoidal
activation. The enhanced magnitude spectrogram
corresponds to multiply by element-wise the predicted
mask with the original noisy magnitude spectrogram.
Afterward, the improved magnitude of this clean signal
is used to recreate the clean signal in the time domain
using the inverse STFT (iSTFT) whilst using the noisy
phase. The above reconstruction process will maintain a
light and efficient model without compromising audible
speech that is natural-sounding. The overall network
is trained in an end-to-end manner with a mixture of
spectral-domain loss (e.g. mean squared error) and
perceptual loss (e.g. scale-invariant SNR or PESQ-based
loss) allowing the model to maximize objective quality
metrics as well as human-perceived audio quality Figure
2. To support deployment in real-time scenarios, the
architecture is also carefully engineered to ensure size
of the entire model is smaller than 2 MB and inference
latency is less than 40 ms, making them all resource- and

i .

power-efficient to use on embedded systems, including
ARM Cortex-M and NVIDIA Jetson machines.
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Fig. 2: End-to-End Speech Enhancement Architecture
for Edge Deployment

Model Compression
Pruning to be Structurally Efficient

Elimination of redundant parameters and filters within
the neural network is achieved through pruning that is
implemented in the proposed framework in a post training
context. More precisely, we use structured filter pruning,
in which all convolutional filters with insignificant
influence on the output are deleted depending on the
L1-norm of their magnitude. This is so as to make sure
that the computational graph remains optimized in the
computation in terms of multiphase in the edge which
is of immense importance to the deployment of an
edge platform with limited resources. In retraining, the
model is tuned further to regain the loss of performance
due to the pruned-out layers. All of these effects can
prune not only floating-point operations (FLOPs) and
inference time, but also decreasing the total memory
footprint that makes it possible to store and execute the
model completely in on-chip SRAM of microcontrollers.
The pruned model shows a dramatically reduced size
of model, as much as by 35 per cent in our instance,
without subordinating some important performance
indices, like PESQ and SDRi, effectively generating an
acceptable compromise between understandable pe
rformance and efficiency.

Quantization on Low-Power Inference

Further to minimize computational burden and make
this model operate on integer-only, we use post-
training quantization (PTQ) to run on TensorFlow
Lite. It is all 32-bit floating-point to 8-bit fixed-point
encodable, so it can be efficiently executed well on
edge processors that have INT8 arithmetic, e.g. ARM
Cortex-M7 or the Tensor Cores of an NVIDIA Jetson. The
quantization procedure involves the calibration of the
static range with a set of representative dataset, in
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order to guarantee proper dynamic range placement of
activations and weights. This compaction considerably
reduces model size (sometimes by fourfold), and it also
speeds up the inference process, as it makes it possible
to use a hardware accelerator for matrix operations.
Besides, the DRAM access is lower in quantization
thereby entailing less energy consumption and vital in
energy-sensitive equipment or when using batteries.
According to empirical analysis, quantized criteria
possess a marginal reduction in the perceived quality,
having less than a 0.05 difference in PESQ, but provide
a multiple-fold and up to a 40-percent reduction in
power consumption in addition to increased real-time
factor (RTF), with more than twice the improved RTF at
a stable complexity on several models.

Performance Retaining with Knowledge Distillation

We use knowledge distillation (KD) as a training
technique because it produces high accuracy even
after the compression. In such an arrangement, a
heavy full-capacity DCCRN model used as a teacher
and the lightweight model used as a student. The
student model is supervised to replicate soft outputs,
as well as intermediate representations, of the teacher
network. In particular, we combine loss terms of the
following forms: a standard mean squared error (MSE)
loss of predictions of the clean spectrogram and the
clean spectrogram, and distillation loss using the
Kullback-Leibler (KL) divergence between the student
and teacher results. This method helps the smaller
model to not only know the final predictions, but also
the detection result of the more expressive teacher
network. Consequently, the student model attains their
almost equal performance as full size along with its
lighter tube structure Figure 3. This training paradigm
is very effective in maintaining perceptual attributes
of the speech sound as well as the noise suppression
ability of the speech and therefore it is an important
part of our compression pipeline.

2000
1750
1500
1250

1000

Value

750

500

250

Baseline Pruning
Compression Technigue

Quantization KD

Fig. 3: Compression Technique Comparison across
Key Metrics
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Real-Time Constraints
Frame setup and Temporal Resolution

The frame structure is a key component to achieve both
latency and fidelity of the enhancement in real time
speech enhancement systems. Our model works on a 20
milliseconds frame size, and the next frame over laps
50 per cent (i.e. 10 milliseconds). Such arrangement
provides adequate frequency resolution and a high-
temporal refresh rate, which is required to support
dynamic variations in speech and variations in background
noise. In reconstruction, the overlap-add method is
employed so the continuity of the speech waveform is
not sorely damaged. This frame-based processing plan
is a trade-off between processing speed and quality of
improvement, and this means that the system can stream
received audio. The short frame window allows minimal
delay and sufficient responsiveness to use cases where
real-time interactions are involved like hearing aids, live
communication and interactive voice assistants.

Latency what it is an Optimization Strategy

In the case of edge deployment, total system latency
must be below the user-perceptible levels, to provide
a seamless experience to the user. Our system end-
to-end latency is limited to less than 40 milliseconds
(frame buffering, neural network inference, and signal
reconstruction). Such a latency budget is essential to
time-sensitive applications, especially conversational Al
and assistive listening devices. We achieve this by using
a number of optimization techniques: (i) we use batch
inference in frames, not full-resolution sequences (ii) we
optimize activation functions and matmul using fixed-
point arithmetic and (iii) parallel 1/0 and computation
threads can decrease buffering latencies. Our
implementation, on platforms like ARM Cortex-M7 and
Jetson Nano, has stable inference times below 15 ms per
frame, and thus fits the needs of full-duplex streaming.
All these optimizations are aimed at the system working
well within the real-time threshold without degrading
performance of the enhancements.

Size and Memory Footprint of the Model

The other major limitation in embedded platforms is the
memory requirement of the deployed model. To be able
to fit into the memory limitation of microcontrollers,
DSPs, and low-power edge Al SoCs, the memory limitation
of microcontrollers, DSPs, and low-power edge Al SoCs,
our lightweight deep neural network is engineered to
keep a total model size of less than 2 MB. That is done
by building efficient architectural units like depthwise
separable convolutions and attention-augmented GRUs
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as well as aggressive post-hoc compression methods like
quantization and pruning. Being compact in the physical
size, the model allows storage not only in a flash or
SRAM, but also a fast loading and lesser DRAM access
at run time, which adds to low power-consumption.
Also, this small size permits seamless incorporation of
a speech enhancement module into other embedded
programs without majorly adding to the complexity of
the system Figure 4. Such size-optimized models are
necessary in cases where the memory and compute
resources are limited (e.g., wearable devices, smart
sensors, where memory and compute resources are
severely constrained), since the goal will be high-quality
improvement without blowing past memory and compute
limits.

- Frame buffer Neural Output
Inu 0 (20 ms, network stream
put .
10 ms hop) inference

Fig. 4: Real-Time Frame-Based Processing Pipeline
for Streaming Speech Enhancement

DATASET AND EXPERIMENTAL SETUP

The experimental analysis of the proposed lightweight
speech enhancement model is performed with respect
to two of the most popular benchmarks and a wide
range of objective and deployment-related metrics.
VoiceBank-DEMAND corpus contains speech recordings
of voice outputs of several speakers with a mixture
of 10 different real-word noise types (e.g., street,
cafe, and white one) in it, which makes the task both
controlled and difficult to train and evaluate models
in a challenging environment. Furthermore, the
DNS Challenge dataset, which has been collected by
Microsoft is large-scale real-world data with a highly
diverse range of noise conditions, reverberations, and
SNR and this makes the dataset robust and generalizable
to different acoustic settings. The standard performance
assessments used to quantify the enhancement include
Perceptual Evaluation of Speech Quality (PESQ), Short-
Time Objective Intelligibility (STOI), Signal-to-Distortion
Ratio improvement (SDRi) and Mean Opinion Score (MOS)
of subjective listening tests. We also report real-time
factor (RTF)-the ratio between processing time and
input duration to measure the real-time feasibility of
the model on edge hardware, in addition to model size
(in MB) and power consumption (in mW). In order to test
deployment, we attempt two representative endpoint
platforms: the ARM Cortex-M7 microcontroller, where the
model is simplified in CMSIS-NN to fixed-point operations

6 .

and real-time inference; and the NVIDIA Jetson Nano,
which has the ability to use hardware acceleration with
TensorRT and ONNX quantized machine learning models.
The choice of such platforms was to include technologies
with ultra-low-power microcontroller levels as well as
embedded Al edge processors Table 2. This two-platform
assessment plan allows confirming that the suggested
model can fit within the limits of practical use in edges
and provide quality enhancement of speech under the
low-latency and limited-energy conditions.

Table 2: Evaluation Metrics for Performance and
Deployment Feasibility

Metric
PESQ

Description Type
Perceptual speech | Objective (MOS-
quality (ITU-T like)

P.862)

STOI Short-Time
Objective
Intelligibility
SDRi Signal-to-
Distortion Ratio
improvement
MOS Mean Opinion
Score (subjective
listening)

RTF Real-Time Factor
(processing time/
input time)

Objective

Objective

Subjective

Deployment

Model Size Memory footprint
(MB)

Energy usage on
target platform

(mW)

Deployment

Power
Consumption

Deployment

ReESULTS AND DISCUSSION
Speech Quality improvement

The offered lightweight deep neural network architecture
is fast working effectively in speech enhancement tasks
compared with set standards. Indicators of the quality
of output shown in the quantitative comparison such as
a PESQ score of 3.01, SDRi of 9.4 dB and STOI of 0.93
position our model competitively between SEGAN and
the more complicated DCCRN model. Whereas DCCRN
has a PESQ that is marginally superior (3.20) and SDRi
(10.5 dB), it has greater complexity and amounts to
a higher computational cost and unsuitable in edge
devices. Conversely, SEGAN, its lighter alternative
with lower PESQ 2.62 and SDRi 7.1 dB measures does
not perform as well as it indicates lowered perceptual
quality. The model proposed is a best compromise--
providing state-of-the-art-like enhancement capability
on hardware that is optimized to run real-time inference
on small, resource-limited devices. It validates the
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Table 3: Performance and Deployment Comparison of Speech Enhancement Models across Quality and Edge Metrics

Power Power
Model Size RTF RTF (Jetson | (Cortex-M7, (Jetson
Model PESQ SDRi (dB) STOI (MB) (Cortex-M7) Nano) mW) Nano, mW)
SEGAN 2.62 7.1 0.89 1.4 N/A N/A N/A N/A
Proposed 3.01 9.4 0.93 1.2 0.85 0.29 72 245
Model
DCCRN 3.2 10.5 0.94 7.6 N/A N/A N/A N/A

potential of using depthwise separable convolutions,
an attention-based temporal modeling technique, and
quantization approaches to enable attaining high-quality
enhancement without having a high computation burden.

Performance: Edge Deployment

In addition to the accuracy in enhancement, the
compatibility and availability of the model to run on
edge platforms is a top concern of practical application.
The RTF of the model is only 0.85 with a low power
operation of only 72 mW, which makes it suitable to low
power, battery powered applications, such as hearing
aid and internet-of-things modules. The quantized INT8
model on Jetson Nano takes 1.5 MB, executes at an
RTF of 0.29 and consumes 245 mW, making it suitable
for low-latency needs in embedded robotics; a live
communication or speech interface, especially. The
results are in agreement with the fact that the model
satisfies stringent real-time requirements (RTF< 1.0) in
both platforms, with satisfactory power envelopes to
perform continuously. The architectural efficiency is
achieved in conjunction with post-training quantization
and optimized inference pipelines (CMSIS-NN on Cortex
and TensorRT on Jetson). These results confirm the idea
that the suggested architecture is not only correct but
very deployable in the embedded situation involving
strict computational and power requirements.

Design Justification of Ablation Study

Ablation study was carried out to analyse the role per
child component of design. Removal of the attention
mechanism on temporal modeling module resulted in
a PESQ degradation of 0.19, which is evidence toward
the assertion that this mechanism helps to increase
the capacity of the model to dynamically attend to the
relevant temporal characteristics in the speech signal.
Also, quantization disabled resulted in a ~35 percent
increase in end to end inference latency, another
demonstration that integer-only computation is needed
to achieve edge hardware real-time performance. These
experiments stress how much every architectural and
optimization decision of the whole system matters.
Not only does the attention usage lead to improved
enhancement quality, it does so with minimal overhead in
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terms of additional parameters and a significant decrease
in memory access latency and power consumption
without compromising perceptual quality Figure 5. In
combination, these findings support the architectural
choices adopted in this paper and show that both model
efficiency and inference strategy need to be carefully
co-designed so that the DNN-based speech enhancement
systems could be deployed practically to the edge
devices Table 3.

CMSIS-NN/TensorRT Optimization (RTF Boost)
Attention Mechanism (Quality Gain)

20.0%

200% 8i-GRU Temporal Modeling (Context Learning)

25.0%

Quantization (Latency & Power Reduction)

Depthwise Separable Convolutions (Efficiency)

Fig. 5: Contribution of Design Elements in Proposed
Edge Speech Enhancement System

CONCLUSION

We proposed an efficient and efficient deep neural network
model in this paper that can be used to run real-time
speech enhancement on the resource-constrained edge
equipment. Combining depthwise separable convolutions
to extract lightweight features, attention-enhanced
bidirectional GRUS to model the temporal characteristics
well, and a set of model compression methods, such as
structured pruning, 8-bit quantization, and knowledge
distillation, we succeed in proving that a high quality
of speech enhancement could be reached without
compromising on the inference speed and hardware
compatibility. The model continues to have a modest
memory requirement of less than 2 MB and shows a real-
time performance (RTF <1.0 ) on both microcontroller-
class (ARM Cortex-M7) and embedded Al (Jetson Nano)
architectures without compromising on any of the
perceptual quality metrics (PESQ, STOI, SDRi ). Ablation
testing substantiates the efforts of all architecture
components and compression policy as well. We establish
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that considerate co-design of the network structure and
optimization strategies makes it possible to successfully
implement DNN-based speech enhancement in transport
devices where power consumption is an issue and latency
is critical (wearable devices, smart assistants and mobile
aged networks). Left to the future are extensions of
this work including transformer-lite architectures to
have fewer parameters to capture underlying global
dependencies as well as federated learning frameworks
to enable adaptation to individual user-specific noise
operating conditions without jeopardizing data privacy
or communication efficiency.
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