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INTRODUCTION

ABSTRACT

The multi modal learning, specifically the audio visual stimulation combination has a
big promise to transform conversational artificial intelligence (Al) and human computer
interaction (HCI). Current conversational systems generally rely on audio-only systems
to process speech and natural language understanding which lacks robustness in
environments where there are distractive noise and high dynamic visuality. In the present
paper we introduce a multimodal audio-visual synthesis structure that integrates in a
common framework the processing of speech data and the visual signs to enhance the
perception of speech, recognition of emotion and situational context in interactive
systems. The model consists of Convolutional Neural Networks (CNNs) embedded
features extraction to recognize the visual information, a Transformer-based acoustic
encoder to represent the speech, and a cross-modal attention to combine the temporal
and spatial in a dynamic way. The approach was tested on three benchmark datasets
(GRID, CREMA-D and LRS3) in order to examine it in both synthetic and real-life settings.
The findings indicate that 17.3 percent and 12.8 percent Word Error Rate (WER) and
emotion classification accuracy have been reduced in comparison to unimodal baselines.
In addition, the system is quite resilient to acoustic interference and visual occlusions
and produces robust performance in a wide range of scenarios. The results suggest that
the suggested framework may be deployed on the forthcoming conversational systems
such as virtual assistants, telepresence robots, and assistive technologies, as well as a
scalable backbone that may underlie a future multimodal Al due to its “plug-and-play”
nature.
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Applications An area of rapid uptake has been
conversational artificial intelligence (Al) systems in
areas like virtual assistants, customer service bots,
telepresence robots, and other assistive technologies.l" 2
Such systems have traditionally used almost entirely
audio-based processing to accomplish automatic speech
recognition (ASR) and natural language understanding
(NLU). Although they are effective in a controlled acoustic
situation, unimodal audio systems face sharp losses of
performance in a noisy environment, cross-talk scenario,
or where there is ambiguous linguistic material.®! Human
communication is, however, multimodal in nature; it
constitutes sound elements together with visible visual
elements comprising lip movements, facial expressions

c8 —

and gestures of the head. Such combination of sensory
channels improves the intelligibility of speech and
especially in one of the more difficult cases. Following
on this observation, work on audio-visual fusion has grown
and has been found to be improving speech recognition,
speaker identification and emotion recognition tasks.[¢!

Nevertheless, there are major challenges despite these
moves:

1. Modality synchronization - Synchronization
between the audio and video streams is a non-
trivial task, in unconstrained circumstances.

2. Effective Fusion Plans - Several of the current
methods rely on a non-adaptive approach to
static fusion (early or late), and this strategy can
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be unwilling to deal with modality dependent
reliability changes under different conditions.

3. Real-Time deployment- Edge devices and real-
time interactive systems are disabled since their
computation requirements are high.?® 1%

In order to solve these issues, this paper suggests the
following audio-visual attention-based audio-visual
fusion framework that:

1. Audio and visual streams are complementary
spectral-time features extracted.

2. Has attention mechanisms to weigh modalities in
contextual relevance dynamically.

3. Tests the model against a diversity of benchmark
data sources in order to verify its generalization
and its strength.

The remaining parts of this paper are as follows: related
literature will be reviewed in Section 2, the proposed
methodology will be explained in Section 3, experimental
setup in Section 4, results and discussion in Section 5 and
finally conclusion and future work in Section 6.

RELATED WORK
Audio-Only Conversational Models

The first Al applications of speech processing were im-
plemented by using Hidden Markov Models (HMMs) along
with hand engineered acoustic features like Mel-fre-
quency cepstral coefficients (MFCCs).['! Though benefi-
cial in formal settings, these models did not fare well
with respect to environmental variability. The intro-
duction of end-to-end deep learning models, such as
RNN-Transducers, Connectionist Temporal Classification
(CTC) models, and Transformer encoders, made a tre-
mendous increase in the accuracy of recognition.['%'3]
Nevertheless, an outstanding disadvantage is noise ro-
bustness where even in practical acoustical environ-
ments, performance is deteriorated.!

Visual-Only Models

As much as it is possible to increase the depth of the visual
feature extractor in a visual speech recognition system
(lip reading), deeper architectures like 3D CNNs and
Convolutional LSTM networks have been more successful
in achieving deep convolutional models to carry out time
modelling of the lips.!"> ' These methods perform well in
silent speech conditions but fail to work well in occlusion,
head pose variation and low light- a phenomenon
associated with unconstrained HCI settings. ['"]

2.3 Multimodal Fusion Approaches

Multimodal learning is a type of learning that combines
supportive audio and visual feedback as an means of
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enhancing robustness. Broadly fusions strategies can be
classified to:

« EarlyFusion, -Before classification, concatenation
at the feature level.["8]

e Late Fusion Decision-level combination of

unimodal outputs.['”

o Attention-Based Fusion - Modality-wisely
weighting the context depending on underlying
conditions, which provides even better results
when on a dynamic environment.[20 21

Attention-based models bring the state-of-the-art
accuracy to audio-visual speech recognition and emotion
detection; however, they have issues of modality
synchronization, scaling to large datasets, and real-time
implementation on resource-limited environments.?2 23]

PROPOSED METHODOLOGY
Framework Overview

The presented Multimodal AudioVisual Fusion Structure
(Figure 1) aims to perform a joint speech and visual
information processing that can be further used to
conduct Automatic Speech Recognition (ASR) tasks
and Emotion Recognition (ER) tasks. There are four
fundamental modules within the architecture:

1. Audio Encoder -A Transformer-based encoder
takes advantage of 80-band log-mel spectrograms
generated out of raw speech. The Transformer
has provided a self-attention mechanism with
which the model is able to capture long-term
temporal relationships as well as contextual
information in speech signals leading to robust
model results in noisy conditions.

2. Visual Encoder An early CNN front-end
implementation consisting of ResNet blocks uses
spatial encoding (convolutional) representations
of lips to represent fine articulation variation.
It is preceded by a BiLSTM layer that captures
temporal relationships between frames as such
that motion continuity and co-articulation
effects are well captured.

3. Cross-Modal Attention Fusion - a multi-head cross-
attention module fuses embedding between
audio, and the visual modality by learning to
weigh the important contexts using audio and
visual features. This provides the model with the
capability of adapting, prioritising visual clues in
degraded audio scenario (e.g., high background
noise) and audio clues in unreliable blockage
scenario (e.g., occlusion).

69



Beh L. Wei and K. Maidanov : Multimodal Audio-Visual Fusion for Enhanced Conversational
Al and Human-Computer Interaction

1. Task-Specif = Prediction Heads The fused
representation is used as input in two-fully
connected elements:

e ASR Head - Produces character (or word-level)
outputs with the Connectionist Temporal
Classification (CTC) objective.

o ER Head - Predicts discrete emotional states
(e.g., happy, sad, neutral) through softmax
classifier which is trained such that cross-
entropy is minimized.

CTC

Multi-Head
Cross-Modal
Attention

Transformer
Audlo
Encoder

e

log-mel.sptregrag
Audio Visual

Softmax
Classifier

ResNet
Visual
Envoder

A 4

Fused
embeddings

BILSTM

Lip-motion Fused
Embeddings

Prediction

Fig. 1: Multimodal Audio-Visual Fusion Framework
Architecture

A system architecture that reflects the combination of
(1) Transformer-based audio encoding, (2) ResNet BiLSTM
visual encoding, and (3) cross-modal attention fusion to
address ASR and emotion recognition.

Data Preprocessing

Effective multimodal learning importantly depends
on robustness of preprocessing. The steps which are
followed are as follows:

o Audio Stream Processing
o Resampling at 16 kHz mono audio.

o 80-Band log-mel spectrogram feature
extraction over 25 ms window length and 10
ms hop length.

o Noise augmentation on MUSAN corpus (babble
and music, noise) and use of SpecAugment on
time-frequency masking, to increase noise
robustness.

¢ Visual Stream#L38

o Multi-Task Cascaded Convolutional Networks
(MTCNN) face detection and tracking.

o Cropping at lips in order to portray motion of
articulation.

o Normalize frames to a [0, 1] range of pixel
value and resize to definite dimensions.
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o 25 fps sampling to match the audio temporal
frame to facilitate multimodal fusion of audio
and temporal frames.

Figure 2: Multimodal Data Preprocessing Workflow for
Audio and Visual Streams offers an overview of the
framework of how the processing of both modalities may
be synchronized.

Audio Stream Processing
Feature Face Lip
Extraction Detection Region

CropPing
N O =

Noise augmentation Normaliz- —
MUSAN + SpecAugment tion

Visual Stream Processing

¥

Noise augmenntation
25 FPS

Temporal
sampling

Fig. 2: Multimodal Data Preprocessing Workflow for
Audio and Visual Streams

This diagram indicates sequential preprocess steps
used on the audio and visual streams in multimodal
learning, audio resampling, spectrograms extraction,
augmentation of data, face detection, cropping lip
region, normalization, resizing and temporal alighment
of fusion synchronized.

Training Configuration
e Loss Functions

o CTC Loss to deal with unaligned speech-text
sequences to use ASR.

o ER classification Cross-Entropy Loss.
« Strategy of Optimal Game Plan

o AdamW Optimizer with initial learning rate
parameters of learning schedule provided
using linear warmup and then cosine decay.

o0 Weight decay = 0.01 in order to enhance
generalization.

» Details of the implementation

o Framework: PyTorch with mixed-precision
training to move efficiency.

o The size of the batch and the number of
training epochs are tuned to the size of the
dataset empirically in accordance with GPU
memory requirements.

Early stopping fits based on performance makes an
overfit stop.

The iterative process of training and its associated error
functions along with optimizer setup and implementation
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plans is shown in Figure 3: Training Configuration
Workflow, in validation based early stopping.

Cross-Entropy

CTC Loss
Loss

v
AdamW Optimizer

« Learning rate warmup
and cosine decay

« Weight decay: 0.01

v
PyTorch

+ Mixed-precision training

« Batch size and epochs
tuning

« Early stopping

v

Training lterations ]

\

Fig. 3: Training Configuration Workflow

Figure representing the training environment with CTC
and cross-entropy loss functions, AdamW optimizer and
learning rate warming and cosine annealing, mixed-
precision training, users of batch size and early stopping
using validation performance.

Such a design takes advantage of the complementary
properties of auditory and visual modalities and uses
state-of-art attention mechanism to promote flexibility
in the context of real-world instance of human-computer
interaction (HCl). The framework establishes task-
specific specialisation whilst maximising feature sharing
by simultaneously optimising ASR and ER, resulting in a
great improvement with respect to unimodal baselines.

EXPERIMENTAL SETUP
Datasets

The suggested multimodal approach is tested in three
popular benchmarking datasets with a variety of speaker
sizes, speech situation and emotional readings:

« GRID: it consists of readings of 34 speakers who
have to recite fixed-grammar sentences, which
have perfect audio and video quality [24]. This
data enables the use of managed assessment of
audio-visual speech recognition.

e CREMA-D: Includes7,442 acted emotional speech
clips with each clip belonging to one of six
discrete emotional classes (e.g., happy, sad,
angry).®! The data can be used to assess the
emotion recognition skills on natural expressive
speech.
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« LRS3: A highly multispeaker, multichannel, large-
scale corpus on TED and TEDx talks showing
natural and spontaneous speech in which
speaker and environmental conditions varied
[26]. It offers a difficult standard of real-world
multimodal speech recognition.

To promote comparable results with the published
literature, each of the datasets is split on published
protocols into training, validation, and test sets.

Evaluation Metrics

Performance is evaluated against measures which are
specific to the task:

e Word Error Rate (WER) - Word error rate is
a metric used to measure the accuracy of
transcription in Automatic Speech Recognition
(ASR), and is a measure of insertions, deletions
and substitutions compared to the ground truth.

e Emotion Classification Accuracy (ECA) -
Proportion of accurately predicted emotion
states, in which greater model performance on
the task of affective computing is shown.

» Confusion Matrices- detailed information about
the performance of class wise recognition
of emotion and the tendency of regularly
misclassified groups.

These measures allow the rigorous and standardized
analysis of the tests of recognition, as well as
classification.

Baselines

Performance of the framework is benchmarked with
respect to defined unimodal and fusion baselines:

e Audio-only Transformer ASR: Audio speech
recognition does not utilize visual information;
it is built upon a Transformer architecture.?”1

o LipNet Only - Uses only lip-reading based on
convolutional networks to produce silent speech
recognition. "

o Early Fusion CNN+LSTM - Fuses audio and visual
features on input level, and CNN and LSTM layers
are used. [

The proposed model and the baselines are trained and
tested by the same preprocessing and augmentation
protocol to make fair comparisons.

Figure 4 contains an overview of the entire experimental
design, datasets, and evaluation metrics as well as
general baselines.
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Proposed Multimodal
Framework

4.1 Datasets 4.3 Baselines
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@ 34 speakers Word Error Rate Transformer ASR
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Classification
u LRS3 Accuracy 8 Early Fusion
—— Natural, i) CNN+LSTM

Confusion
Matrices

spontane ous

Baselines use same
preprocessing
&augmentations

N i —

Dataset splits:
train, val, test
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Fig. 4: Experimental Setup Overview: Datasets,
Evaluation Metrics, and Baselines

Diagrammatic illustration of the proposed multimodal
framework including the experimental design of the
framework, the data sets considered, the evaluation
metrics employed and the baseline models of the
framework to assess their adequacy and performance.

RESULTS AND DISCUSSION
ASR Performance

Automatic Speech Recognition (ASR) performance is
measured in the Word Error Rate (WER) that the lower
the value the more accurate is the recognition. The
vanilla audio-only Transformer model outputs a WER
of 15.2per cent. The visual-only LipNet model that
denoted only the lip movements records a higher WER
of 27.8 % indicating just how difficult the visual speech
recognition in the lip movements alone can be. Audio
and visual modalities combined early using a CNN+LSTM
model further decreases the WER to 13.4%, which is an
11.8% relative difference with respect to the audio-only
baseline. The identified audiovisual (AV) fusion strategy
additionally increases performance achieving a WER of
12.6 percent which is a massive relative increase of 17.3
percent. These findings indicate that the intended fusion
is effective to utilize the complementary albeit different
information that both modalities produce in order to
enhance the accuracy of speech recognition.

Emotion Recognition

The effectiveness of tOhe system to recognize emotional
states is defined in the terms of emotion classification
accuracy (ECA). The CNN that uses only audio has an ECA
of 76.4 and the CNN which uses only visual data 70.2.
Accuracy goes up to 80.1% with the modest improvement
of the early fusion approach suggesting that multimodal
integration is desirable. It is remarkable that the ECA
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of the proposed AV fusion model is substantially higher
(an increase of 12.8%, weights 86.2) than that of the
audio-only baseline. This enhancement highlights the
higher ability of the model to learn minute emotional
expressions of both the sound prosody and facial
features.

DiscussION

The suggested fusion approach outperforms the
unimodal and early fusion baselines in every instance
both in the ASR and in the emotion recognition tasks.
Most significant improvements are achieved in the
most complicating conditions e.g. noisy conditions (up
to 24% WER improvement at 0 dB signal-to-noise ratio)
where single modalities will show dramatic performance
degradation. The dynamic nature of integrating audio
and visual signals by the fusion framework enables the
framework to perform well in conditions where there are
differences in the quality of signal. Moreover, emotion
recognition is useful due to the detailed mixture of
the prosodic and visual cues they can be very useful in
determining and identifying subtle emotion conditions.
These results support the usefulness of the multimodal
fusion mechanism suggested to enhance concreteness and
precision in relation to speech and emotion-related tasks.

CONCLUSION AND FUTURE WORK

The proposed work presented a new cross-modal
attention-based audio-visual fusion architecture aiming
to improve the Automatic Speech Recognition (ASR) and
emotion recognition capabilities in chat bot and human-
computer interactions (HCI). The indicated approach
successfully makes use of complementary audio and
visual modalities, which made it significantly outperform
unimodal and early fusion baseline approaches. Notably,
the framework has high tolerance to invalid conditions,
including acoustic interference and image degradation,
and this feature indicates its applicability to functional
environments.

The major strengths of the study are the creation of
dynamic fusion mechanism that implements adaptive
weighting across the modalities and the thorough
assessment on benchmark datasets modeling various
situations on speech and emotions. Such findings reinstill
the full potency of cross-modal fusion towards enhancing
the proficiency and credibility of multimodal systems
used in interactive domains.

The future work will be related to the extension of
this framework to multilingual speech and emotion
recognition so that this framework will be applicable in
different global populations. Also, the self-supervised
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multimodal pretraining methods can be examined to
overcome the problem of data scarcity as it happens to
low-resource languages and domains. Research will also
focus on how to optimize model architectures to run
on embedded and mobile, which will make it possible
to interact with them in real-time with low latencies

in

limited resource environments. Taken together,

these developments are all designed to contribute to
the realization of powerful, widely applicable, and
accessible cross modal Al capabilities to enable next-gen
human-centric applications.
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