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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Abstract
The multi modal learning, specifically the audio visual stimulation combination has a 
big promise to transform conversational artificial intelligence (AI) and human computer 
interaction (HCI). Current conversational systems generally rely on audio-only systems 
to process speech and natural language understanding which lacks robustness in 
environments where there are distractive noise and high dynamic visuality. In the present 
paper we introduce a multimodal audio-visual synthesis structure that integrates in a 
common framework the processing of speech data and the visual signs to enhance the 
perception of speech, recognition of emotion and situational context in interactive 
systems. The model consists of Convolutional Neural Networks (CNNs) embedded 
features extraction to recognize the visual information, a Transformer-based acoustic 
encoder to represent the speech, and a cross-modal attention to combine the temporal 
and spatial in a dynamic way. The approach was tested on three benchmark datasets 
(GRID, CREMA-D and LRS3) in order to examine it in both synthetic and real-life settings. 
The findings indicate that 17.3 percent and 12.8 percent Word Error Rate (WER) and 
emotion classification accuracy have been reduced in comparison to unimodal baselines. 
In addition, the system is quite resilient to acoustic interference and visual occlusions 
and produces robust performance in a wide range of scenarios. The results suggest that 
the suggested framework may be deployed on the forthcoming conversational systems 
such as virtual assistants, telepresence robots, and assistive technologies, as well as a 
scalable backbone that may underlie a future multimodal AI due to its “plug-and-play” 
nature.
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Introduction
Applications An area of rapid uptake has been 
conversational artificial intelligence (AI) systems in 
areas like virtual assistants, customer service bots, 
telepresence robots, and other assistive technologies.[1, [2]  
Such systems have traditionally used almost entirely 
audio-based processing to accomplish automatic speech 
recognition (ASR) and natural language understanding 
(NLU). Although they are effective in a controlled acoustic 
situation, unimodal audio systems face sharp losses of 
performance in a noisy environment, cross-talk scenario, 
or where there is ambiguous linguistic material.[3] Human 
communication is, however, multimodal in nature; it 
constitutes sound elements together with visible visual 
elements comprising lip movements, facial expressions 
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and gestures of the head.[4] Such combination of sensory 
channels improves the intelligibility of speech and 
especially in one of the more difficult cases.[5] Following 
on this observation, work on audio-visual fusion has grown 
and has been found to be improving speech recognition, 
speaker identification and emotion recognition tasks.[6-8]

Nevertheless, there are major challenges despite these 
moves:

1. Modality synchronization - Synchronization 
between the audio and video streams is a non-
trivial task, in unconstrained circumstances.

2. Effective Fusion Plans - Several of the current 
methods rely on a non-adaptive approach to 
static fusion (early or late), and this strategy can 
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AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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be unwilling to deal with modality dependent 
reliability changes under different conditions.

3. Real-Time deployment- Edge devices and real-
time interactive systems are disabled since their 
computation requirements are high.[9, 10]

In order to solve these issues, this paper suggests the 
following audio-visual attention-based audio-visual 
fusion framework that:

1. Audio and visual streams are complementary 
spectral-time features extracted.

2. Has attention mechanisms to weigh modalities in 
contextual relevance dynamically.

3. Tests the model against a diversity of benchmark 
data sources in order to verify its generalization 
and its strength.

The remaining parts of this paper are as follows: related 
literature will be reviewed in Section 2, the proposed 
methodology will be explained in Section 3, experimental 
setup in Section 4, results and discussion in Section 5 and 
finally conclusion and future work in Section 6.

Related Work
Audio-Only Conversational Models

The first AI applications of speech processing were im-
plemented by using Hidden Markov Models (HMMs) along 
with hand engineered acoustic features like Mel-fre-
quency cepstral coefficients (MFCCs).[11] Though benefi-
cial in formal settings, these models did not fare well 
with respect to environmental variability. The intro-
duction of end-to-end deep learning models, such as 
RNN-Transducers, Connectionist Temporal Classification 
(CTC) models, and Transformer encoders, made a tre-
mendous increase in the accuracy of recognition.[12,13]  
Nevertheless, an outstanding disadvantage is noise ro-
bustness where even in practical acoustical environ-
ments, performance is deteriorated.[14]

Visual-Only Models

As much as it is possible to increase the depth of the visual 
feature extractor in a visual speech recognition system 
(lip reading), deeper architectures like 3D CNNs and 
Convolutional LSTM networks have been more successful 
in achieving deep convolutional models to carry out time 
modelling of the lips.[15, 16] These methods perform well in 
silent speech conditions but fail to work well in occlusion, 
head pose variation and low light- a phenomenon 
associated with unconstrained HCI settings. [17]

2.3 Multimodal Fusion Approaches

Multimodal learning is a type of learning that combines 
supportive audio and visual feedback as an means of 

enhancing robustness. Broadly fusions strategies can be 
classified to:

• Early Fusion, -Before classification, concatenation 
at the feature level.[18]

• Late Fusion Decision-level combination of 
unimodal outputs.[19]

• Attention-Based Fusion - Modality-wisely 
weighting the context depending on underlying 
conditions, which provides even better results 
when on a dynamic environment.[20, 21]

Attention-based models bring the state-of-the-art 
accuracy to audio-visual speech recognition and emotion 
detection; however, they have issues of modality 
synchronization, scaling to large datasets, and real-time 
implementation on resource-limited environments.[22, 23]

Proposed Methodology

Framework Overview

The presented Multimodal AudioVisual Fusion Structure 
(Figure 1) aims to perform a joint speech and visual 
information processing that can be further used to 
conduct Automatic Speech Recognition (ASR) tasks 
and Emotion Recognition (ER) tasks. There are four 
fundamental modules within the architecture:

1.	 Audio Encoder -A Transformer-based encoder 
takes advantage of 80-band log-mel spectrograms 
generated out of raw speech. The Transformer 
has provided a self-attention mechanism with 
which the model is able to capture long-term 
temporal relationships as well as contextual 
information in speech signals leading to robust 
model results in noisy conditions.

2.	 Visual Encoder An early CNN front-end 
implementation consisting of ResNet blocks uses 
spatial encoding (convolutional) representations 
of lips to represent fine articulation variation. 
It is preceded by a BiLSTM layer that captures 
temporal relationships between frames as such 
that motion continuity and co-articulation 
effects are well captured.

3.	 Cross-Modal Attention Fusion – a multi-head cross-
attention module fuses embedding between 
audio, and the visual modality by learning to 
weigh the important contexts using audio and 
visual features. This provides the model with the 
capability of adapting, prioritising visual clues in 
degraded audio scenario (e.g., high background 
noise) and audio clues in unreliable blockage 
scenario (e.g., occlusion).
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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1.	 Task-Specif Prediction Heads The fused 
representation is used as input in two-fully 
connected elements:

• ASR Head - Produces character (or word-level) 
outputs with the Connectionist Temporal 
Classification (CTC) objective.

• ER Head - Predicts discrete emotional states 
(e.g., happy, sad, neutral) through softmax 
classifier which is trained such that cross-
entropy is minimized.

Fig. 1: Multimodal Audio–Visual Fusion Framework 
Architecture

A system architecture that reflects the combination of 
(1) Transformer-based audio encoding, (2) ResNet BiLSTM 
visual encoding, and (3) cross-modal attention fusion to 
address ASR and emotion recognition.

Data Preprocessing

Effective multimodal learning importantly depends 
on robustness of preprocessing. The steps which are 
followed are as follows:

• Audio Stream Processing

o Resampling at 16 kHz mono audio.

o 80-Band log-mel spectrogram feature 
extraction over 25 ms window length and 10 
ms hop length.

o Noise augmentation on MUSAN corpus (babble 
and music, noise) and use of SpecAugment on 
time-frequency masking, to increase noise 
robustness.

• Visual Stream処理

o Multi-Task Cascaded Convolutional Networks 
(MTCNN) face detection and tracking.

o Cropping at lips in order to portray motion of 
articulation.

o Normalize frames to a [0, 1] range of pixel 
value and resize to definite dimensions.

o 25 fps sampling to match the audio temporal 
frame to facilitate multimodal fusion of audio 
and temporal frames.

Figure 2: Multimodal Data Preprocessing Workflow for 
Audio and Visual Streams offers an overview of the 
framework of how the processing of both modalities may 
be synchronized.

Fig. 2: Multimodal Data Preprocessing Workflow for 
Audio and Visual Streams

This diagram indicates sequential preprocess steps 
used on the audio and visual streams in multimodal 
learning, audio resampling, spectrograms extraction, 
augmentation of data, face detection, cropping lip 
region, normalization, resizing and temporal alignment 
of fusion synchronized.

Training Configuration

• Loss Functions

o CTC Loss to deal with unaligned speech-text 
sequences to use ASR.

o ER classification Cross-Entropy Loss.

• Strategy of Optimal Game Plan

o AdamW Optimizer with initial learning rate 
parameters of learning schedule provided 
using linear warmup and then cosine decay.

o Weight decay = 0.01 in order to enhance 
generalization.

• Details of the implementation

o Framework: PyTorch with mixed-precision 
training to move efficiency.

o The size of the batch and the number of 
training epochs are tuned to the size of the 
dataset empirically in accordance with GPU 
memory requirements.

Early stopping fits based on performance makes an 
overfit stop.

The iterative process of training and its associated error 
functions along with optimizer setup and implementation 
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This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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plans is shown in Figure 3: Training Configuration 
Workflow, in validation based early stopping.

Fig. 3: Training Configuration Workflow

Figure representing the training environment with CTC 
and cross-entropy loss functions, AdamW optimizer and 
learning rate warming and cosine annealing, mixed-
precision training, users of batch size and early stopping 
using validation performance.

Such a design takes advantage of the complementary 
properties of auditory and visual modalities and uses 
state-of-art attention mechanism to promote flexibility 
in the context of real-world instance of human-computer 
interaction (HCI). The framework establishes task-
specific specialisation whilst maximising feature sharing 
by simultaneously optimising ASR and ER, resulting in a 
great improvement with respect to unimodal baselines.

Experimental Setup

Datasets

The suggested multimodal approach is tested in three 
popular benchmarking datasets with a variety of speaker 
sizes, speech situation and emotional readings:

• GRID: it consists of readings of 34 speakers who 
have to recite fixed-grammar sentences, which 
have perfect audio and video quality [24]. This 
data enables the use of managed assessment of 
audio-visual speech recognition.

• CREMA-D: Includes7,442 acted emotional speech 
clips with each clip belonging to one of six 
discrete emotional classes (e.g., happy, sad, 
angry).[25] The data can be used to assess the 
emotion recognition skills on natural expressive 
speech.

• LRS3: A highly multispeaker, multichannel, large-
scale corpus on TED and TEDx talks showing 
natural and spontaneous speech in which 
speaker and environmental conditions varied 
[26]. It offers a difficult standard of real-world 
multimodal speech recognition.

To promote comparable results with the published 
literature, each of the datasets is split on published 
protocols into training, validation, and test sets.

Evaluation Metrics

Performance is evaluated against measures which are 
specific to the task:

• Word Error Rate (WER) - Word error rate is 
a metric used to measure the accuracy of 
transcription in Automatic Speech Recognition 
(ASR), and is a measure of insertions, deletions 
and substitutions compared to the ground truth.

• Emotion Classification Accuracy (ECA) - 
Proportion of accurately predicted emotion 
states, in which greater model performance on 
the task of affective computing is shown.

• Confusion Matrices- detailed information about 
the performance of class wise recognition 
of emotion and the tendency of regularly 
misclassified groups.

These measures allow the rigorous and standardized 
analysis of the tests of recognition, as well as 
classification.

Baselines

Performance of the framework is benchmarked with 
respect to defined unimodal and fusion baselines:

• Audio-only Transformer ASR: Audio speech 
recognition does not utilize visual information; 
it is built upon a Transformer architecture.[27]

• LipNet Only - Uses only lip-reading based on 
convolutional networks to produce silent speech 
recognition.[15]

• Early Fusion CNN+LSTM - Fuses audio and visual 
features on input level, and CNN and LSTM layers 
are used.[16]

The proposed model and the baselines are trained and 
tested by the same preprocessing and augmentation 
protocol to make fair comparisons.

Figure 4 contains an overview of the entire experimental 
design, datasets, and evaluation metrics as well as 
general baselines.
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A. Operational Transconductance Amplifier
OTA is a fundamental component in the majority of 
analog circuits with linear input-output characteristics. 
It is essentially identical to conventional operational 
amplifiers in which differential inputs are present. The 
primary distinction between OTA and traditional OPAMP is 
that the output of OTA is in the form of current, while the 
output of conventional OPAMP is in the form of voltage. 
The comparator has two special properties.

• Input Swing
• Output Swing

Our target is a small change of ∆VGS as if we get a sharp 
digital output in the comparator. We know, Inverter has 
a very high gain. We make the OTA stage by connecting 
a differential amplifier with an Inverter. All the MOSFETs 

of the MOSFETs was increased to four times of the nominal 
length which has provided the design with a better Noise 
Figure, PSRR, Gain, and CMRR performance.

relAted work

Over decades, the design of a comparator has been 
implemented. With the use of various process technology, 
several researchers have produced a variety of acceptable 
comparator structures for a variety of applications.

Developed a three-stage voltage comparator 
concentrated on improving comparator sensitivity and 
total gain in this design. B. Prathibha et al.[2] suggested a 
three-stage CMOS comparator with a high-speed operation 
to gain a lower static & dynamic power dissipation and a 
smaller offset voltage. Satyabrata et al.[3] compare the 
traditional comparator to the latched and hysteresis-
based comparator. Zbigniew[4] presented the design of 
a comparator for a high-linearity flash ADC, which was 
realized in a 22nm FDSOI process with a 0.8V supply. The 
architecture of a pipelined ADC mismatch insensitive 
dynamic comparator.[5] High-resolution comparators have 
also been designed utilizing offset measurement and 
a cancellation technique involving dynamic latches.[6]  
Consequently, it was suggested to build a dynamic 
comparator with high accuracy and low offset.

This paper focused on the highly linear, low offset 
voltage, high resolution, and low power performance of the 
Comparator. The comparator design given in this paper is 
designed that can be used with flash ADC.

ArchItecture of compArAtor

The comparator circuit is the essential element of every 
ADC. The total performance of the ADC is determined by 
the properties and performance of the comparator. Fig. 
1 depicts the block diagram of the proposed comparator. 
This topology comprises two blocks in it.

• OTA Stage
• Output Stage

Up to the OTA, the stage amplification of analog input 
is performed. Then the buffer stage further amplifies to 
give a level as well as strengthen the OTA OUTPUT signal 
for load driving. After the output buffer stage, a digital 
signal is created on the output side. Fig. 2 depicts the 
schematic of the entire idea.

Fig. 1: Block diagram of the suggested Comparator
Fig. 3: Differential Pair, OTA Stage, and Current Mirror 

for The Comparator

Fig. 2: Schematic of the 45nm CMOS-based 
Comparator
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Fig. 4: Experimental Setup Overview: Datasets, 
Evaluation Metrics, and Baselines

Diagrammatic illustration of the proposed multimodal 
framework including the experimental design of the 
framework, the data sets considered, the evaluation 
metrics employed and the baseline models of the 
framework to assess their adequacy and performance.

Results and Discussion
ASR Performance

Automatic Speech Recognition (ASR) performance is 
measured in the Word Error Rate (WER) that the lower 
the value the more accurate is the recognition. The 
vanilla audio-only Transformer model outputs a WER 
of 15.2per cent. The visual-only LipNet model that 
denoted only the lip movements records a higher WER 
of 27.8 % indicating just how difficult the visual speech 
recognition in the lip movements alone can be. Audio 
and visual modalities combined early using a CNN+LSTM 
model further decreases the WER to 13.4%, which is an 
11.8% relative difference with respect to the audio-only 
baseline. The identified audiovisual (AV) fusion strategy 
additionally increases performance achieving a WER of 
12.6 percent which is a massive relative increase of 17.3 
percent. These findings indicate that the intended fusion 
is effective to utilize the complementary albeit different 
information that both modalities produce in order to 
enhance the accuracy of speech recognition.

Emotion Recognition

The effectiveness of t0he system to recognize emotional 
states is defined in the terms of emotion classification 
accuracy (ECA). The CNN that uses only audio has an ECA 
of 76.4 and the CNN which uses only visual data 70.2. 
Accuracy goes up to 80.1% with the modest improvement 
of the early fusion approach suggesting that multimodal 
integration is desirable. It is remarkable that the ECA 

of the proposed AV fusion model is substantially higher 
(an increase of 12.8%, weights 86.2) than that of the 
audio-only baseline. This enhancement highlights the 
higher ability of the model to learn minute emotional 
expressions of both the sound prosody and facial 
features.

Discussion

The suggested fusion approach outperforms the 
unimodal and early fusion baselines in every instance 
both in the ASR and in the emotion recognition tasks. 
Most significant improvements are achieved in the 
most complicating conditions e.g. noisy conditions (up 
to 24% WER improvement at 0 dB signal-to-noise ratio) 
where single modalities will show dramatic performance 
degradation. The dynamic nature of integrating audio 
and visual signals by the fusion framework enables the 
framework to perform well in conditions where there are 
differences in the quality of signal. Moreover, emotion 
recognition is useful due to the detailed mixture of 
the prosodic and visual cues they can be very useful in 
determining and identifying subtle emotion conditions. 
These results support the usefulness of the multimodal 
fusion mechanism suggested to enhance concreteness and 
precision in relation to speech and emotion-related tasks.

Conclusion and Future Work

The proposed work presented a new cross-modal 
attention-based audio-visual fusion architecture aiming 
to improve the Automatic Speech Recognition (ASR) and 
emotion recognition capabilities in chat bot and human-
computer interactions (HCI). The indicated approach 
successfully makes use of complementary audio and 
visual modalities, which made it significantly outperform 
unimodal and early fusion baseline approaches. Notably, 
the framework has high tolerance to invalid conditions, 
including acoustic interference and image degradation, 
and this feature indicates its applicability to functional 
environments.

The major strengths of the study are the creation of 
dynamic fusion mechanism that implements adaptive 
weighting across the modalities and the thorough 
assessment on benchmark datasets modeling various 
situations on speech and emotions. Such findings reinstill 
the full potency of cross-modal fusion towards enhancing 
the proficiency and credibility of multimodal systems 
used in interactive domains.

The future work will be related to the extension of 
this framework to multilingual speech and emotion 
recognition so that this framework will be applicable in 
different global populations. Also, the self-supervised 



Beh L. Wei and K. Maidanov : Multimodal Audio–Visual Fusion for Enhanced Conversational  
AI and Human–Computer Interaction

National Journal of Speech and Audio Processing  | Apr - June 2025 19Journal of VLSI circuits and systems, , ISSN 2582-1458 

RESEARCH ARTICLE WWW.VLSIJOURNAL.COM

 1.8-V Low Power, High-Resolution, High-Speed 
Comparator With Low Offset Voltage 

Implemented in 45nm CMOS Technology

 Ishrat Z. Mukti1, Ebadur R. Khan2. Koushik K. Biswas3

1-3Dept. of EEE, Independent University, Bangladesh, Dhaka, Bangladesh

AbstrAct

This paper presents the design of a comparator with low power, low offset voltage, 
high resolution, and rapid speed. The designed comparator is built on 45 𝑛𝑛𝑛𝑛 flip CMOS 
technology and runs 4.2 𝐺𝐺 samples per second at nominal voltage. It is a custom-made 
comparator for a highly linear 4-bit Flash A/D Converter (ADC). The outlined design 
can operate on a nominal supply of 1.8 V. The comparator offset voltage was elevated 
because of this mismatch. To compensate for the offset voltage, we followed a decent 
approach to design the circuits. Therefore, the offset voltage is reduced to 250𝜇𝜇𝜇𝜇. 
The designed comparator has a unity gain bandwidth of 4.2 𝐺𝐺𝐺𝐺𝐺𝐺 and a gain of 72𝑑𝑑𝑑𝑑 at 
nominal PVT, which gives us a considerable measure of authority. The dynamic power 
consumption of the comparator is 48.7𝜇𝜇𝜇𝜇. The layout of this designed comparator has 
been implemented, and the area of the comparator is 12.3 𝜇𝜇𝑛𝑛 × 15.75 𝜇𝜇𝑛𝑛. The re-
sults of pre-and post-layout simulations in various process, voltage, and temperature 
corners are shown.
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IntroductIon 
A comparator is a device that compares between two input 
signals, basically an input analog signal with a reference signal, 
and gives outputs in terms of a digital signal based on the result 
of the comparison. Comparators are widely used in various 
circuits, especially A/D converters (ADC). An ADC application 
is one that requires a quicker operating speed and reduced 
power consumption. They also aim for a reduced noise level and 
a lower offset voltage. The comparator is crucial in obtaining 
greater operating speeds and lower power consumption. The 
comparator we suggest is made using CMOS technology, which 
has strong noise immunity and low static power consumption. 
This article details the design of a comparator for use in a 
4-BIT FLASH ADC with a sampling rate of 4.2 GHz. In such a 
circumstance, the device’s accuracy should be no less than 
1/2 LSB. When the reference voltage and supply voltage are 
identical, the LSB value of an N-bit ADC is provided by the 
following formula:
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 LSB= {VDD/ (2) ^N} (1)

The desired comparator resolution is 112.5 mV for a 
4-BIT converter with a 1.8V supply voltage. In this work, 
we examine the design and operation of a current-based, 
low-power comparator. In order to gain more precision 
and minimize, a competent offset cancellation method has 
been implemented. In this comparator, super low threshold 
MOSFETs are used. In general, in a conventional MOSFET 
structure, the gate capacitance tends to show a higher 
value. For this reason, the threshold of the MOSFETs tends 
to be higher. One of the techniques to obtain a super low 
threshold of MOSFETs is to fabricate the MOSFETs with 
lower gate capacitance. As the gate capacitance is lower 
in these types of MOSFETs, the threshold voltage will 
reduce a lot which will give a better headroom for design, 
to have a great ICMR range, low power consumption, and 
large obtainable gain while keeping all the MOSFETs in 
saturation. SLVT MOSFETs allow doing that. Also, the length 
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multimodal pretraining methods can be examined to 
overcome the problem of data scarcity as it happens to 
low-resource languages and domains. Research will also 
focus on how to optimize model architectures to run 
on embedded and mobile, which will make it possible 
to interact with them in real-time with low latencies 
in limited resource environments. Taken together, 
these developments are all designed to contribute to 
the realization of powerful, widely applicable, and 
accessible cross modal AI capabilities to enable next-gen 
human-centric applications.
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